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Abstract
Microarrays have become an indispensable tool in biomedical research. This powerful technology
makes it possible to quantify a large number of nucleic acid molecules simultaneously, but also
produces data with many sources of noise. A number of preprocessing steps are therefore
necessary to convert the raw data, usually in the form of hybridization images, to measures of
biological meaning that can be used in further statistical analysis. Preprocessing of oligonucleotide
arrays includes image processing, background adjustment, data normalization/transformation and
sometimes summarization when multiple probes are used to target one genomic unit. In this paper
we review the issues encountered in each preprocessing step and introduce the statistical models
and methods in preprocessing.

1 Introduction
In oligonucleotide microarrays, short DNA molecules (25-60 bases long, depending on
technology) are used as probes to query complex biological samples, such as transcriptomes,
that contain a large number of RNA or DNA species (the targets). The probes are usually
fixed on a solid surface, the microarrays. The target molecules are labeled with fluorescent
dyes and bind to probes with complementary sequences during the hybridization step. A
scanner is used to read the fluorescent intensity off each probe and the intensities represent
the relative abundance of targets for each probe. The raw data from a microarray experiment
is therefore an image. The goal of a microarray experiment is, however, to obtain
measurements on some genomic units, such as levels of gene expression, genotypes of
single nucleotide polymorphism (SNP), or DNA copy number. The process that converts the
raw data into the form of biological meaning is referred to as preprocessing.

Preprocessing is often not straightforward because microarray data contain noise from many
sources. In addition to the signal determined by actual abundance of the target, a number of
other factors can affect the measurements taken from microarrays. The experimental
procedures, such as extraction, amplification and labeling of the biological samples, can
affect the quality of the target sample. The probes have different efficiency and specificity in
hybridization, thus the intensities on each probe are a result of both specific and nonspecific
binding. Optical and electrical noise are also unavoidable in the scanning step. The rest of
the paper is organized as follows. In Section 2 we introduce how image processing is done
to obtain numeric values for probe intensities. In Section 3 we present some common
statistical models for probe level data and discuss the motivation for the other preprocessing
steps. which are discussed in detail in the following sections.
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2 Image Processing
The original hybridization data obtained from the scanner is an image. To turn this image
into probe level intensity values involves several steps of image processing. The first step
attributes pixels to probes and is referred to as segmentation. However, not all pixels in a
probe cell are used in reporting the intensity. Pixels around the perimeter of a probe cell may
be discarded to minimize possible segmentation errors, as in Affymetrix arrays (1). A
summary, for example, the 75th percentile, of intensities from the remaining pixels is
reported as probe intensity. Segmentation for high density oligonucleotide arrays are easier
than for spotted cDNA arrays since the probe cells are more regular than the cDNA spots. In
most cases, grid alignment is used and accurate segmentation can be achieved. When there
is no strong image blur or large defects, the summarized probe intensities adequately
summarize the hybridization information from the image file (1). When there are image
defects, they often affect more than one probe cell. The pseudo-image from the probe level
data can still reveal spatially coherent problems. Therefore, the probe level intensities are
often treated as raw data.

Several methods have been developed to detect and remove or reduce impact of image
defects. Harshlight (2) detects three types of image defects (extended, compact and diffuse
defects) using pattern recognition methods, and replace the defective probe intensities by
missing values. Potentially these missing values can also be filled in by imputation. (3) scan
the pseudo-images with a sliding window to detect “blob-like” regions that exhibit high
intensities, possibly resulting from artifacts such as bubbles. An overview of the methods
that detect and correct for these image level abnormalities is given by (1).

3 Models for probe level intensity
After image defects are removed, the probe intensities are usually taken as the raw data for
oligonucleotide arrays. The desired reading on each probe is the amount of fluorescence
from molecules that are complementary to the probe, the intended target. However, the
hybridization sample consists of a complex mixture of nucleotide molecules, and non-
complementary sequences also bind to the probes. This phenomenon is referred to as
nonspecific binding and is a major reason for background in microarray data. Optical noise
is another source of background, but is usually smaller than non-specific binding
background and appears not to be probe specific. Calibration data suggest that background
noise is additive (4). As a result, the observed probe intensity is a sum of all the above
components. The relative quantity of a target across samples can be seriously biased if
background is not accounted for (4). Another phenomenon observed by many investigators
is that the stochastic noise on specific binding appears to be proportional to its mean. Since
many traditional statistical methodologies are based on the assumption of variance not
depending on the mean level, data transformation is often a useful, if not necessary,
procedure in preprocessing. There are also factors that affect the observed intensities on an
entire array, such as sample preparation, hybridization condition and scanner differences.
These “obscure variations” (5) are of no biological interest but exist in almost all microarray
data. Normalization, a procedure that aims to remove such obscure variations and makes
data across arrays comparable, is thus another key step in preprocessing.

Putting all the above mentioned components together gives the common additive-
background-multiplicative-measurement-error model (6; 7; 8; 9) for intensity Yij of probe j
on array i:
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(1)

Here Bij = Bj + δij represents background noise for probe j on array i, with Bj being the mean
background on probe j. Sij represents the specific binding intensity, aj represents the
efficiency of probe j in measuring the intended target, γi represents an array effect for all
probes, μij represents the log concentration of the target, and εij represents the multiplicative
measurement error while δij represents an additive measurement error and is sometimes
absorbed into the background term.

In this model, the need for normalization is demonstrated by the inclusion of an array effect
γi in the exponential term, equivalent to a scaling factor on linear scale. In general, if the
nature of the array effect is left unspecified, we can use fi to describe the array effect:

(2)

When multiple probes are used to measure one genomic target, they form a probe set. All
probes within a probe set g measure the same target quantity μgi, and Model 1 becomes

The above models are motivated mostly by Affymetrix array data. Data generated from
other platforms appear to share very similar stochastic properties. For example, the additive
background and multiplicative measurement error model seem to be applicable to Illumina
data as well (10). In the following sections we discuss how the quantity of interest, μgi, is
estimated by our preprocessing procedures. We will continue to use Affymetrix arrays as
our main example.

4 Background estimation and adjustment
Since the introduction of the oligonucleotide arrays, various attempts to correct for
background noise have been proposed. For example, the manufacturer Affymetrix designed
Mismatch (MM) probes, probes that differ from the PerfectMatch (PM) probes by only the
middle nucleotide, to directly measure probe and array specific background. Measurements
on MM probes were expected to contain background Bij similar to their PM counterparts,
but little specific binding intensity. These direct measurements are simply subtracted from
the PM intensities to adjust for the additive background in several generations of
preprocessing methods provided by Affymetrix, including MAS 5.0. (11) also use PM-MM
to correct for background in their model-based expression index. However, a number of
investigators have noted that the assumption of MM measuring the expected background on
PM probes, and background only, is often violated in reality (12; 13). (14) report that a
considerable proportion of MM probes had consistently higher intensity than the paring PM
probes. (15) show that the direct adjustment of background using MM values results in
inflated variance of the resulting gene expression estimates. A number of preprocessing
methods have avoided the problem by using PM-only measurements. Without a direct
measurement, estimation of the background is often done by borrowing information from
other probes using an empirical Bayes approach. For example, the Robust Multiarray
Analysis (RMA) assumes a global background distribution common for all probes that is
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normally distributed. From each array i, probe intensities that are smaller than the empirical
mode is used to estimate the mean and variance of the background. The Variance
Stabilization Normalization (VSN) (16) also estimates a common mean background
(baseline) value for all probes on an array using an iterative procedure. Assuming a global
background for all probes often results in a conservative estimate of background noise and
thus sacrifices the accuracy of some probes. However, compared to PM-MM methods, the
gain in precision in PM-only procedures often outweighs the loss in accuracy in identifying
biological variations (17).

After the probe sequences became public, the thermodynamics between RNA targets and
DNA probes on the arrays have been more intensively studied. The reason that MM probes
do not offer the expected background measurements was better understood when (18)
discovered that the middle base being purine or pyrimidine affects the hybridization
stability. They also fit a linear model that uses the position and type of nucleotides in the
probes to predict the amount of hybridization, and showed strong relationship between probe
sequence and intensity. (19) adapted their sequence model to explain the nonspecific binding
background on different probes. The non-specific binding affinity of a probe is described by
the sum of position-dependent base contributions

(3)

where k indicates the position and j represents the base type. The base contributions μj,k for

each base j is modeled as a smooth function of position . The parameters βj,l
are estimated by fitting the model to experimental data containing nonspecific binding alone.
Affinity values for any probe sequence can then be calculated from the probe sequence and
used to predict and adjust for the probe specific background. This background adjustment is
used in preprocessing procedure GCRMA and shown to decrease the bias in expression
measurements without much increase of variance (19). Physical models that use the stacking
energy of DNA/RNA hybridizations have also been used to predict the hybridization
stability of specific and nonspecific bindings. (12) use a stacking energy model and
computed both gene-specific and non-specific binding energies of a probe as weighted
means of nearest neighbor stacking energies. However, the physical model using
thermodynamic parameters (20) does not appear to predict non-specific binding as well as
stochastic models using empirically estimated parameters (4).

5 Normalization and transformation
In addition to background noise, there are often other sources of variation affecting the
observed intensities that are not of biological interest. For example, arrays scanned on one
scanner can in general give higher readings than these from another scanner. The variation
due to scanner is of no biological interest and should be removed whenever possible. Such
“obscuring variations” (5) can also be introduced by the preparation of the samples or the
processing of arrays and often affect the observations on entire arrays. To make the
observations across arrays comparable, normalization is a usually a necessary step in
preprocessing. Data transformation is also common practice for several reasons. As shown
in Model 1, the variance of the specific binding intensity S is proportional to the mean level
because of the error ε in the exponential term. After background adjustment a log
transformation is often found to remove or reduce the dependency between the mean and the
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variance. A log transformation also gives the difference in transformed data the easy
interpretation of log ratio. Other variance stabilization transformations are the generalized
logs, that are similar to logs for high values and linear for low values (7; 16; 21).

Most normalization methods equalize some summary statistics of the distribution of
measurements across arrays. The simplest ones, such as MAS 5.0, scale the arrays so that
each array has the same mean or median intensity. The scaling normalization implicitly
assumes that biological variations of interest may affect a number of measurements but
should not change the mean or mode of the distribution of intensities on each array. Since
non-linear relationships between arrays are common, normalization methods that use a non-
linear smooth curve have also been introduced (22). Using a baseline array, a smooth
normalization curve can be estimated from the scatter plot of two arrays (23). Without a
baseline array, one can also use all arrays available in a dataset, and iterates over distinct
pairwise combinations of arrays so that all arrays are normalized to an “average” array. The
cyclic loess normalization (24) and contrast normalization (25) are two examples. Another
approach is quantile normalization (26; 5), which makes all arrays have the same empirical
distribution of intensities after normalization. One can use a baseline array for the reference
distribution, or use all arrays to generate an “average” distribution for reference. Quantile
normalization is used in RMA, GCRMA and recommended for Probe Logarithmic Intensity
Error (PLIER) (27).

All normalization methods make assumptions on what is expected to be constant across
arrays, although not all make the assumptions explicit. Many normalization procedures
assume that the biological effects do not change the basic location and/or shape of the
distribution of data. This is often the case if only a small subset of targets are expected to be
affected, or, the effects on increasing or decreasing the target amounts are symmetric. When
these conditions are at least approximately met, one can use data from the entire array to
robustly estimate the location and shape of distribution and perform normalization.
However, when the up- and down-regulation is not symmetric across arrays, most methods
that normalize to a common distribution would fail. An alternative is to use only the probes
that are expected to show no difference across arrays in normalization (28; 29). Since there
is often limited number of control genes to cover the range of observed data and some
control genes (such as housekeeping genes) actually show biological variations, an
“invariant set” of probes is often selected to be the normalizing elements. (23) selected their
invariant set as probes that show little changes of ranks across arrays. Recently, (30) use a
robust linear model to estimate array-to-array variation and define a least-variant set of
genes.

6 Summarization
In some platforms multiple probes are used to quantify the same genomic target. For
example, Affymetrix GeneChips use a set of 11-20 probes to measure expression levels of a
gene and on average 4 probes for an exon. Illumina arrays use one probe for each gene but
include technical replicates (approximately 30) of the same probe. After preprocessing, a
summary of these multiple measurements is given as the measure of gene expression.

Since it is known that a number of factors can contribute to the noise in microarray data,
most methods choose to do a robust summary that is resistent to outliers. Single array
summaries, such as MAS 5.0 for Affymetrix arrays, use Tukey's biweight to calculate a
robust mean of background corrected, log transformed intensities as expression measure.
One drawback for this approach is that probes with high efficiency (large aj in Model 1) in
detecting specific binding may have consistently higher intensities. These are the most
informative probes but may be down weighted as outliers. Multiarray analyses, such as
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RMA (15), GCRMA (19) and model-based expression index (MBEI) (23), identify outliers
using information across arrays. For each probe set, consider a linear model (31) on the
background adjusted, normalized and log transformed data of probe j on array i:

(4)

where aj is the probe efficiency for j−th probe and μ + θi represent the gene expression on
array i. The estimate μ̂ + θ ̂i is the is the quantity of interest in a gene expression experiment,
and the final output from all previous preprocessing steps. RMA and GCRMA use median
polish, a fast procedure to fit the above linear model robustly by removing row and column
medians iteratively. In the robust multi-array model, observations on probes with very large
or small ajs are not mistakenly treated as outliers, as long as their log expression levels are
parallel to those of the other probes. The MBEI considers a model in linear (un-logged)
scale:

where ci is equivalent to eμ+θi and ϕj is equivalent to eaj in Model (4). Least squares
estimates of the parameters are obtained and the probes with large standard errors are
identified as outliers and removed to add robustness. PLIER achieves robustness by using a
Geman and McClure function to down weight extreme residuals in the M-estimation
procedure.

In Illumina arrays, since all replicate probes share the same sequence, there is no probe
effect aj. The BeadStudio output reports a trimmed mean by removing observations 3
median absolute deviations (MAD) away from the median.

7 Discussion
In the previous sections we reviewed the major steps of preprocessing for microarray data.
Many preprocessing methods are developed originally for gene expression arrays since
monitoring gene expression has been the primary application of microarrays. However, the
principle of all microarrays, regardless of their biomedical applications, is the same: nucleic
acid molecules are labeled and separated by hybridizing to probes with known sequences
and quantification is done by measuring intensities carried on the labels. Therefore, the main
sources of systematic and random noise are similar in microarrays generated in applications
other than gene expression. Many preprocessing methods have proven to be useful in new
platforms with small changes in implementation.

For example, non-specific binding continues to be a main source of background. Using
probe sequence information to predict affinity to non-specific binding is shown to be useful
in tiling arrays for ChIP-chip experiments. (32) use a model similar to Model 3 used in
GCRMA, with additional quadratic terms of the number of each base in the probe. (33)
show that the same model is useful in predicting and adjusting for non-specific binding for
exon arrays.

Normalization is again a necessary component in preprocessing. The assumptions for
normalization in some applications are met more easily than in gene expression. For
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examples, when microarrays are used to measure copy number variation, the assumption
that the majority of the genes have two copies is probably acceptable in most situations.

The connections between various applications of microarrays allows preprocessing methods
developed for gene expression to be a useful start, but specific development for different
platforms are still necessary. For example, robust summaries similar to those used in gene
expression arrays may be used for exon-specific expression levels. But with much smaller
probe sets (average 4 probes per exon instead of over 10 per gene), it is much harder to
define outliers and reach a balance between robustness and efficiency. The probe sequence,
especially the GC content of probes, has been shown to affect the nonspecific binding.
Background adjustment methods that adjust for the sequence bias largely remove the GC
content effect However, for applications in epigenetic studies, since GC content are also
related to methylation sites, simply removing the sequence effect in the same fashion as in
expression or Chip-chip arrays may bleach out the desired signal. For all these reasons,
preprocessing remains an active research field as microarray technology evolves.
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