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Abstract
B-type natriuretic peptide (BNP) and its related peptides are biomarkers for the diagnosis of heart
failure. Recent studies identified several O-glycosylation sites, including Thr-71, on human pro-
BNP but the functional significance was unclear. In this study, we analyzed glycosylation and
proteolytic processing of pro-BNP in cardiomyocytes. Human pro-BNP wild-type (WT) and
mutants were expressed in HEK 293 cells and murine HL-1 cardiomyocytes. Pro-BNP and BNP
were analyzed by immunoprecipitation and Western blotting. Glycosidases and glycosylation
inhibitors were used to examine carbohydrates on pro-BNP. The effects of furin and corin
expression on pro-BNP processing in cells also were examined. We found that in HEK 293 cells,
recombinant pro-BNP contained significant amounts of O-glycans with terminal oligosialic acids.
Mutation at Thr-71 reduced O-glycans on pro-BNP and increased pro-BNP processing. In HL-1
cardiomyocytes, residue Thr-71 contained little O-glycans, and pro-BNP WT and T71A mutant
were processed similarly. In HEK 293 cells, pro-BNP was processed by furin. Mutations at
Arg-73 and Arg-76, but not Lys-79, prevented pro-BNP processing. In HL-1 cardiomyocytes,
which express furin and corin, single or double mutations at Arg-73, Arg-76 and Lys-79 did not
prevent pro-BNP processing. Only when all these three residues were mutated, was pro-BNP
processing completely blocked. Our data indicate that pro-BNP glycosylation in cardiomyocytes
differed significantly from that in HEK 293 cells. In HEK 293 cells, furin cleaved pro-BNP at
Arg-76 whereas in cardiomyocytes corin cleaved pro-BNP at multiple residues including Arg-73,
Arg-76 and Lys-79.
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1. Introduction
B-type, or brain, natriuretic peptide (BNP) is a cardiac hormone that regulates blood
pressure by promoting natriuresis, diauresis and vasodilation [1-3]. As a compensatory
mechanism, BNP production is elevated in hypertrophic and failing hearts. Such a
pathophysiologic response has been exploited to use BNP and its related peptides as
biomarkers for the diagnosis of heart failure (HF) [4].
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In cardiomyocytes, human BNP is made as a prepropeptide of 134 amino acids [5]. Removal
of the 26-amino acid signal peptide generates pro-BNP of 108 amino acids, which is further
cleaved to produce the C-terminal BNP 1-32 that is biologically active. To date, several
proteases such as furin [6, 7] and corin [7-9] have been identified to process pro-BNP. Furin
is a proprotein convertase in the Golgi of many cell types [10]. Corin is a cardiac protease
that also activates atrial natriuretic peptide (ANP) [11-13]. In addition, dipeptidyl peptidase
(DPP) IV has been shown to remove two N-terminal residues from BNP 1-32 to produce
BNP 3-32 [14, 15].

In addition to proteolytic cleavage, pro-BNP undergoes other posttranslational
modifications. Recent studies show that human plasma-derived pro-BNP and recombinant
pro-BNP from mammalian cells contain significant amounts of O-glycans with terminal
sialic acids [16-21]. T h e sialylated O-glycans protected pro-BNP from O-glycosidase
digestion and stabilized pro-BNP in cell culture [17]. The O-glycans may also influence pro-
BNP processing in cells. O-glycans on pro-BNP residue Thr-71 was reported to inhibit the
propeptide processing in human embryonic kidney (HEK) 293 cells [21]. It was unknown if
O-glycans have a similar inhibitory effect in cardiomyocytes.

Here we examined glycosylation and processing of pro-BNP in HEK 293 cells and
cardiomyocytes. Our results showed that glycosylation and processing of pro-BNP in
cardiomyocytes differed significantly from that in HEK 293 cells, and that in
cardiomyocytes pro-BNP can be processed by corin at several different sites.

2. Materials and methods
2.1. Cell culture

HEK 293 cells were grown in 6-well plates in DMEM medium containing 10% fetal bovine
serum (FBS). Murine atrial HL-1 cardiomyocytes from Dr. William Claycomb (Louisiana
State University Medical Center) [22] were cultured in Claycomb medium (Sigma) with
10% FBS, 100 μM norepinephrine, and 4 mM L-glutamine. The cells were grown at 37°C in
humidified incubators with 5% CO2 and 95% air.

2.2. Expression plasmids
Plasmids expressing human pro-BNP, corin and furin were reported previously [8, 23].
Plasmids expressing pro-BNP mutants T71A, R73A, R76A, K79A, R73A/R76A, R76A/
K79A and R73A/R76A/K79A, in which residues Thr, Arg or Lys were replaced by Ala,
were constructed by site-directed mutagenesis. All constructs were verified by DNA
sequencing. Recombinant pro-BNPs encoded by these plasmids contained a V5 tag at their
C-termini to facilitate protein detection.

2.3. Transfection, immunoprecipitation and Western blotting
Plasmids were transfected into HEK 293 and HL-1 cells using FuGENE (Roche
Diagnostics) or Lipofectamine 2000 (Invitrogen) reagents. Conditioned medium from the
transfected cells was collected and recombinant proteins were immunoprecipitated by an
anti-V5 antibody. The cells were washed with a buffer and lysed in a solution containing 50
mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Nonidet P-40 (v/v), and a protease inhibitor
cocktail (1:100 dilution, Sigma). Pro-BNP and BNP in the conditioned medium and cell
lysate were analyzed by Western blotting using an anti-V5 antibody (Invitrogen), as
described previously [24]. To quantify pro-BNP processing, the optical density of bands on
X-ray films was measured densitometrically, and the percentage of pro-BNP to BNP
conversion was calculated using computer software, as described previously [25].
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2.4. Inhibition of O-glycosylatioin in cultured cells
To inhibit O-glycosylation on pro-BNP, we used benzyl 2-acetamido-2-deoxy-α-D-
galactopyranoside (Ben-gal) (Sigma), which inhibits UDP-GlcNAc:GalNAc-β1,3-N-
acetylglucosaminyl-transferase activity [26]. HEK 293 and HL-1 cells expressing
recombinant pro-BNP were grown in the presence of Ben-gal (0.7 mmol/L for HEK 293
cells and 4 mmol/L for HL-1 cells) or vehicle control (DMSO) at 37°C overnight. The
conditioned medium was collected and pro-BNP and BNP were analyzed by
immunoprecipitation and Western blotting.

2.5. Glycosidase digestion
Glycosidases including PNGase F from Chryseobacterium meningosepticum, O-glycosidase
from Streptococcus pneumonia and α(2-3,6,8,9) neuraminidase (also called sialidase A)
from Arthrobacter ureafaciens (Prozyme) were used to analyze the carbohydrate contents on
pro-BNP. Additional sialidases from Streptococcus pneumoniae, Clostridium perfringens,
and Vibrio cholerae (Prozyme) that cleave α(2-3)-, α(2-3,6)- or α(2-3,6,8)-linked sialic
acids, respectively, were used to predict sialic acid structures on pro-BNP. The conditioned
medium containing pro-BNP from transfected HEK 293 and HL-1 cells was treated with
glycosidases, either individually or in combination, at 37°C for 3 h. Proteins were analyzed
by Western blotting using an anti-V5-HRP antibody.

2.6. Statistical analysis
Statistical analysis was done using Student's t-test. Data were presented as means ± S.D. A p
value of <0.05 was considered to be statistically significant.

3. Results
3.1. Human pro-BNP WT and T71A mutant expressed in HEK 293 and HL-1 cells

Previous studies identified several O-glycosylation sites, including Thr-71, in human
recombinant pro-BNP from HEK 293 cells (Fig. 1A). To examine the importance of pro-
BNP residue Thr-71 in glycosylation in cardiomyocytes, we expressed pro-BNP WT and
T71A mutant in HEK 293 and HL-1 cells. In the conditioned medium from HEK 293 cells
(Fig. 1B, top left), WT pro-BNP and BNP with a C-terminal V5 tag were detected on
Western blots as ~26- and ~12-kDa bands, respectively. In the cell lysate (Fig. 1B, bottom
left), two bands of pro-BNP, representing glycosylated (~26 kDa) and non-glycosylated
(~20 kDa) forms, and a band of BNP (~12 kDa) were detected. Pro-BNP T71A from HEK
293 cell conditioned medium appeared smaller than pro-BNP WT in molecular mass (Fig.
1B, arrow in top left), indicating that the mutation prevented glycosylation at Thr-71. In
HEK 293 cell lysate (Fig. 1B, bottom left), the non-glycosylated pro-BNP and mature BNP,
but not the glycosylated pro-BNP, were detected in samples with pro-BNP T71A, indicating
that most of the glycosylated pro-BNP T71A was secreted rapidly from the cells.

In HL-1 cells (Fig 1B, right), pro-BNP and BNP bands of similar sizes from WT and T71A
mutant were detected in the conditioned medium (~24 kDa for pro-BNP and ~12 kDa for
BNP) and cell lysate (~20 kDa for pro-BNP and ~12 kDa for BNP), suggesting that
glycosylation at Thr-71 may not be significant in cardiomyocytes.

By densitometric analysis of the Western blots, the percentage of pro-BNP to BNP
conversion for WT was much less than T71A mutant in HEK 293 cells (Fig. 1C, left), but
similar to that of T71A mutant in HL-1 cells (Fig. 1C, right).
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3.2. Glycosylation on pro-BNP T71A in HEK 293 and HL-1 cells
To examine O-glycosylation on pro-BNP, we treated HEK 293 and HL-1 cells expressing
pro-BNP WT and T71A mutant with an O-glycosylation inhibitor, Ben-gal. The presence of
Ben-gal in the culture medium reduced the apparent molecular mass of pro-BNP WT and
T71A in HEK 293 (Fig. 2A, left) and HL-1 (Fig. 2A, right) cells, which was consistent with
the previous finding of O-glycosylation in pro-BNP and indicated that mutation at Thr-71
did not prevent O-glycosylation at other pro-BNP residues.

3.3. Treatment of pro-BNP T71A with glycosidases
To verify this result, we incubated pro-BNP WT and T71A mutant from HEK 293 and HL-1
cells with PNGase F, O-glycosidase, and sialidase A, individually or in combination. As
shown in Fig. 2B, treatment of PNGase F or O-glycosidase alone did not alter the apparent
molecular mass of pro-BNP WT (top) and T71A (bottom). When pro-BNPs were treated
with sialidase A, alone or with O-glycosidase, the apparent molecular mass was reduced,
indicating that sialylated O-glycans were present on pro-BNP WT and T71A mutant.
PNGase F in combination with sialidase A and O-glycosidase showed no further reduction
of the apparent mass of pro-BNP WT and T71A mutant, confirming that pro-BNP WT and
T71A mutant contained significant amounts of sialylated O-glycans but little N-glycans.

To gain insights into sialic acid structures on pro-BNP, we treated pro-BNP WT and T71A
mutant with sialidases that favor specific linkages. When pro-BNP WT and T71A from
HEK 293 and HL-1 cells were treated with sialidases that cleave α(2-3,6,8,9)- and
α(2-3,6,8)-linkages, the apparent molecular mass of pro-BNP WT and T71A mutant was
significantly reduced to a similar degree (Fig. 3). Treatment of sialidase that cleaves α(2-3)-
linked sialic acids caused a smaller reduction in pro-BNP molecular mass, which was
similar to the effect of sialidase that cleaves α(2-3,6)-linkages, indicating that most sialic
acids on pro-BNP existed in the forms of either α(2-8)- or α(2-3)-linked moieties.

3.4. Processing of pro-BNP WT and T71A in HEK 293 and HL-1 cells
We examined the processing of pro-BNP WT and T71A mutant. When pro-BNP WT was
expressed in HEK 293 or HL-1 cells, a significant portion of pro-BNP in the conditioned
medium remained unprocessed (Fig. 4A, left). When recombinant furin or corin was co-
expressed in these cells, pro-BNP processing was mostly completed in HL-1 cells (Fig. 4A,
bottom left) but there were still significant portions of unprocessed pro-BNP in HEK 293
cells (Fig. 4A, top left). Similarly, significant portions of unprocessed pro-BNP T71A were
present in the conditioned medium from HEK 293 and HL-1 cells (Fig. 4A, right). However,
when recombinant furin or corin was co-expressed in these cells, pro-BNP T71A processing
was mostly completed. The results showed that O-glycosylation at Thr-71 inhibited pro-
BNP processing in HEK 293 cells, and that Thr-71 residue, which was not O-glycosylated in
HL-1 cells, had little effect on pro-BNP processing in these cardiomyocytes.

3.5. Pro-BNP processing sites in HEK 293 and HL-1 cells
Previous studies showed that both furin and corin cleaved pro-BNP. To examine the
cleavage sites of furin- and corin-mediated pro-BNP processing, we tested pro-BNP mutants
with altered residues at Arg-73, Arg-76 and Lys-79 around the cleavage site (Fig. 4B). In
HEK 293 cells, which express furin but not corin, mutations at Arg-73, Arg-76 or Arg-73/
Arg-76 prevented pro-BNP processing (Fig. 4C, top). In contrast, mutation at Lys-79 alone
did not alter pro-BNP processing (Fig. 4C, top). Only when mutation at Lys-79 was
combined with mutations at Arg-76 or Arg-73/Arg-76, was pro-BNP processing prevented.
The results showed that Arg-73 and Arg-76, but not Lys-79, were important for furin-
mediated pro-BNP processing in HEK 293 cells.
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In HL-1 cells, in contrast, mutations at Arg-73 and Arg-76, alone or in combination, only
slightly reduced pro-BNP processing (Fig. 4C, bottom). Nor did mutation at Lys-79, alone
or in combination with Arg-76 mutation, prevent pro-BNP processing. Only when residues
Arg-73, Arg-76 and Lys-79 were all mutated, was pro-BNP processing prevented (Fig. 4C,
bottom), indicating that in HL-1 cells, which express both furin and corin, pro-BNP was
processed at multiple sites including Arg-73, Arg-76, and Lys-79.

4. Discussion
ANP, BNP and C-type natriuretic peptide (CNP) are natriuretic peptide family members,
which are made as inactive proforms and activated by proteolytic enzymes. Recent studies
have identified significant amounts of O-glycans in human pro-BNP and this
posttranslational modification appears to be unique for pro-BNP because no carbohydrates
were detected in pro-ANP or pro-CNP [17]. In general, carbohydrates participate in protein
trafficking, enzyme activation, and protein-protein interactions [25, 27, 28]. The function of
O-glycans on pro-BNP is not fully understood. We showed that O-glycans increased pro-
BNP stability in culture [17]. Others reported that O-glycans at residue Thr-71 markedly
inhibited recombinant pro-BNP processing in HEK 293 cells [21]. This finding is intriguing,
raising an inevitable question of how pro-BNP is possibly processed if similar O-
glycosylation occurs in cardiomyocytes.

To address this question, we analyzed pro-BNP WT and T71A mutant in HEK 293 cells and
HL-1 cardiomyocytes. We found that pro-BNP WT and T71A mutant in HEK 293 and HL-1
cells contained O-glycans with terminal sialic acids via α(2-3) and/or α(2-8) linkages (Figs.
2 and 3). The extent of pro-BNP O-glycosylation in cardiomyocytes, however, was less than
that in HEK 293 cells. Consistent with the previous report of O-glycans on residue Thr-71
[20, 21], T71A mutation reduced pro-BNP glycosylation in HEK 293 cells (Fig. 1A). In
these cells, pro-BNP WT, compared to T71A mutant, was more resistant to endogenous
furin- and recombinant furin- or corin-mediated processing (Figs. 1C and 4A), supporting a
role of O-glycans on Thr-71 in inhibiting pro-BNP processing.

Unlike in HEK 293 cells, residue Thr-71 contained little O-glycans when pro-BNP was
expressed in HL-1 cardiomyocytes, as indicated by similar migration bands of pro-BNP and
BNP from WT and T71A mutant on Western blots (Fig. 1B). Consistently, processing of
pro-BNP WT and T71A mutant was similar in HL-1 cells, with or without furin or corin co-
expression (Figs. 1C and 4A). Thus, our results indicate that O-glycosylation at pro-BNP
residue Thr-71 identified in HEK 293 cells may not occur in cardiomyocytes. It is likely,
therefore, that the function of O-glycans on pro-BNP may be involved primarily in peptide
stability and/or extracellular distribution rather than inhibiting pro-BNP processing in
cardiomyocytes.

Previously, we and others reported that furin and corin processed pro-BNP [6-9]. The
sequence-specificity of furin- and corin-mediated pro-BNP processing is not well defined.
Using non-glycosylated pro-BNP made in E. coli, Semenov et al. showed that furin cleaved
pro-BNP at Arg-76, generating BNP 1-32, whereas corin cleaved pro-BNP at Lys-79,
generating BNP 4-32 [7]. More recently, corin was shown to be shed from the cell surface
and soluble corin was detected in human plasma [29-34]. Ichiki et al. reported that pro-BNP
was processed by plasma soluble corin to produce BNP 1-32 and BNP 3-32 [32]. Because
BNP 3-32 was derived from the cleavage between Pro-78↓Lys-79, it is unlikely that this
fragment was cleaved directly by corin, which as a trypsin-like enzyme, favors basic
residues [35]. Most likely, BNP 1-32 was produced first by plasma soluble corin and in turn
trimmed N-terminally by DPP IV to BNP 3-32 [14, 15].
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To determine the sequence-specificity of furin- and corin-mediated pro-BNP processing, we
tested a series of pro-BNP mutants around the cleavage site. In HEK 293 cells expressing
furin but not corin, mutations at Arg-73 and Arg-76, either alone or in combination,
prevented pro-BNP processing (Fig. 4C, top). In contrast, mutation at Lys-79 had little effect
on pro-BNP processing (Fig. 4C, top), indicating that furin cleaved pro-BNP at Arg-76,
consistent with the furin recognition consensus sequence, RXXR↓, where the cleavage at the
P1 Arg requires another basic residue at the P4 position [10].

Interestingly, in HL-1 cells expressing both furin and corin, single mutations at Arg-73,
Arg-76, or Lys-79 did not prevent pro-BNP processing. Moreover, neither double mutations
at Arg-73/Arg-76 nor Arg-76/Lys-79 prevented pro-BNP processing. Only when residues
Arg-73, Arg-76 and Lys-79 were all mutated, was pro-BNP processing blocked (Fig. 4C,
bottom). These data indicate that in HL-1 cells corin cleaved pro-BNP at multiple sites,
including Arg-73, Arg-76 and Lys-79. Previous studies have shown that HL-1 cells retained
all structural and functional characteristics of adult cardiomyocytes [22]. Our results suggest
that in hearts corin may cleave pro-BNP at different sites. Consistent with this hypothesis,
BNP fragments with different N-termini have been found in human plasma, including BNPs
1-32, 3-32 and 4-32 [36]. In principle, BNP 1-32 may be from corin- or furin-mediated
cleavage, whereas BNP 4-32 may come from corin-mediated cleavage. BNP 3-32 is most
likely from DPP IV-mediated cleavage of BNP 1-32 [14, 15]. Thus, our results provide new
insights into the biochemical basis of pro-BNP processing. Studies have shown that corin
expression is up-regulated in hypertrophic and failing hearts [37, 38]. High levels of plasma
BNPs 1-32, 3-32 and 4-32 are found in patients with HF [36]. Further studies are needed to
determine if the cleavage of pro-BNP by corin is regulated in the heart under physiological
and pathological conditions.
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Abbreviations

ANP atrial natriuretic peptide

BNP B-type or brain natriuretic peptide

CNP C-type natriuretic peptide

HEK human embryonic kidney

HF heart failure

NT N-terminal

FBS fetal bovine serum

Ben-gal Benzyl 2-acetamido-2-deoxy-α-D-galactopyranoside
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Fig. 1. Expression of pro-BNP and T71A mutant in HEK 293 and HL-1 cells
(A) Schematic presentation of pro-BNP and BNP. Reported O-glycosylated residues are
indicated by circle-and-line symbols. (B) Plasmids expressing pro-BNP WT and T71A
mutant or a control vector were transfected into HEK 293 (left) or HL-1 (right) cells. Pro-
BNP and BNP in the conditioned medium (top) and cell lysate (bottom) were analyzed by
Western blotting. An arrow (top left) indicates the difference in molecular mass between
pro-BNP WT and T71A. Data were representative of 4 independent experiments. (C)
Quantitative analysis of pro-BNP processing. Percentage of pro-BNP processing was
calculated by densitometric analysis of Western blots. Data are mean ± S.D. from 4
independent experiments. n.s., not statistically significant.
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Fig. 2. O-glycosylation in pro-BNP WT and T71A
(A) HEK 293 (left) and HL-1 (right) cells expressing pro-BNP WT or T71A mutant were
cultured with (+) or without (-) Ben-gal for 24 h. Pro-BNP and BNP in the conditioned
medium were analyzed by Western blotting. Data were representative for at least three
independent experiments. (B) Pro-BNP WT (top) and T71A mutant (bottom) from HEK 293
(left) or HL-1 (right) cells were digested with PNGase F (F), O-glycosidase (O), and
sialidase A (S), individually or in combination, and analyzed by Western blotting. Data were
representative for at least three independent experiments.
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Fig. 3. Pro-BNP WT and T71A mutant digested with different sialidases
Pro-BNP WT (top) and T71A mutant (bottom) from HEK 293 (left) or HL-1 (right) cells
were digested with O-glycosidase with (+) or without (-) sialidases that favor specific
linkages. Pro-BNP and BNP were analyzed by Western blotting. Data were representative
for at least three independent experiments.
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Fig. 4. Processing of pro-BNP WT and mutants in HEK 293 and HL-1 cells
(A) Pro-BNP WT (left) and T71A mutant (right) were expressed in HEK 293 (top) and
HL-1 (bottom) cells that were either parental or co-transfected with plasmids expressing
furin or corin, or a control vector. Pro-BNP and BNP in the conditioned medium were
analyzed by Western blotting. (B) Schematic presentation of human pro-BNP with O-
glycosylated residues and the cleavage site. (C) Pro-BNP WT and mutants with single,
double or triple mutations were expressed in HEK 293 (top) or HL-1 (bottom) cells. Pro-
BNP and BNP in the conditioned medium were analyzed by Western blotting. Data were
representative for at least three independent experiments.
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