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Abstract The regulation of IL-17A and IL-22 production

differs between human and murine cd T cells. We find that

human cd T cells expressing Vc2Vd2 T cell receptors are

peripherally polarized to produce IL-17A or IL-22, much

like CD4 ab Th17 T cells. This requires IL-6, IL-1b, and

TGF-b, whereas expansion and maintenance requires

IL-23, IL-1b, and TGF-b. In contrast, IL-17A and IL-22

production by murine cd T cells is innately programmed

during thymic ontogeny but requires IL-23 and IL-1b for

maintenance. Murine cd cells producing IL-17A and IL-22

play important roles in microbial, autoimmune, and

inflammatory responses. However, the roles played by

human IL-17A- and IL-22-producing cd T cells are less

clear but are also likely to be important. These observations

highlight differences between humans and murine cd T

cells and underscore the importance of IL-17A- and IL-22-

producing cd T cells.
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Abbreviations

APC Antigen-presenting cell

AHR Aryl hydrocarbon receptor

CIA Collagen-induced arthritis

DETC Dendritic epidermal T cells

EAE Experimental autoimmune encephalomyelitis

FICZ 6-Formylindolo[3,2-b]carbazole

HMBPP (E)-4-Hydroxy-3-methyl-but-2-enyl

pyrophosphate

IL Interleukin

IPP Isopentenyl pyrophosphate

MHC Major histocompatibility complex

MMP Matrix metalloproteinase

NKT Natural killer T

ROR Retinoid-related orphan receptor

STAT Signal transducer and activator of transcription

TCR T cell antigen receptor

TLR Toll-like receptor

Introduction

cd T cells have properties of both innate and adaptive

immune cells. Although expressing adaptive T cell antigen

receptors (TCRs) by rearranging V, D (for the d chain), and

J gene segments, human and mouse cd T cells utilize a

limited set of Vc and Vd genes. In cases where the cd
ligands and/or presenting molecules have been identified,

they have been found to be ubiquitous nonpeptide

compounds [such as lipids or (E)-4-hydroxy-3-methyl-but-

2-enyl pyrophosphate (HMBPP)] presented by major histo-

compatibility complex (MHC) class Ib molecules such as

CD1 or by an unknown presenting molecule (for phosp-

hoantigens). In other cases, the cd T cells do not recognize

an exogenous or endogenous antigen at all—instead they

directly recognize an MHC class Ib molecule, such as H-2T

or MICA/MICB. In these ways, recognition by cd TCRs

more resembles recognition of nonpeptide compounds by

pattern recognition receptors than the recognition by con-

ventional ab TCRs of peptide antigens presented by MHC

class I or II molecules.
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Despite the identification of cd T cells in 1986 [1], major

questions still remain unanswered about their functional

roles. Although normally constituting a small proportion of

total T cells in humans and mice, certain infections or other

stimuli can expand cd T cells to high levels. Also, in many

cases cd T cells express invariant TCRs or TCRs with

restricted V gene diversity, resulting in high frequencies of

T cells with a defined specificity (although largely unknown

for murine cd T cells). Moreover, these invariant cd T cells

can be highly enriched at specific anatomic locations. From

the study of other unconventional T cells, such as invariant

natural killer ab T (iNKT) cells that recognize lipids

presented by CD1d [2, 3], it is clear that small populations

of T cells that respond early during immune responses can

greatly influence the eventual outcome.

Discoveries over the last decade have now defined a new

lineage of T cells—the Th17 lineage—that produces

IL-17A, IL-17F, and IL-22. Through studies of the role of

IL-23 in autoimmune diseases, it became clear that deletion

of the shared IL-12b chain ameliorated disease because of

the loss of IL-23 function, not IL-12 function, and that, in

most cases, traditional Th1 cells producing IFN-c did not

cause autoimmune pathology. This rapidly led to the

delineation of the Th17 differentiation schema with iden-

tification of the cytokines and transcription factors

involved (detailed below). Members of the IL-17 cytokine

family (IL-17A through IL-17F) are proinflammatory

cytokines that possess a diverse array of functions ranging

from neutrophil recruitment to induction of wound repair

and tissue remodeling that begin to function early in

responses. Similarly, IL-22 can also mediate inflammation

and stimulate the production of antimicrobial peptides, and

plays a prominent role in skin inflammation and repair.

Although initial studies focused on Th17 and Th22 CD4

ab T cells, Th17 ab cells require time to develop and,

therefore, would not be available during the crucial early

phases of immune responses (within hours) where IL-17A

plays critical roles in recruiting neutrophils to sites of

infection and in initiating inflammatory responses. In these

situations, cd T cells, other innate lymphocytes (such as

iNKT cells and lymphoid tissue inducer cells), Paneth

cells, and neutrophils play sentinel functions by releasing

IL-17A [4]. cd T cells are important sources of IL-17A and

IL-22 during infections and autoimmune diseases, and

secrete IL-17A earlier in disease than conventional CD4 or

CD8 ab T cells. For example, in murine tuberculosis, cd T

cell production of IL-17A actually exceeds that of Th17

cells [5]. Furthermore, murine cd T cells can produce

IL-17A, IL-22, and IL-21 in response to IL-23 and IL-1b
without exposure to exogenous antigens [6] or with expo-

sure only to toll-like receptor (TLR) and dectin-1 ligands

[7, 8].

From a therapeutic perspective, it is essential to deter-

mine the role played by these cells in disease as well as the

mechanisms regulating their development. Moreover,

although it is clear that IL-17A-producing cd T cells are

important in mice and that they exist in humans [9], little is

known about the roles of human IL-17A-producing cd T

cells in infections and autoimmune diseases. In this review,

we first cover the basic differentiation scheme of conven-

tional T cells, including recently described Th17 T cells,

then discuss the regulation and function of IL-17A and

IL-22 production by unconventional cd T cells in humans

and in mice.

Biology of IL-17A and IL-22

IL-17A is a multifactorial cytokine, which promotes

inflammation. It does this by increasing production of

inflammatory cytokines, chemokines, matrix remodeling

proteins, adhesion molecules, antimicrobials, and acute

phase reactants. The major consequence of IL-17A sig-

naling is the recruitment of neutrophils to areas of

inflammation.

Because the IL-17A receptor (IL-17RA) is expressed

ubiquitously throughout the body, virtually every cell in the

body can participate in IL-17A-mediated inflammation.

The principle effect of IL-17A is propagation of proin-

flammatory cytokines; for example, fibroblasts and

epithelial cells respond to IL-17A by producing IL-6 and

G-CSF [10] as well as the chemokines IL-8/CXCL8,

CXCL1, CXCL2, CCL20, CCL2, and CCL7 [11–14].

IL-17A signaling also induces the expression of matrix

metalloproteinases (MMP) such as MMP-1 [15], -3 [16,

17], -9 [18], and -13 [17, 19], and aggrecanase-1 [17].

MMPs are involved in tissue remodeling, and can con-

tribute to tissue repair or tissue destruction. IL-17A also

stimulates the production of receptor activator of nuclear

factor kappa-B ligand (RANKL, also known as TNFSF11),

a key stimulator of osteoclast differentiation and activation

for bone resorption [20].

IL-17A also induces endothelial cells to upregulate the

adhesion molecules E-selectin, VCAM-1 and ICAM-1,

which enable neutrophils and other cells responding to the

proinflammatory cytokines to exit the vasculature [21].

IL-17A also boosts mucosal immunity by induction of

antimicrobials, such as the b-defensins and mucins, which

are rapidly produced by airway epithelial cells in response

to IL-17A [22, 23]. Lastly, IL-17A boosts systemic innate

immunity through the induction of acute phase reactants,

produced by the liver. One such reactant, C-reactive pro-

tein [24], is directly released by hepatocytes treated with

IL-17A and functions to activate the complement system.
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IL-17A signaling also acts at the molecular level to

stabilize mRNA transcripts within target cells. This is

achieved through activation of the MAPK pathway and

targets mRNA transcripts containing Au-rich elements in

myeloid cells. Examples of such transcripts include Cxcl-1

[25], Il-6 [26, 27], Il-8 [28], and G-csf [29]. IL-22 is often

produced alongside IL-17A. IL-22 acts on non-immune

cells, specifically epithelial cells and other cells of the skin,

gut, lungs, and kidneys. Similar to IL-17A, IL-22 induces

antimicrobial peptides, acute phase reactants, and MMPs,

but uniquely mediates re-epithelialization and inhibition of

keratinocyte differentiation [30–32].

Lineage commitment and differentiation

of conventional ab T cells: what lessons can we learn

for cd T cells?

To differentiate conventional naive ab T cells from

memory T cells, naive CD4 ab T cells must be exposed to

their peptide antigens bound to MHC class II molecules

while naive CD8 ab T cells must be exposed to their

peptide antigens bound to MHC class I molecules. This

process is generally initiated by professional antigen-pre-

senting cells (APC) that express not only the MHC

molecules with bound peptide antigens, but also costimu-

latory ligands such as CD80 (B7-1) and CD86 (B7-2).

Engagement of other receptors expressed on T cells such as

the CD4 and CD8 accessory molecules, costimulatory and

inhibitory receptors (such as CD28, CTLA-4, and JCAM),

CD2 and SLAM family receptors, TNF-family receptors

(such as CD27), and integrins (such as LFA-1), to their

ligands also enhances or are required for naive T cell

activation. The binding of the ab TCR to its cognate MHC-

peptide antigen along with the other receptor interactions

activates the T cell and converts it to a memory (educated)

T cell. The affinity of the MHC–peptide complex for the

TCR and the length of time that the TCR is bound also

affect T cell differentiation and function.

While converting to memory T cells, naive T cells

commit to different functional lineages. There is a strong

contribution to function that is determined by the

expression, or lack of expression (in the case of cd and

innate ab T cells), of CD4 and CD8 accessory receptors

on the naive T cells. Thus, expression of the CD4,

CD8ab heterodimer, CD8aa homodimer, or the lack of

expression of CD4-CD8- in both ab and cd T cells

delineates (or is a marker for) some of the functional

capabilities of the cells, principally cytotoxicity versus

helper activity.

During peripheral conversion of naive to memory, the

types of cytokines produced by the memory T cell (Th1,

Th2, Th9, Th17, Th22, TFH, etc.) depend on the type of

APC, the cytokines present during activation, and the

receptors/ligands expressed by the APC. In turn, the types

of APC and surrounding cytokines are strongly dependent

on the triggering of innate receptors [TLRs, nucleotide-

binding oligomerization domain-containing proteins

(NODs), nucleotide-binding domain leucine-rich repeat

containing NOD-like receptors, mannose receptors, etc.] by

pathogen-associated molecular patterns associated with the

antigen source (e.g. viral, bacterial, or parasitic infections).

These innate sensors direct T cell differentiation by

engaging innate receptors on APC and surrounding cells

which, in turn, stimulates the expression of specific cellular

ligands and cytokines. Innate signals can also direct T cell

differentiation by engaging innate receptors expressed by

the T cells themselves. Therefore, the types of innate

receptors engaged by the pathogen-associated molecular

patterns play a major role in determining the downstream

lineage commitment of T cells.

The cytokines and receptor–ligand interactions signal

naive T cells to increase production or activity of various

transcriptional activators/suppressors that then turn on and

off genes to commit the T cells to different functional

lineages. Then epigenetic changes serve to firmly commit

the T cells to a particular functional lineage in many but

not all cases. Depending on the number of times the T cells

are activated through their TCRs, the number of cell

divisions they undergo, and the conditions under which

they are activated (i.e. surrounding cytokines and receptor

ligand interactions), the memory T cells then undergo

progressive differentiation to a more effector/terminally

differentiated state with the associated loss or gain of

various surface receptors and effector molecules.

The challenge of studying memory and lineage com-

mitment of cd T cells and unconventional ab T cells is that,

in many cases, the TCRs of these cells function more like

pattern recognition receptors than foreign antigen recep-

tors. That is, the antigens recognized by cd T cells so far

have been either nonpeptide conserved molecules, such as

prenyl pyrophosphate isoprenoid metabolites and lipids,

that are expressed by a variety of pathogens and have

mammalian homologs, or endogenous self proteins (such

as MICA/MICB, CD1, or H-2T MHC class Ib molecules).

The presence of these self-ligands or ubiquitous nonpeptide

antigens can rapidly convert naive cd T cells into memory

cells. Exposure to self-ligands may explain why many

murine T cell V gene subsets acquire ‘‘memory’’ T cell

phenotypes and commit to a functional lineage in the

thymus. In contrast, although acquisition of a ‘‘memory’’

phenotype can take place in the thymus, many human

neonatal Vc2Vd2 T cells exhibit naive phenotypes. In this

case, commitment by human Vc2Vd2 T cells to Tcd17 or

other lineages can take place in the periphery, as for most

ab T cells.
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Differentiation of Th17 CD4 ab T cells

When considering the commitment of cd T cells to the

Th17 lineage, it is useful to consider the requirements for

the differentiation of naive CD4 ab T cells to Th17 cells

that has been extensively studied in both humans and mice

[33].

Th17 differentiation begins with the ligation of the TCR

in the presence of IL-6 and/or IL-21. This activates

STAT3, which induces and increases expression of the

master transcription factor, retinoid-related orphan receptor

ct (RORct, produced from the RORC gene) [34], and/or

RORa (produced from the RORA gene) [35]. RORct and

RORa are key transcription factors required for IL-17A and

IL-17F production. STAT3, in the presence of RORct,

binds to the IL17A and IL17F promoters [36], initiating

IL-17A and IL-17AF mRNA production. IL-1b, through

induction of IRF4, appears to stabilize the Th17 phenotype

[37, 38]. Additionally, the RUNX1 transcription factor may

further promote the differentiation of Th17 cells since it

upregulates RORct expression and IL17A transcription

[39]. Within these developing Th17 T cells, IL-6 also

induces expression of IL-23R [40]. This enables further

STAT3 signaling through the binding of IL-23 to the

IL-23R. Continued IL-23/IL-23R signaling through STAT3

is required by committed Th17 precursors for terminal

differentiation of these cells into effector Th17 cells and

maintenance of their phenotype in vivo [41]. In mice, TGF-

b appears to be required to maximally differentiate naive

cells into Th17 cells [42]. TGF-b has been suggested to

indirectly suppress Th1 and Th2 differentiation through

inhibition of STAT4 and GATA-3 transcription factors,

respectively [43]. Human Th17 CD4 ab T cells also require

TGF-b for maximal differentiation of Th17 cells [44–46]

probably through a similar mechanism [47]. Thus, trig-

gering naive CD4 ab T cells with MHC/peptide antigens in

the presence of IL-6 and/or IL-21, IL-1b, and TGF-b
directs their differentiation to the Th17 lineage. IL-23

serves to reinforce and maintain this lineage commitment.

Human IL-17A-producing cd T cells

Human cd V gene subsets: expansion of Vc2Vd2 T

cells in infancy driven by microbial expression

of HMBPP and other phosphoantigens

Humans express six functional Vc gene segments and three

major Vd gene segments. Five of the Vc gene segments

(Vc1.2, Vc1.3, Vc1.4, Vc1.5, and Vc1.8; also termed Vc2,

Vc3, Vc4, Vc5, and Vc8) belong to a single family showing

71–91% amino acid homology. The Vc1 family also shows

42–48% amino acid homology with murine Vc5 (using the

Tonegawa nomenclature). The sixth functional Vc gene

segment, Vc2 (also termed Vc9), is distinct from all murine

Vc gene segments. In adults, the Vc2 gene segment is

commonly found paired with the Vd2 gene segment (also

distinct from all known murine Vc gene segments). The

Vc2 gene segment can also pair with the Vd1 gene segment

(showing 58% amino acid homology with murine Vd6),

although Vd1 is most commonly paired with a Vc1 family

member. The Vd3 gene segment is the third most common

segment in adults and shows 66% amino acid homology

with murine Vd5. Although Va gene segments can

recombine with the Cd constant region and pair with Vc
gene segments, these TCRs constitute only a small fraction

of total cd T cells in most individuals.

Unlike mice, humans do not exhibit a predominance of

cd T cells at epithelial surfaces, nor are invariant TCRs

commonly found at localized anatomic sites. There is

evidence, however, for an early wave of cd T cells, from

fetal thymus and liver, expressing invariant Vc2 gene

segments [48] paired with oligoclonal Vd2 gene segments

[49–51]. However, by birth, the thymus has switched to

Vd1 and the Vc1Vd1 subset predominates [49, 52]. At

birth, the repertoire of cd TCR pairs is quite diverse with

significant fractions of neonatal cd T cells expressing

Vc1Vd2 and Vc2Vd1 TCRs that are seldom seen in adults

[52].

Between the ages of 1 and 10 years, however, the

Vc2Vd2 T cell population expands to predominate among

adult cd T cells [53]. This expansion is independent of

genetic background, since identical twins can have differ-

ent V gene repertoires and there is no evidence for

inheritance of V gene expression in families [53]. Instead,

environmental exposure to microbes is likely responsible

for this expansion. This expansion is limited to T cells

expressing Vc2 paired with Vd2 and to a lesser extent, Vc1

paired with Vd1; other combinations that are present in

neonates become almost non-existent in adults [52].

Because of this extensive activation and expansion,

Vc2Vd2 T cells become the major subset in adult

peripheral blood cd T cells [53] with almost all exhib-

iting memory phenotypes (data not shown; [53, 54]). The

Vc2Vd2 TCR (also termed Vc9Vd2) specifically recog-

nizes HMBPP [55], an essential metabolite in isoprenoid

biosynthesis pathways of many bacteria and all

Apicomplexan parasites. Activation of Vc2Vd2 T cells in

vivo is dependent on the production of this essential

metabolite [56]. A related prenyl pyrophosphate,

isopentenyl pyrophosphate (IPP), is similarly recognized

by Vc2Vd2 T cells [57]. However, unlike HMBPP, IPP

is present in both microbial and human isoprenoid

biosynthesis. IPP is normally sequestered inside host

cells, and does not activate Vc2Vd2 T cells unless the

cells have been treated with bisphosphonates [58] or
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alkylamines [59] to block farnesyl diphosphate synthase,

thereby increasing IPP levels.

Although never the predominant T cell population,

Vc1Vd1 T cells (and rarely Vc2Vd2 T cells) are enriched

in intraepithelial (but not lamina propria) tissues in the gut,

constituting up to 37% of total T cells [60, 61]. They are

also found in the skin, constituting about 5% of total T cells

[61, 62]. A significant fraction of Vc1Vd1 and Vc2Vd1 T

cells (up to 66% of duodenal cd T cells) respond to self and

foreign lipids presented by CD1 molecules [63–66]. Anti-

gens identified include pollen-derived phosphatidyl

ethanolamine [67] and lipid A [68]. Thus, a significant

proportion of Vd1 T cells recognize self and foreign lipids

presented by CD1. Members of the Vc1Vd1 T cell sub-

set also recognize the MHC class I-related molecules,

MICA and MICB [69, 70]. Such recognition is

TCR-dependent [71, 72] but is independent of antigen

processing, presentation, and b2M [72]. In addition, Vd1

and Vc2Vd2 T cells also express NKG2D. This C-type

lectin also binds MICA, MICB, and UL16-binding pro-

teins, and, together with TCR ligation, provides T cell

costimulation [71, 73]. In response to activation, Vc1Vd1

and Vc2Vd2 T cells similarly produce IFN-c and TNFa,

and mediate cytolysis.

Finally, human cd T cells expressing Vd1, Vd3, and Vd5

have been found to expand in response to cytomegalovirus

(CMV) infection after in utero infection [74] in normal

adults [75], and in adults after kidney transplantation [76,

77]. In patients with in utero infection, an invariant

Vc1.8Vd1 TCR is greatly enriched. cd clones expressing

this Vc1.8Vd1 TCR secrete IFN-c in response to CMV-

infected fibroblasts and kill CMV-infected target cells [74].

Similarly, Vd1 and Vd3 T cells expand greatly (up to

15–42% of total T cells in some cases) after renal trans-

plantation in patients who develop a CMV infection. These

cd T cells may be further expanded in vitro when exposed

to lysates of CMV-infected cells [76] and cd clones derived

from these cells specifically lyse CMV-infected target cells

[78]. Thus, although the CMV-associated ligand(s) and the

restricting molecules have not been defined, there is

evidence for specific recognition of a CMV-associated

compound.

Peripheral differentiation of neonatal Vc2Vd2 T cells

into Tcd17 and Tcd1/17 cells requires antigen

stimulation and IL-6, IL-1b, and TGF-b

In our studies on neonatal Vc2Vd2 T cells [9], we found

that Vc2Vd2 T cells behave much like naive ab T cells

since they can be polarized into Th17-like lineage cells,

which we term Tcd17. Approximately 50% of neonatal

Vc2Vd2 T cells are phenotypically naive (based on the

expression of CD27 and CD28 without expression of

CD45RO). Polarization of neonatal Vc2Vd2 T cells to

produce IL-17A (termed Tcd17 T cells) requires IL-6,

IL-1b, and TGF-b coupled with TCR stimulation by the

antigen, HMBPP. Neutralization of IL-6 or the absence of

exogenous TGF-b or IL-1b, greatly reduces generation of

Tcd17 cells. Neutralization of IL-23, in contrast, increases

the numbers of Tcd17 T cells. Costaining for IFN-c
revealed that IL-23, in conjunction with IL-6, IL-1b, and

TGF-b, induces Tcd17 T cells to produce IFN-c in addition

to IL-17A (termed Tcd1/17). A similar phenomenon was

observed with Th17 CD4 T cell clones, where IL-23 and/or

IL-12 induces IFN-c production [79]. These results suggest

that under these conditions, IL-23 may function to drive

production of IFN-c.

Our results suggest the following model (Fig. 1). In

naive Vc2Vd2 T cells, IL-6 binding to the IL-6R activates

STAT3 which in turn binds and activates the IL-23R,

RORC/A, and IL-17A/F genes. IL-1b stabilizes the Tcd17

phenotype by inducing IRF4 [37, 38]. TGF-b inhibits

IL-12-mediated STAT4 signaling, thereby inhibiting dif-

ferentiation into Th1-like cells (termed Tcd1) that produce

IFN-c. Using intranuclear staining, we verified that neo-

natal Vc2Vd2 T cells producing IL-17A have increased

levels of RORct, consistent with the hypothesis that it is

also a master regulator of Tcd17. Studies examining

RUNX1 levels in Tcd17Vc2Vd2 T cells are planned to

determine whether this transcription factor also plays a

role.

In the presence of IL-23, the IL-17A-producing Tcd17 T

cells (which now express the IL-23R) acquire the ability to

produce IFN-c via an uncharacterized mechanism [9]. This

acquisition of the ability to produce IFN-c by

Tcd17Vc2Vd2 T cells is not unique to cd T cells. Both

human Tc17 [80, 81] and human Th17 [82, 83] ab T cells

show some level of instability/plasticity, and over time,

many of these cells begin to produce IFN-c and lose the

ability to produce IL-17A. Similar to Tc17 ab T cells,

IL-17A production by Tcd17 and Tcd1/17Vc2Vd2 T cells

is unstable in vitro and most of the cells eventually lose the

ability to make IL-17A and, instead, produce IFN-c (Ness-

Schwickerath and Morita, unpublished observations).

Future studies with sorted Tcd17 populations are needed to

confirm the role of IL-23 in the conversion to Tcd1.

IL-23 with IL-1b and TGF-b helps maintain adult

Tcd17 cells but there is significant conversion

into Tcd1/17 and Tcd1, IFN-c-producing cells

In contrast to neonatal Vc2Vd2 T cells, adult Vc2Vd2 T

cells are almost exclusively memory cells (about 98% of

blood Vc2Vd2 T cells; Jin et al., unpublished observations).

Consistent with this difference, the cytokine requirements

for IL-17A production by adult Vc2Vd2 T cells is
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significantly different from those for neonatal Vc2Vd2 T

cells [9]. In adults, optimal expansion of IL-17A-producing

Vc2Vd2 T cells requires IL-1b, TGF-b, and IL-23, but does

not require IL-6 (Fig. 1). Although the small population of

naive Vc2Vd2 T cells in adults hypothetically could be

polarized to Tcd17 under these conditions, the lack of a

requirement for IL-6 suggests that the majority of IL-17A-

producing cells are memory Vc2Vd2 T cells already com-

mitted to the Tcd17 and Tcd1/17 lineages.

Given the plasticity of the Th17 lineage, it is likely that

some fraction of IFN-c-producing Vc2Vd2 T cells are

actually Tcd17 lineage cells that have failed to maintain

IL-17A production. These former Tcd17Vc2Vd2 T cells,

however, may maintain permissive histone modifications at

the IL-17A/F, RORC, or RORA loci, such that signaling by

IL-1b, IL-23, and TGF-b could restore IL-17A production.

They may also have other differences in chemokine

receptor expression, cytotoxicity, or accessory molecule

expression that confer specialized functional roles on these

cells when compared with true Tcd1 cells. Consistent with

this possibility, CD4 Th17 ab T cells producing IFN-c but

not IL-17A, that were stimulated under polarizing condi-

tions for Th17 cells produce the Th17-lineage IL-22

cytokine and CCL20 (MIP-3A/LARC) chemokine [83].

In contrast to neonatal Vc2Vd2 T cells, adult Tcd17

cells (IFN-c-) are less frequent and were observed in only

four out of ten donors [9]. Thus, most Vc2Vd2 T cells that

produce IL-17A also produce IFN-c. However, within the

four donors with expandable Tcd17 T cells, these cells

could be detected ex vivo prior to expansion. The cytokines

required for Tcd17 expansion in adult blood were similar to

those expanding Tcd1/17 cells. This suggests that

Tcd17Vc2Vd2 T cells can persist in humans, as do ab T

cells. Because captive, specific pathogen-free rhesus

macaques have much higher frequencies of Tcd17 cells

than human donors, it is likely that the type and number of

infections may determine whether these cells persist in

vivo. It is likely that frequent Th1 immune responses

(involving ample IL-12) cause many human Tcd17Vc2Vd2

T cells to transition to Tcd1/17 cells, and then ultimately to

Tcd1-like cells.

Regulation of IL-22 production by human Vc2Vd2

T cells

Generation of neonatal IL-22-producing (Tcd22) Vc2Vd2

T cells require conditions very similar to those required to

generate IL-17A-producing Vc2Vd2 T cells, namely, IL-

1b, IL-6, and TGF-b [9]. Adult Tcd22Vc2Vd2 T cells,

much like adult Tcd1/17, require IL-23, IL-1b, and TGF-b,

and are independent of IL-6 [9]. However, under these

conditions, fewer Vc2Vd2 T cells converted to the Tcd22

lineage than to the Tcd17 (or Tcd1/17) lineage. This may

reflect the requirement for TNF-a (not included in our

study) and inhibition by TGF-b (since the 1 ng/ml con-

centration we used inhibited Th22 priming in the study by

Duhen et al.) [84]. Additionally, the lack of ligands for the

aryl hydrocarbon receptor (AHR; discussed below for

IL-22-producing murine cd T cells) might have inhibited

Th22 development since we did not include AHR ligands,

nor did we use Iscove’s DMEM which has high levels of

aromatic amino acids and favors Th17/Th22 differentiation

[85]. Unlike murine CD4 ab T cells, very few if any

Vc2Vd2 T cells stimulated ex vivo produce both IL-17A

and IL-22 cytokines [9]. Similarly, very few in vitro-

polarized IL-17A-producing Vc2Vd2 T cells coproduce

IL-22. This suggests that the Tcd17 (and Tcd1/17) lineage

is distinct from the Tcd22 lineage. As with Tcd17 cells,

IL-23 reduces the number of neonatal Tcd22Vc2Vd2 T

cells. Again we believe this is because under some

Fig. 1 Regulation of IL-17A-

producing human cd T cells.

Human Vc2Vd2 T cells are

peripherally programmed to

become Tcd17 through the

effects of IL-6, IL-1b, and

TGF-b in the presence of

HMBPP. These cells can then

be maintained as Tcd17 through

the action of IL-23, IL-1b, and

TGF-b, or they can acquire

IFN-c potential through IL-23

signaling. Tcd1/17 T cells

commonly lose the ability to

produce IL-17A altogether and

revert functionally to Tcd1-like

cells through IL-12 signaling
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conditions or at high concentrations, IL-23 can drive Tcd22

cells to transition into Tcd1 cells (perhaps by stimulating

IL-12 production or by direct action). The Tcd22 popula-

tion, like the Tcd1/17 population, consists of mixed

populations of IFN-c? and IFN-c- cells. Future studies

examining polarization to Tcd22 in the presence of AHR

ligands or additional cytokines such as IL-6 and TNF-a
[84] are in progress.

Role of IL-17A-producing Vc2Vd2 T cells in human

microbial immunity

Relatively few studies have examined the role of human cd
T cells producing IL-17A and IL-22 in human immunity

and autoimmunity. In our samples from ten healthy adult

donors, an average of 1.1% of Vc2Vd2 T cells produced

IL-17A. A similar, non-overlapping proportion of Vc2Vd2

T cells produced IL-22 (1.2%). Since Vc2Vd2 T cells

constitute 5.25 ± 2.1% of total CD3? T cells, IL-17A- and

IL-22-producing Vc2Vd2 T cells occur at frequencies of 1

in 2,762 and 1 in 1,864 T cells, respectively. Moreover,

several donors showed increased frequencies of IL-17?

Vc2Vd2 T cells (up to 1 in 906 T cells). Furthermore, in

specific pathogen-free rhesus macaques, there was a five-

fold increased baseline frequency of IL-17-producing Vd2

T cells (5.6 ± 1.3%, ranging from 1.1 to 13.4%). This

suggests that continued bacterial infections in humans may

drive Tcd17 cells to lose the ability to produce IL-17A.

Although the frequencies appear low, adult Vc2Vd2 T

cells recognize most bacterial and Apicomplexan proto-

zoan pathogens by virtue of their recognition of essential

prenyl pyrophosphates, such as HMBPP, and a phospho-

antigen produced by Gram-positive cocci (data not shown).

Numerous bacterial and protozoan infections in humans

(detailed in Table 1) are associated with major expansions

of Vc2Vd2 T cells such that in some individuals, Vc2Vd2

T cells can constitute up to 50% of circulating T cells (one

in two T cells) with increases to 10–25% commonly found

(Table 1).

Essentially all adult Vc2Vd2 T cells recognize prenyl

pyrophosphate antigens due to the extensive use of germ-

line encoded regions of the Vc2Vd2 TCR for prenyl

pyrophosphate recognition [86] and the selection for Jc1.2

and a hydrophobic Vd2 CDR3 residue that occurs during

infancy [52, 87–90]. For example, 91 out of 94 adult

Vc2Vd2 T cell clones (97%) were antigen-responsive [88,

91, 92]. Thus, the frequency of Vc2Vd2 T cells is actually

the antigen-specific frequency and, therefore, is very high

at 1 in 19 T cells [9]. In contrast, the frequency of ab T

cells specific for a particular peptide/MHC complex among

naive cells is usually very low: 1:158,000–1:1,875,000 for

CD4 [93] and 1:33,000–1:164,000 (four of six were

[1:142,000) for CD8 [94]. Since essentially all IL-17A-

and IL-22-producing Vc2Vd2 T cells are antigen-specific,

during primary infections, Vc2Vd2 T cells and other

unconventional T cells are likely to be important sources of

early IL-17A and IL-22 until naive CD4 and CD8 ab T

cells can be expanded and differentiated into memory

Th17/Tc17 and Th22/Tc22 cells.

Thus far, IL-17A production by cd T cells has only been

described in two human diseases, active tuberculosis and

HIV infection. In response to active tuberculosis infection,

Peng et al. [95] demonstrated increases in the proportion of

peripheral blood cd cells producing IL-17A, and decreases

in the proportion producing IFN-c. Similarly, exposure of

peripheral blood mononuclear cells from either tuberculo-

sis patients or healthy controls to M. tuberculosis antigens

for 7 days dramatically expanded IL-17A? cd T cells [95].

These results suggest that M. tuberculosis infection in vivo

may expand blood IL-17A? cd T cells. Although the role

of cd production of IL-17A in granuloma formation cannot

be easily addressed in humans, murine studies would

suggest an important role. Additional studies in this patient

population are needed to define the cd subsets producing

IL-17A and the mechanism by which the cd T cells become

activated. Based on our results, we would hypothesize that

M. tuberculosis infection stimulates IL-23 and IL-1b
cytokine production by lung APCs, which together with

TLR ligands and HMBPP, activate and expand IL-17A?

Vc2Vd2 T cells.

To model human tuberculosis infections, Yao et al. [96]

infected cynomolgus and rhesus macaques with M. tuber-

culosis and monitored cytokine production by T cells at

various time points. After 4 weeks, statistically significant

increases were observed in the percent of circulating T

cells producing IL-22, but not IL-17A. However, in con-

trast to the work by Peng et al., they did not detect

differences among the Vc2Vd2 T cells. There are several

potential explanations for these differences. First and most

significantly, Yao et al. stimulated Vc2Vd2 T cells only

with HMBPP ex vivo, whereas Peng et al. restimulated

Vc2Vd2 T cells with PMA and ionomycin (which allows

maximal determination of IL-17A-producing cells). Sec-

ond, Peng et al. study, examined cytokine production

during reactivation of tuberculosis in chronically infected

patients, whereas Yao et al. examined cytokine production

at late time points in primary tuberculosis. And lastly, Yao

et al. injected M. tuberculosis directly into the lung

parenchyma via bronchoscopy, whereas Peng et al. exam-

ined patients who had acquired TB through a natural

infection.

In a second human study, Fenoglio et al. [97] examined

cd T cells from healthy and HIV? individuals and found

increased frequencies of circulating cd T cells (mostly

Vd1) and a higher propensity for IL-17 and IFN-c pro-

duction by both Vd1 and Vc2Vd2 T cells. More than
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one-third of Vd1 and approximately one-half of Vc2Vd2 T

cells isolated ex vivo contained intracellular IL-17A [97].

However, the ability to produce IL-17A was rapidly lost in

vitro unless Candida albicans extract or M. tuberculosis

purified protein derivative was included in the cultures for

Vd1 or Vc2Vd2 T cells, respectively. In the absence of the

bacterial products, the ability to produce IL-17 by either

subset was lost. This suggests that the bacterial products

stimulate the correct cytokines to retain the ability to

produce IL-17A and that in their absence, IL-17-producing

cd T cells convert to Tcd1 T cells. Consistent with this

possibility, IL-17A-producing Vd1 and Vc2Vd2 T cells

also produced IFN-c, were CD161?, and expressed RORct

and T-bet [97]. These results are similar to our findings.

Unfortunately, their analysis did not extend to IL-22 pro-

duction, nor did it address the specific factors present

within the bacterial products that were required to retain

IL-17A production. However, human memory CD4 ab T

cells specific for C. albicans include many Th17 cells [82]

and IL-17A is essential for the control of C. albicans

infections in mice [98]. Stimulation by C. albicans induces

strong IL-17 responses due to the production of b-glucans

and mannans that engage dectin-1 and mannose receptors,

respectively, on APC [99]. This stimulates production of

prostaglandin E2, which in turn, stimulates IL-6 and IL-23

production, thus favoring development of Th17 cells

[99–101]. Similarly, M. tuberculosis infection stimulates

both murine Th17 ab T cells and Tcd17 cd T cells [5]

through production of ligands for TLR4 and dectin-1 [102].

Thus, rather than being specific for antigens in C. albicans

extracts or purified protein derivative, these microbial

products likely stimulate cytokine production to favor the

maintenance and/or differentiation of Tcd17 cells.

There is evidence to suggest that IL-17 production by

Vc2Vd2 T cells in neonates and infants will be highly

relevant to their resistance to infections. Newborns have

Table 1 Expansion of human cd/Vc2Vd2 T cells in response to infection

Infection cd T cells, mean (max) % of T cells Reference

Normal subjects Patients

Bacterial

Tuberculosis 6 14 (35) [175]

2 6 (17) [176]

TB contacts 5 10 (18) [177]

TB meningitis 3 4 (80% Vc2Vd2) [178]

Leprosy reversal reaction 5 29a [179]

Tularemia 3 33 [180]

7 31 (48) [181]

5 25 (50) [182]

Salmonellosis 5 18 (48) [183]

Legionellosis 5 15 (42) [184]

Brucellosis 4 29 (48) [185]

Q-fever (Coxiella burnetii) 4 16 (30) [186]

Ehrlichiosis 5 57 (97) [187]

Meningitis (H. influenzae) 7 27 (37) [188]

Meningitis (N. meningitidis) 7 25 (42) [188]

Meningitis (S. pneumoniae) 7 35 (46) [188]

Listeriosis 2 12 (33) [189]

Protozoal parasites

Acute malaria (non-endemic) 4 16 (26) [190]

5 16 (27) [191]

3 18 (46) [192]

Malarial paroxysm 4 11 (27) [193]

Toxoplasmosis 4 9 (15) [194]

Leishmaniasis, visceral 8 44 [195]

Leishmaniasis 3 13 (18) [196]

Leishmaniasis, localized 4 20a [179]

a % cd T cells among CD3? T cells in skin lesions.
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intrinsic defects in both APC and conventional T cells

resulting in poor adaptive immune responses to infection

[103, 104]. Defective IL-12 production by neonatal APC

is in part responsible for poor Th1 ab immunity. Instead

of producing the Th1 cytokine, IL-12, neonatal APC

produce IL-23, IL-1b, and IL-6 [105–108]. Because cd T

cells are the first T cells to develop, do not require pro-

fessional antigen processing or presentation, and respond

to shared microbial isoprenoid antigens, they are uniquely

poised to mount protective immune responses in neonates

[109]. In fact, nearly every Vc2Vd2 T cell will become

activated prior to the age of 1 year by self or environ-

mental antigens [53, 54]. From our studies on neonatal

Vc2Vd2 T cells, we know that the IL-1b, IL-6, and IL-23

cytokines promote the differentiation of Tcd1/17 T cells

in vitro, and we propose that the same process occurs in

vivo.

We speculate that neonatal Vc2Vd2 T cells activated in

response to a broad range of HMBPP-producing microbes,

are polarized by the high levels of IL-23, IL-1b, and IL-6

into Tcd17 or Tcd1/17 T cells which, in the absence of

strong Th1 immunity, function to immediately upregulate

protective innate immune mechanisms. Because of repe-

ated infections, most of these Tcd17 and Tcd1/17 T cells

lose their ability to produce IL-17A and only produce

IFN-c in adults. However, they are likely to retain some of

the functional characteristics of Tcd17 cells. A method to

determine the proportion of adult Vc2Vd2 T cells derived

from Tcd17 awaits the identification of markers for Tcd17

cells that have lost IL-17A production, but the proportion

could be substantial.

Role of IL-17A-producing Vc2Vd2 T cells in human

autoimmunity

The role of IL-17-producing Vc2Vd2 T cells in human

autoimmunity is also poorly studied. Human cd T cells

coproducing IL-17A and IFN-c have been found in the

synovial fluid and synovium of patients with rheumatoid

arthritis [110]. Pollinger et al. found that all of the

patients with rheumatoid arthritis examined had IL-17-

and IFN-c-coproducing cd T cells in the inflamed syno-

vium. Moreover, in synovial fluid, the IL-17?, IFN-c? cd
T cells occur at a frequency equal to that of the IL-17?,

IFN-c? CD4 T cells. The authors attempted to translate

the results seen in their murine collagen-induced arthritis

(CIA) model of human rheumatoid arthritis, and con-

cluded that IL-17-producing cd T cells do not drive bone

destruction [110]. However, only three patients were

examined in this study, and all were undergoing cortisone

treatment. Thus, more patients will need to be studied

before firm conclusions can be drawn. Moreover, human

and murine cd T cells have quite different antigen spec-

ificities, anatomic localization, and cytokine potentials,

and, therefore, are unlikely to function similarly in most

diseases. Finally, these findings do not preclude a con-

tribution by cd T cells to joint inflammation. Further

studies in rheumatoid arthritis and other autoimmune

diseases are needed to assess the pathogenic potential of

IL-17-producing cd T cells, especially during the initia-

tion of autoimmunity, where a small population of T cells

can direct the subsequent development of specific T

lineages.

IL-17A-producing murine cd T cells

Murine cd T cells develop in thymic waves with poorly

defined TCR specificity

Murine cd T cells begin to develop prior to ab T cells in

thymic waves characterized by specific V gene combi-

nations. The first waves produce invariant Vc5Vd1 and

Vc6Vd1 TCRs that lack significant junctional diversity

and exhibit tropism to the skin (dendritic epidermal T

cells, DETC) and epithelial tissues, respectively [111]

(in the nomenclature of Heilig and Tonegawa [112]).

Postnatally, the thymus then switches to the production of

highly diversified V gene segments (such as Vc4, Vc1,

and Vd1) on cd T cells that localize to secondary

lymphoid organs [113]. A subset of these cd T cells,

expressing a variety of Vc and Vd regions, recognize the

nonclassical MHC class I molecules, T10 and T22,

through their expression of a CDR3d motif of nine amino

acids primarily encoded by Dd2 and containing six

invariant residues [114]. T22 and T10 molecules are

upregulated on activated immune cells, suggesting a role

for these T10-/T22-specific cd T cells during microbial

responses [115]. Besides the H-2T molecules, a subpop-

ulation of murine Vc4 T cells are restricted to lipid-

presenting CD1d molecule in coxsackievirus-induced

myocarditis [116]. The relationship between these Vc4 T

cells and Vc4Vd4 T cells exhibiting limited diversity that

are found in CIA [117] is unknown. Additionally, a ligand

for the invariant skin Vc5Vd1 TCR is expressed by

stressed keratinocytes, although the exact identity of the

molecule is unknown. There have also been examples of

murine cd T cells specific for the herpes protein, gI [118],

and H-2 MHC class II proteins (although this recognition

does not involve peptides) [119]. Beyond these examples,

most of the natural murine cd antigens/ligands remain

unknown. To date, IL-17A production has been docu-

mented for Vc1 [120], Vc4 [117, 120], Vc6Vd1 [8], and

Vc5Vd1 DETC [121] cd subsets.
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Regulation of IL-17A-producing murine cd T cells:

thymic imprinting of distinct cd T cell subsets

for IL-17A production

Unlike ab T cells, murine cd T cells can be developmen-

tally imprinted to produce IFN-c or IL-17A. Utilizing a

T22 tetramer to identify H-2T-specific cells, Jensen et al.

[122] found that tetramer-positive antigen-inexperienced

cd T cells that lack CD122 (IL-2Rb) produce IL-17A,

whereas antigen-experienced cd T cells expressing CD122

produce IFN-c. Similarly, IL-17A-producing peritoneal

Vc6Vd1 T cells lack CD122 but express CD25 (IL-2Ra)

and originate from IL-17A-producing thymic precursors

[123]. The appearance of IL-17A-producing thymic cd T

cells peaks at embryonic day 19, arguing against a role for

exogenous antigen(s).

CD27 plays a critical role in determining whether cd T

cells produce IFN-c or IL-17A (Fig. 2). CD27 expressed on

thymic cd T cells engages its ligand, CD70 (presumably

expressed on thymic epithelial cells), while the cd TCR

likely binds to endogenous antigens resulting in trans-

conditioning of thymic cd T cells to produce IFN-c [120].

CD27 ligation induces expression of the lymphotoxin-b
receptor and other trans-conditioning genes, including

Crem, N24a2, Rgs2, and Rgs1, in thymic Vc4 and Vc1 cd T

cells [120]. Thymic cd T cells have high baseline expres-

sion of Rorc (which encodes ROR-ct) and Runx1, but

require CD27 signaling to upregulate Tbx21 (which

encodes T-bet) expression and to derepress the IFN-c
locus, which then enables them to produce IFN-c [120] like

CD4 ab T cells [124]. In agreement with the other studies,

the majority of CD27-negative, IL-17A-producing thymic

cd T cells did not express CD122 [122, 123].

Further characterization of adult thymic cd T cells has

revealed two distinct subsets, one being CD27-, CD122-,

CCR6?, and NK1.1- producing IL-17A, and the other

being CD27?, CD122?, CCR6-, and NK1.1? producing

IFN-c. Unlike human CD4 ab and Vc2Vd2 T cells pro-

ducing IL-17A, the segregation between IL-17A and IFN-c
production in the thymus appears stable and irreversible.

No IL-17A?, IFN-c? dual-positive cd cells were observed

[120]. Moreover, culturing IL-17A-producing CCR6? cd T

cells with polarizing cytokines for the Th1 lineage (IL-12

and IL-18), or culturing IFN-c-producing, NK1.1? cd cells

with polarizing cytokines for the Th17 lineage (IL-23),

fails to alter the cytokines produced [125]. Thus, unlike

human ab and cd T cells, there appears to be little plasticity

in thymic derived murine cd T cells producing IL-17A.

In addition to CD27, SCART2 scavenger receptors

(related to CD5 and CD6 in humans and WC1.1 in cattle

and sheep) are predominantly expressed on murine cd T

cells and also identify cd T cells producing IL-17A [126].

SCART2hi cd T cells were found in peripheral lymph nodes

and nearly all were Vc4?, constituting about 25% of total

Vc4? cells [126]. SCART2hi cd T cells were also found in

the dermis but did not express Vc5Vd1 DETC TCRs.

As discussed above for human ab and Vc2Vd2 T cells,

polarizing cytokines play a vital role in the differentiation

of T cells into Th17/IL-17A-producing cells. In contrast to

ab and neonatal Vc2Vd2 T cells, neutralization of IL-6 has

little effect on innate production of IL-17A by murine fetal

thymic cd T cells [7, 123, 127]. Furthermore, IFN-c does

not interfere with innate IL-17A production by thymic cd T

cells [120]. IL-6 is required at some point for optimal

IL-17A production since about 75% fewer peripheral

IL-17A? cd T cells were noted in IL-6-/- mice [128].

Conflicting reports exist concerning the requirement for

TGF-b in the innate programming of IL-17A-producing

thymic cd T cells. In fetal thymic organ cultures, neutral-

ization of TGF-b had no effect on the development of cd T

Fig. 2 Murine cd T cells are

thymically programmed to

produce IL-17A in the absence

of exogenous antigen. IL-23 and

IL-1 are required by peripheral

Tcd17 T cells to maintain

IL-17A production. Ligation of

the AHR by these cells leads to

the coproduction of IL-17A and

IL-22. Murine cd cells appear to

show firm commitment to the

Tcd17 lineage and most do not

acquire the ability to produce

IFN-c
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cells producing IL-17A [123]. In contrast, in cd T cells

from very young TGF-b-deficient mice prior to the

development of lymphoproliferative disease, TGF-b is

required for the innate programming of IL-17A production

by thymic and peripheral cd T cells [129]. One explanation

for the different conclusions is that TGF-b exerts its effects

indirectly by inhibiting STAT4 and GATA-3 in cd T cells

but has no effects on the expression of ROR-ct. This has

been observed for ab Th17 T cell differentiation where if

the ability of ab T cells to differentiate into Th1 and Th2

lineages is blocked, then TGF-b is not required for their

differentiation into Th17 cells [43].

In contrast to the differing results on thymic innate

programming, IL-23 clearly appears to have significant

effects on IL-17A production by peripheral cd T cells

[7, 120, 130]. IL-1 has also been shown to play a critical

role in IL-17A production by mature peripheral cd T cells

because IL-1R-/- mice show reduced production of

IL-17A [6, 130]. Within mature splenic cd T cells, IL-23

functions with IL-1b to further upregulate the constitutive

expression of Rorc (RORct) and Il23r [6]. This production

of IL-17A in response to IL-23 is dependent on Tyk-2

[131], a member of the JAK family whose absence

decreases phosphorylation of STAT3 [132]. Signals fol-

lowing IL-23R binding to IL-23 activate STAT3, which

then binds and activates the Il-17a and Il-17f promoters

[36]. IL-1R signaling appears to be required for mainte-

nance of IL-23R expression in differentiated Th17 cells,

and we assume that such signaling would be true of

innately programmed cd T cells [133]. Together, these

results suggest a mechanism, distinct from that of ab T

cells, where cd T cells acquire IL-17A-producing capacity

and differentiate into ‘‘memory’’-type T cells in the

thymus, perhaps by responding to endogenous TCR ligands.

Although these IL-17-producing cd T cells respond to the

normal cytokines that upregulate Th17 ab T cell function

(such as IL-23 and IL-1b), they are firmly committed to

producing only IL-17A and do not exhibit the plasticity of

human ab and cd T cells which can acquire the ability to

produce IFN-c and lose the ability to make IL-17A.

Regulation of IL-22-producing murine cd T cells:

requirement of the AHR

The development of murine cd T cells producing IL-22 is

less well understood. Thymic populations producing IL-22

have yet to be described. Therefore the bulk of knowledge

comes from studies on peripheral cd T cells and the

development of IL-22-producing CD4 ab T cells. The

differentiation of ab T cells into IL-22-producing cells

(Th22 cells) requires engagement of the AHR (also known

as the dioxin receptor). AHR is a ligand-dependent tran-

scription factor that, upon engaging one of its ligands,

binds the promoter region within dioxin-response genes

and activates their transcription [134]. Ligands for AHR

include numerous polycyclic aromatic hydrocarbons, both

synthetic and naturally occurring. It is not known if there is

a single, primary endogenous physiological ligand. Known

ligands include 2,3,7,8-tetrachlorodibenzo-p-dioxin and the

photoproduct of tryptophan, 6-formylindolo[3,2-b]carba-

zole (FICZ). AHR is upregulated in developing Th17 T

cells [135] in response to the Th17 polarizing cytokines,

TGF-b and IL-6, and in Tr1 regulatory cells in response to

IL-27 [136]. AHR enhances naive T cell differentiation

into Th17 cells by decreasing STAT1 activation, thereby

enabling Th17 development [135]. The presence of AHR is

required for production of IL-22 but not IL-17A or

IL-17AF [85, 137].

Consistent with the reported effects of AHR activation

on ab T cells, injection the AHR ligand, FICZ, with heat-

killed mycobacteria induces expansion of peritoneal cd
cells that produce both IL-17A and IL-22. IL-22 production

is highly dependent upon the presence of the AHR because

cd T cells from AHR-/- mice do not produce IL-22 but do

produce IL-17A [7]. Vc6Vd1 T cells in the lung are another

peripheral IL-22-producing population that produce IL-22

in response to repeated stimulation by Bacillus subtilis in a

lung fibrosis model [138]. This production of IL-22 by

Vc6Vd1 T cells has been found to be critical to avoiding

lung fibrosis in this model. Although some CD4 ab T cells

are reported to produce both IL-17A and IL-22, there were

two distinct subsets of Vc6Vd1 T cells in the lung setting,

those producing IL-22 and those producing IL-17A [138].

Very few Vc6Vd1 cells produced both cytokines, which is

identical to what we observed with Vc2Vd2 T cells [9].

AHRd/d mice, that express an AHR with lower affinity,

produce reduced amounts of IL-22 compared to wild-type

mice. However, the levels of IL-17A and IL-17F are sim-

ilar [138]. These results point to similarities between IL-22

production by Th17 ab T cells and innately programmed cd
T cells since both require AHR.

Functions of IL-17A-/IL-22-producing murine

cd T cells in microbial immunity

IL-17A-producing murine cd T cells are protective during

many bacterial and fungal infections. An early indication

of the importance of IL-17A production by cd T cells is the

ability of cd and ab NKT cells to control neutrophil levels

in adhesion molecule-deficient mice [139]. The rapid

production of IL-17A is an important property of cd and

unconventional ab T cells and helps protect against

microbial infections. This ability is critically dependent on

their expression of the IL-23R [128].

cd T cells can rapidly produce IL-17A, independent of

foreign antigens, upon TLR and/or cytokine stimulation.
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This early production of IL-17A occurs in Escherichia coli

infections where peritoneal IL-17A can be found as early

as 1 h after infection and peaks at 6 h with neutrophil

levels peaking at 24 h [8]. The IL-17A is produced by Vd1

cd T cell since production is significantly impaired in Vd1-

deficient mice [8]. Furthermore, IL-23 is sufficient to

induce IL-17A production from cd T cells purified from the

infected peritoneum [8]. Similarly, IL-17A production by

peritoneal cd T cells rapidly reaches a peak 12 h after

injection of heat-killed mycobacteria [7] or after sepsis due

to cecal puncture [140]. IL-17A production requires TLR2

signaling and is amplified by IL-23 signaling, although it is

not clear whether the cd T cells were directly responding to

the TLR stimulus [7].

In another study, lipopolysaccharide TLR4 and

PAM3CysSerLys4 TLR2 ligands were directly injected into

the peritoneal cavity where they stimulated the expansion

of IL-17A? cd T cells [141]. Production of IL-23 and IL-1b
by activated myeloid cells in the peritoneum stimulates

CD27- cd T cells to expand and produce IL-17A [141]. No

direct response to TLR ligands is observed with purified cd
T cells in vitro. However, they do expand and produce

IL-17A when cultured with exogenous IL-23 and IL-1b
[141]. In contrast, infection with murine herpesvirus 4 or

malaria parasites stimulates the expansion of CD27?

IL-17A- cd T cells that produce IFN-c [141].

Taken together, these results indicate that CD27

expression divides peritoneal cd T cells into a CD27? IFN-

c-producing subset that requires CD27 signaling and a

CD27- IL-17A-producing subset that responds to IL-23

and IL-1b cytokines released by myeloid cells in response

to innate immune signals [141]. All of these findings,

however, do not preclude the requirement for recognition

by the cd TCR of self ligands since there is evidence that

such self ligands are constitutively expressed on murine

cells when detected by soluble multimeric cd TCR [142,

143].

In addition to increasing neutrophil numbers and

recruiting them to the sites of infection, IL-17A-producing

cd T cells can also promote the formation of abscesses and

granulomas to help mediate containment of microbial

infections. In cutaneous Staphylococcus aureus infections,

IL-17A-producing skin Vc5Vd1 T cells play a critical role

in immunity. Their production of IL-17A helps to recruit

neutrophils into skin abscesses and limits the size of

abscesses and the number of S. aureus bacteria that they

contain [121].

In Listeria monocytogenes infections, IL-17A-producing

Vc6 paired with Vd1 [144] and Vc4 cd T cells contribute to

bacterial clearance by containing the bacteria within

granulomas in the liver [145] and recruiting neutrophils

and other myeloid cells. Without cd T cells or IL-17A,

bacterial numbers are more than 100-fold higher.

Moreover, L. monocytogenes infections in cd T cell-defi-

cient mice are associated with large inflammatory lesions

in the liver with necrotic hepatocytes [146, 147] that are

indistinguishable from those seen in IL-17A-deficient mice

[145]. IL-23 and IL-17R signaling are required to control

L. monocytogenes systemic infections and cd T cells are the

principal source of IL-17A early in infection [148]

although CD4-8- ab T cells also produce IL-17A in the

peritoneum [128].

The formation of lung granulomas during mycobacterial

infections is critical to containing these infections. Here

again, IL-17A production by murine lung cd T cells,

expressing Vc4 and Vc6 [149] paired with Vd1 TCRs

[144], are critical for the recruitment of granulocytes and

monocytes into pulmonary granulomas in M. bovis BCG-

infected mice [149, 150]. In fact, during M. tuberculosis

infections in mice, IL-17A production is primarily from cd
and other unconventional T cells, rather than from CD4

and CD8 ab T cells [5]. Both IL-23 and IL-17A are

essential for protective vaccine responses to subsequent M.

tuberculosis challenge [151], and mice unable to produce

IL-17A have impaired maturation of BCG-induced granu-

lomas with low numbers of cd T cells [149]. An identical

phenotype has been noted in mice lacking Vc4 and Vc6 T

cells [149]. IL-17A is critical in M. tuberculosis infections

since mice lacking IL-17A have 30-fold higher bacterial

counts associated with poor granuloma formation [149].

Additional mechanisms for protection by IL-17A- or

IL-22-producing cd T cells include the induction of anti-

microbial peptides and the remodeling of the extracellular

matrix. Individually, IL-17A and IL-22 can upregulate

expression of the antimicrobial peptides, b-defensin-2,

S100A7, S100A8, and S100A9 by keratinocytes [32]. The

combination of IL-17A and IL-22 is synergistic for

induction of antimicrobials [152]. Such antimicrobials are

especially important to mucosal immunity since they are

broadly active and rapidly microbicidal. IL-17A also

induces tissue remodeling proteins such as MMP-1, -3, -9

and -13, and aggrecanase-1 (see above). IL-22 also induces

MMP-1 and MMP-3. MMP-9 and MMP-13 are important

in bone homeostasis and repair, whereas MMP-1 is

important in collagen remodeling and keratinocyte migra-

tion [32, 153]. MMP-3 is normally induced in response to

skin injury and contributes to wound contraction [154].

Functions of IL-17A-/IL-22-producing murine cd T

cells in autoimmunity

IL-17A-producing cd T cells can also prove pathogenic.

Several autoimmune disease models have identified

IL-17A-producing cd T cells as being important in disease

progression. As with any T cell population, inappropriate

or sustained production of a proinflammatory cytokine can
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have devastating consequences. For example, in a model of

CIA, oligoclonal IL-17A-producing Vc4 cd T cells accu-

mulate in the lymph nodes and joints of collagen-injected

mice [117]. Depletion of Vc4 cd T cells greatly reduces

disease severity consistent with a significant reduction in

pathogenic anticollagen IgG2a [117]. IL-17A production

by the joint-infiltrating cd T cells is regulated by IL-23 and

IL-1b but not by collagen itself [155]. This study, however,

found a heterogeneous population of cd T cells that pro-

duce IL-17A expressing Vc1, Vc2, Vc4, or Vc6 paired with

either Vd1 or Vd5. IL-17A production by cd T cells is also

observed in the methylated bovine serum albumin antigen-

induced arthritis model—another model that uses complete

Freund’s adjuvant (containing M. tuberculosis) with anti-

gen to induce arthritis [156].

IL-17A induces the production of MMPs by synoviocyte

and inhibits new matrix synthesis by chondrocytes, which

together results in cartilage destruction of the joints [15,

157–159]. IL-17A also affects the delicate balance between

bone formation by osteoblasts and bone resorption by

osteoclasts. IL-17A favors osteoclast differentiation

through the induction of RANKL. This results in unbal-

anced bone resorption and loss of bone mass [20].

Although equal numbers of ab and cd T cells produce

IL-17A in joints with CIA, CD4 ab T cells localize to bone

and their deletion abrogates bone destruction. This suggests

that CD4 ab T cells help mediate bone destruction while cd
T cells increase overall joint inflammation [110].

In two different models of neuroinflammation, cd T cells

play an important role in early activation and recruitment

of cells through the release of IL-17A. In a mouse model of

multiple sclerosis, experimental autoimmune encephalo-

myelitis (EAE), cd T cells producing IL-17A accumulate in

the brain [6, 122, 160]. Like the CIA model, IL-17A pro-

duction by these cells requires IL-1b and IL-23 [6].

Although cd cells alone are not sufficient to reconstitute

disease (ab T cells are also required), cd-deficient mice

have reduced EAE severity [6]. In addition to producing

IL-17A, cd T cells also inhibit CD4 Treg responses in EAE

and reverse Treg suppression of ab T cells in vitro [161].

IL-17A-mediated neuroinflammation also plays a major

role in the pathogenesis of ischemia–reperfusion brain

injury. In a mouse model of middle cerebral artery occlu-

sion followed by reperfusion, Shichita et al. [162]

identified IL-17A-producing cd T cells within the infarct

areas. In IL-17A-, IL-23- or cd T cell-deficient mice, the

infarct volume is reduced. IL-17A is especially neurotoxic

in that it induces blood–brain barrier disruption and

mediates recruitment of cells into the CNS [162–164].

From these studies a common mechanism emerges in

which neuroinflammation resulting in local IL-23 and

IL-1b induces infiltrating cd T cell production of IL-17A,

independently of a defined cd TCR antigen.

Besides classic autoimmune diseases, cd T cells pro-

ducing IL-17A and IL-22 also play important roles in the

development of inflammatory responses during infections/

environmental exposures that cause tissue damage. Thus,

in hypersensitivity pneumonitis induced by repeated inha-

lation of the nonpathogenic B. subtilis bacteria, Vc6Vd1 T

cells accumulate in the lung and produce IL-17A [165].

This accumulation requires live bacteria, whereas CD4 ab
T cell recruitment does not [166]. In the absence of IL-17A

signaling, bacteria persist longer in the lung and the mice

develop increased lung inflammation and fibrosis [165].

The absence of Vc6Vd1 T cells also leads to increased lung

inflammation and fibrosis [166]. Besides IL-17A, Vc6Vd1

T cells also produce IL-22 [138]. Vc6Vd1 production of

IL-22 requires the AHR and protects against lung fibrosis,

whereas treatment with anti-IL-22 monoclonal antibodies

increases fibrosis [138]. Similarly, the presence of IL-17A-

producing cd T cells shorten the recovery period in bleo-

mycin-induced lung injury [167]. In contrast, in

experimental silicosis both cd and CD4 ab T cells mediate

inflammation and the mice go on to develop fibrosis even

in the absence of IL-17A (or IL-22) and even when treated

with IL-22 [168]. Finally, in another murine model of

‘‘Farmer’s lung’’ caused by Saccharopolyspora rectivir-

gula, Vc6Vd1 T cells again accumulate (albeit in lesser

numbers) but there is no attenuation of lung fibrosis by cd
T cells although fibrosis does require IL-17A [169]. Thus,

cd T cells can mediate inflammation and can aid healing of

lungs without fibrosis by producing IL-22, but their func-

tion varies according to the initiating stimuli.

IL-17A-producing cd T cells also likely promote myo-

carditis in murine coxsackievirus B3-induced myocarditis

[170, 171]. Murine Vc4? cd T cells in infected mice are the

earliest T cells infiltrating the myocardium where they are

activated by CD1d and promote myocarditis [172]. A

second population of cd T cells expressing Vc1 receptors

suppresses the development of myocarditis [170]. Vc4? T

cells can transfer myocarditis and kill infected cardiocytes

[173], and their deletion decreases myocarditis [174]. Anti-

IL-17A antibody treatment ameliorates disease and

improves survival [171], suggesting that these Vc4? cd T

cells produce IL-17A as in other diseases.

Concluding remarks

Unlike murine cd T cells, human Vc2Vd2 T cells acquire

IL-17A production post-thymically through a mechanism

similar to Th17 polarization of ab T cells (Fig. 1). Naive

Vc2Vd2 in the presence of HMBPP-producing microbes

and the cytokines IL-6, IL-1b, and TGF-b upregulate

expression of RORct and become IL-17A-secreting Tcd17

cells. In the absence of these cytokines, Vc2Vd2 T cells
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upregulate T-bet expression leading to the generation of

Tcd1 which have high levels of IL-12Rb2 and respond to

IL-12. Tcd17 cells likely express both IL-12Rb2 and

IL-23R, enabling them to become Tcd1/17 (through IL-23

signaling) or functionally Tcd1 (through IL-12 signaling),

or to maintain the Tcd17 phenotype (through IL-23, IL-1b,

and TGF-b signaling).

Murine thymic cd T cells have basal expression of

RORct and Runx1 (Fig. 2), which in the absence of antigen

and through thymic trans-conditioning, yield IL-17A-pro-

ducing cd T cells. Alternatively, cd T cells, which possibly

encounter antigen in the thymus, upregulate T-bet and

become IFN-c producing Tcd1 cells. Phenotypically, the

IL-17A-producing cd cells express IL-23R, CD25, and

CCR6 whereas IFN-c-producing cd cells express NK1.1,

CD27, and CD122. The IL-17A-producing cd T cells

require IL-23 and IL-1 in the periphery to maintain and

reinforce expression of RORct and production of IL-17A,

whereas Tcd1 cells require IL-12. Ligation of the AHR and

its association with c-MAF, mediates acquisition of IL-22

production by the Tcd17 cells.

The involvement of IL-17A- and IL-22-producing cd T

cells in many diverse models of microbial, autoimmune,

and inflammatory diseases underscores their importance in

the initiation and resolution of acute inflammatory

responses in a variety of settings. Despite their small

numbers, cd T cells can have large effects on the type of

immune response and the disease outcome.
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