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Abstract
Computational Cognitive Neuroscience (CCN) is a new field that lies at the intersection of
computational neuroscience, machine learning, and neural network theory (i.e., connectionism).
The ideal CCN model should not make any assumptions that are known to contradict the current
neuroscience literature and at the same time provide good accounts of behavior and at least some
neuroscience data (e.g., single-neuron activity, fMRI data). Furthermore, once set, the architecture
of the CCN network and the models of each individual unit should remain fixed throughout all
applications. Because of the greater weight they place on biological accuracy, CCN models differ
substantially from traditional neural network models in how each individual unit is modeled, how
learning is modeled, and how behavior is generated from the network. A variety of CCN solutions
to these three problems are described. A real example of this approach is described, and some
advantages and limitations of the CCN approach are discussed.
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1. Introduction
The emerging new field of Computational Cognitive Neuroscience (CCN) lies at the
intersection of computational neuroscience and the similar fields of machine learning, neural
network theory, connectionism, and artificial intelligence. Like computational neuroscience,
CCN strives for neurobiological accuracy and like connectionism, a major goal is to account
for behavior. In other words, using Marr's (1982) nomenclature, CCN strives to develop
models that can simultaneously satisfy the algorithmic and implementation levels. One main
advantage of CCN is that it offers many more constraints on the resulting models than more
traditional approaches. As a result, two researchers independently modeling the same
behavior are more likely to converge on highly similar models with this new approach, and
for this reason the resulting models should have a permanence that is unusual with older
approaches. A growing number of researchers build and test CCN models (e.g., Anderson,
Fincham, Qin, & Stocco, 2008; Ashby, Ell, Valentin, & Casale, 2005; Frank, 2005; Hartley,
Taylor, & Taylor, 2006; Leveille, Versace, & Grossberg, 2010), and an annual CCN
conference is now included as a satellite to the Annual Meeting of the Psychonomic Society.
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2. A brief history
The field of computational neuroscience became popular with Hodgkin and Huxley's (1952)
Nobel Prize winning efforts to model the generation of action potentials in the giant squid
axon. Most models in this field include, at most, only a single neuron. For example, a
common computational neuroscience approach, called compartment modeling, models a
neuron's axons and dendrites as cylinders and the soma as a sphere. Next, partial differential
equations that describe the propagation of action potentials are written for each of these
compartments. A standard application will try to account for patch-clamp data collected
from a variety of locations on the cell. Some compartment models are extremely accurate
and complex. For example, some single-cell models have hundreds or even thousands of
compartments (e.g., Bhalla & Bower, 1993; Segev & Burke, 1998). Historically,
computational neuroscience models have almost never tried to account for behavior. In most
cases, such a goal is precluded by the complexity of the single-cell models that are used.

Neural network theory began with similar origins in the work of McCulloch and Pitts
(1943). However, because the goal quickly became to model behavior, neural network
theory diverged from computational neuroscience with the work of Newell, Shaw, and
Simon (1958) and Rosenblatt (1958). At that time, there simply was not enough known
about the neural basis of behavior to support a research program that tried to model behavior
in a biologically accurate way. Thus the fields of artificial intelligence and the more modern
related field of machine learning place almost all emphasis on behavior and almost none on
neuroscience.

Modern neural network theory (e.g., Haykin, 2008) and connectionism (Rumelhart &
McClelland, 1986) take an intermediate approach in the sense that biologically plausible
properties are often seen as advantages, although they rarely are requirements. Neural
network models have some features in common with the brain. Included in this list are
distributed representation, continuous flow, and the modeling of memory as changes in
synaptic strengths. Even so, almost all neural network models include many features that are
now known to be incompatible with brain function. For example, there is generally no
attempt to identify units in neural network models with specific brain regions, and even
when there is, there is little attempt to model inputs and outputs to these regions in a
biologically accurate way. Similarly, units in neural network models typically do not behave
like real neurons, and the learning algorithms that are used often have little biological
plausibility (e.g., backpropagation).

These observations are not criticisms. The vast majority of computational neuroscientists are
not psychologists and many have no fundamental interest in behavior. Similarly, artificial
intelligence and machine learning researchers are generally interested in optimizing the
performance of their models, not in modeling human behavior. Neural network theory (i.e.,
connectionism) often does have the goal of modeling behavior and generally does view the
neural-like properties of neural network models as an advantage of this approach. Even so,
many applications of neural network models are to behaviors that are so complex or so
poorly understood that it would be premature to attempt to build more biologically detailed
models (these fields focus on Marr's ‘algorithmic’ level). The focus of these earlier
approaches is well motivated because “the explication of each level involves issues that are
rather independent of the other two” (Marr, 1982, p. 25). However, Marr also acknowledged
that “these three levels are coupled” (p. 25). So, the new field of CCN is not meant to
supplant these older approaches, but rather to fill a new niche by trying to focus on the
“coupling” of the levels by using recent discoveries in psychology and neuroscience.
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The field of CCN began shortly after the cognitive neuroscience revolution of the 1990's.
The first break with existing approaches came with attempts to associate nodes in fairly
traditional connectionist or neural network models with specific brain regions. This trend
toward increased biological detail continued with more biologically plausible learning
algorithms, and more realistic models of the individual units (e.g., Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Cohen, Braver, & O'Reilly, 1996; Cohen & Servan-Schreiber,
1992; McClelland, McNaughton, & O'Reilly, 1995). During this time there were also
attempts to formulate general modeling principles of this new approach (O'Reilly, 1998;
O'Reilly & Munakata, 2000). The present article represents a natural extension and summary
of this earlier work.

This article is organized as follows. Section 3 gives some motivation for adopting a CCN
approach. Section 4 describes the CCN principles that guide model development and model
testing. Section 5 describes some common approaches used in CCN to model individual
units or neurons. Section 6 briefly reviews the biochemistry that underlies some common
forms of long-term synaptic plasticity, and describes simple computational models of these
learning-related changes in synaptic strength. Section 7 reviews some solutions to the
problem of generating behavior from single-unit activity. Section 8 describes an example of
the CCN approach, and Section 9 closes with some general comments and conclusions.

3. Why use CCN models?
Before getting into the details of how to develop CCN models, it is natural to ask what
advantages CCN has over other approaches. First, CCN modeling increases the number of
constraints on behavioral models. Newell (1992) argued that “cognitive theory is radically
underdetermined by data” (p. 426). Although Newell was arguing for the use of ‘unified’
theories of cognition (e.g., cognitive architectures), another possible solution to this problem
is to add neuroscience constraints to the modeling process (i.e., going deep instead of going
wide). Rather than just selecting among models based on goodness-of-fit to behavioral data,
CCN adds the extra constraint that the winning model should also function in a manner that
is consistent with existing neuroscience data. Adding neuroscience constraints should reduce
the class of candidate models, and equally important it should reduce the heterogeneity of
this class. For example, if neuroscience data implicate the hippocampus in some behavior,
then models of this behavior must all share some hippocampal-like properties. This
reduction in model heterogeneity should cause different labs to converge on similar models
and thereby facilitate rapid scientific progress.

Second, attending to the neuroscience data can expose relationships between seemingly
unrelated behaviors. For example, cognitive neuroscience models of (information-
integration) category learning and (implicit) sequence learning had independently identified
similar cortical-striatal circuits (e.g., Ashby et al., 1998; Grafton, Hazeltine, & Ivry, 1995).
This raised the possibility that these two seemingly disparate behaviors shared some
previously unknown deep functional similarity. Several studies have explored this
possibility. First, Willingham, Wells, Farrell, and Stemwedel (2000) had showed that
implicit motor sequence production is disrupted when the response key locations are
switched, but not when the hands used to depress the keys are switched. Ashby, Ell, and
Waldron (2003) showed that this same pattern of results holds for information-integration
categorization. Without linking categorization and sequence learning through their
hypothesized underlying neural circuits, this dependence of information-integration
categorization on response location learning would have been much more difficult to
discover. More recently, an inactivation study showed that the basal ganglia are not required
for the production of overlearned motor sequences (Desmurget & Turner, 2010), thereby
suggesting that the same may be true of information-integration categorization (as was
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predicted by the CCN model of Ashby et al., 2007). This prediction was recently confirmed
with an fMRI experiment (Waldschmidt & Ashby, 2011).

Third, in many cases, studying the underlying neuroscience leads to surprising and dramatic
behavioral predictions that would be difficult or impossible to derive from a purely cognitive
approach. For example, information-integration category learning was hypothesized to
depend on dopamine-mediated reinforcement learning at cortical-striatal synapses (Ashby et
al., 1998). Because the reward follows the behavior, the dopamine must operate on a
memory trace that identifies recently active synapses. The most likely candidate for this
trace is partially phosphorylated CaMKII, which loses its sensitivity to dopamine after just a
few seconds (e.g., Lisman Schulman, & Cline, 2002; see section 6.1 for details). Thus,
attention to the underlying neuroscience generates a novel and surprising prediction:
delaying feedback by just a few seconds should impair information-integration category
learning, but not other forms of category learning (e.g., rule-based) thought to rely on
executive attention and working memory. Several studies have confirmed these predictions
(Maddox, Ashby, & Bohil, 2003; Maddox & Ing, 2005).

Fourth, CCN models are especially amenable to a converging operations approach to model
testing because they make predictions about both behavioral and neuroscience data. Thus,
rather than simply testing them against behavioral data, it should also be possible to test
CCN models against a variety of neuroscience data, including single-unit recording data,
lesion data, psychopharmacological data, fMRI data, and possibly even EEG data. The
ability to test CCN models against such a broad spectrum of data should facilitate the
process of testing, rejecting, and refining new models.

4. CCN Ideals
One thing that sets CCN apart from previous modeling traditions is that its principles of
model building and testing are unique. In traditional cognitive-based mathematical modeling
of behavior, the overriding criterion for establishing the validity of a model is goodness-of-
fit to the behavioral data (usually penalized for model complexity; see, e.g., Helie, 2006;
Pitt, Kim, Navarro, & Myung, 2006). In general, there is a secondary goal of encapsulating
existing cognitive theory, but most cognitive theories are extremely difficult to falsify, and
as a result, if a cognitive model fits data well then it is almost never rejected because of the
cognitive assumptions it makes. There are many examples where models making very
different cognitive assumptions provide approximately equal levels of goodness-of-fit, so in
many cognitive domains there are many competing mathematical models that make very
different cognitive assumptions. For example, the results from many memory experiments
can be well fit by a variety of models that make radically different cognitive assumptions
(e.g., Raaijmakers & Shiffrin, 2004), and unfortunately, appeals to cognitive theory have not
done much to winnow down this crowded field. Many other examples exist in the cognitive
literature, including the well known difficulty in discriminating between serial and parallel
models of visual or memory search (e.g., Townsend & Ashby, 1983), the ability of
exemplar, prototype, and decision bound models of categorization to mimic each other
(Ashby & Maddox, 1993), and the difficulty in discriminating between single- and dual-
process models of recognition memory (e.g., Diana, Reder, Arndt, & Park, 2006; Jang,
Wixted, & Huber, 2009).

These problems are greatly reduced in CCN because goodness-of-fit to behavioral data is
only one of a number of criteria that are used to assess model validity. This section describes
four ideal principles used during model building and testing in CCN. It should be stressed
that these are ideals. Arguably, no existing models meet all these criteria. Nevertheless,
these principles are useful for helping researchers build and evaluate CCN models.
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4.1. The Neuroscience Ideal
A CCN model should not make any assumptions that are known to contradict the current
neuroscience literature.

In general, the Neuroscience Ideal means that when building or evaluating a CCN model,
the validity of four types of assumptions should be considered. First, the model should only
postulate connections among brain regions that have been verified in neuroanatomical
tracing studies. Second, the model should correctly specify whether each projection is
excitatory or inhibitory. Third, the qualitative behavior of units in each brain region should
agree with studies of single neurons in these regions. Finally, any learning assumptions that
are made should agree with existing data on neural plasticity [e.g., long-term potentiation
(LTP) and long-term depression (LTD)]. If a model makes an assumption that is known to
be incompatible with the neuroscience literature then the model should be rejected,
regardless of how well it accounts for behavioral data.

Note that the Neuroscience Ideal does not say that a CCN model must be compatible with
all existing neuroscience data. In other words, not all errors are equal and the Neuroscience
Ideal weighs errors of commission much more heavily than errors of omission (Meeter,
Jehee, & Murre, 2007). Every model is an abstraction and thus omits some of the
complexity found in the natural world. One key to building a successful CCN model is to
identify the critical features of the existing neuroscience literature that are most functionally
relevant to the behavior being modeled. For example, neuroanatomical tracing studies will
identify more interconnections among brain regions than typically should be included in a
CCN model because for the behavior under study some of these interconnections are likely
to be more functionally important than others.

A related problem is that when building most CCN models it will be necessary to make
some choices for which the neuroscience literature is little help – either because there are no
neuroscience data or because the existing data are equivocal. Thus, the Neuroscience Ideal
should not be interpreted as suggesting that all known neuroscience must be incorporated
into a CCN model or that every feature of a CCN model must be grounded in neuroscience,
but rather only that the neuroscience that is incorporated should not contradict the existing
neuroscience literature. Finally, it is important to keep in mind that the Neuroscience Ideal is
just that: an ideal. No model is ever correct and, even if one were eventually able to design a
model fully compatible with the Neuroscience Ideal, this would make the model so complex
that it likely would be impossible to test.1 For these reasons, the Neuroscience Ideal should
be balanced with the following heuristic.

4.2. The Simplicity Heuristic
No extra neuroscientific detail should be added to the model unless there are data to test this
component of the model or the model cannot function without this detail.

This is just a version of Occam's razor. It is especially important with CCN models however,
because unlike cognitive models, there will almost always be many extra neuroscientific
details that one could add to a CCN model. For example, one could use multi-compartment
models of each neuron or even model specific ion channels. Adding untested complexity,
even if it is neuroscientifically valid, increases the number of free parameters in the model
and the computing time required for fitting. In addition, when untested details are added, it
becomes difficult to determine whether the success of the model is due to these details or to
the more macroscopic properties that inspired the model in the first place.

1The reader is referred to Meeter et al. (2007) for further discussion of other common untested assumptions in CCN models.
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The phrase “to test this component of the model” in the Simplicity Heuristic should be
interpreted loosely. For example, if previous research shows that a behavior is dependent on
the cerebellum then the cerebellum could be included in the model, even if no cerebellar
data will be fit by the model (e.g., single unit recordings or lesion data).

4.3. The Set-in-Stone Ideal
Once set, the architecture of the network and the models of each individual unit should
remain fixed throughout all applications.

Connections between brain regions do not change from task to task, nor does the qualitative
nature via which a neuron responds to input. Thus, the model's analogues of these features
should also not change when the empirical application changes. This ideal greatly reduces
the mathematical flexibility of CCN models. Ideally, the overall architecture is constrained
by known neuroanatomy and the model of each individual unit is constrained by existing
single-unit recording data from the analogous brain region. Thus, although a CCN model
will initially have many unknown constants, most of these will be set by single-unit
recording data and then, by the Set-in-Stone Ideal, they will remain invariant across all
applications of the model. If some of the details turn out to be incorrect after they have been
‘set-in-stone’, then the incorrect details should be changed and a new model should be
constructed. However, note that such revisions do not add flexibility to the existing model;
rather they lead to the creation of a new model. Thus, after a constant is set in stone, it
should not be considered a free parameter in any future application of the model.

The Set-in-Stone Ideal applies to the brain areas that constitute the focus of explanation of
the model, and should not be expected to apply to brain regions that are either upstream or
downstream from this hypothesized network. For example, many models of learning,
memory, or cognition will require visual input. In tasks where variation in behavior depends
primarily on processing within the hypothesized network rather than on details of the visual
processing, it is common to grossly oversimplify the model of this visual input. For
example, a simple square wave might be used, rather than a spiking model. Applying such a
model to a different task, which depends on different visual inputs, might require changing
the abstract model of visual input. Similarly, a model of working memory might include a
greatly oversimplified model of motor responding that could change when the model is
applied to a new task with different motor requirements. So in summary, the Set-in-Stone
Ideal is meant to apply to the brain regions that are the focus of the model and not to the
inputs or outputs of that model.

4.4. The Goodness-of-Fit Ideal
A CCN model should provide good accounts of behavioral data and at least some
neuroscience data.

A model must make predictions at both the behavioral and neuroscience levels to classify as
a CCN model. If it only makes behavioral predictions then it should be classified as a
cognitive model, whereas if it only makes neuroscience predictions then it should be
classified as a computational neuroscience model. Thus, in general, CCN models are more
ambitious than traditional cognitive models because CCN models are expected to account
simultaneously for a wider range of data than cognitive models. Note that the only term that
makes this statement an ideal rather than a requirement is the word “good”. Every CCN
model should make both behavioral and neuroscience predictions, but the ideal CCN model
provides good accounts of both data types.

There are many different types of neuroscience data, so there is wide latitude in how this
ideal can be approached. For example, a CCN model might be tested against single-unit
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recording data, BOLD responses from fMRI experiments, or even behavioral data collected
from animal or human participants with some specific brain lesion, or under the influence of
some particular psychoactive drug.

Because a CCN model can be tested against data from multiple sources, it can gain or lose
support more easily than a cognitive model. For instance, following the Neuroscience Ideal
(Section 4.1), the collection of new neuroscience data could invalidate a model by turning an
error of omission into an error of commission. For example, a model might posit a direct
projection from the pre-supplementary motor area (preSMA) to SMA. After all, given their
names, this seems a sensible assumption. Recent neuroanatomy studies however, suggest
that preSMA does not project to SMA (Dum & Strick, 2005), and therefore this discovery
invalidates any CCN model that posits such a projection, regardless of how well it fits
behavioral data. Another possibility however, is that new neuroscience data could verify a
previously unsupported assumption, thereby lending new support to the CCN model. Of
course, similar outcomes could follow the collection of behavioral data; a model prediction
could be verified or invalidated after new behavioral data are collected. What is crucial here
is that both types of data can be used to argue for or against the CCN model. This is
different from cognitive or computational neuroscience models that restrict their application
to only one data type.

4.5. Relation to previous lists of CCN characteristics
The list of ideals proposed in Sections 4.1-4.4 is not the first attempt to specify the essential
characteristics of CCN models explicitly. For instance, O'Reilly (1998) proposed six
principles for computational models of the cortex: (1) biological realism, (2) distributed
representations, (3) inhibitory competition, (4) bidirectional activation propagation, (5)
error-driven learning of specific tasks and, (6) Hebbian learning of task-free statistical
properties of the environment. Most of these principles are related to the Neuroscience Ideal
above in that they specify biological constraints that should be included in any CCN model
of the cortex. Hence, they can be seen as an unpacking of the Neuroscience Ideal.

A decade later, Meeter et al. (2007) proposed a list of more general criteria. Specifically,
they suggested that a good CCN model (1) has few assumptions, (2) is inflexible and, (3)
exhibits ontological clarity. The first of these is similar to our Simplicity Heuristic, while the
second is similar to the Set-in-Stone Ideal. Both sets of criteria emphasize that a model
should be simple and inflexible (two ideas that are mathematically related). The last
criterion, ontological clarity, is similar to our Goodness-of-Fit Ideal, in that the scope of the
model must be clearly established in order to determine what kind of data needs to be fit and
what kind of experiments should be run. In other words, the rules need to be set early on to
specify what counts as evidence for or against the CCN model.

4.6. Discussion
The Neuroscience Ideal makes the relationship between computational neuroscience and
CCN explicit by ensuring that no biological detail in the CCN model is inconsistent with
existing neuroscientific data (as in computational neuroscience). However, following the
Simplicity Heuristic, CCN models typically make simplifying assumptions about the
biological details included in the model. This is because the lowest level of data usually
accounted for by CCN models is single-cell recordings. Hence, although an increasing
amount of data is now available about the molecular neurobiology of neurons, these data are
usually not accounted for by CCN models. This makes CCN models biologically simpler
(and thus more scalable) than most computational neuroscience models.
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The Set-in-Stone Ideal is used to control the growth of complexity in the model.
Theoretically, the Set-in-Stone Ideal is an implementational constraint: the same brain is
used in every task. Computationally, the Set-in-Stone Ideal is used to fix the value of most
constants in the model, thus drastically reducing the CCN model complexity. Once set-in-
stone, the Goodness-of-Fit Ideal states that many different types of data should be used to
test the adequacy of CCN models, at least some of which are behavioral and some
neuroscientific. In addition, the Goodness-of-Fit Ideal makes the relationship between
connectionism and CCN models explicit: The biological details in the CCN model should
not make the model unscalable and prevent it from explaining behavioral data (i.e., it should
scale up like a regular connectionist model). However, before doing any data fit, one needs
to clearly define the scope of the model.

These principles are used to guide model development and evaluation. Because of the
Neuroscience Ideal there are three areas where the mathematical details of CCN models
differ substantially from traditional connectionist models. The first fundamental difference is
in how each individual unit is modeled and the second is in how learning is modeled. The
third difference concerns the generation of behavior from neurally realistic individual units.
Sections 5 - 7 discuss some example CCN solutions to these problems.

5. Modeling Individual Units
There are many choices for modeling individual units. The classic solution is still the
Hodgkin-Huxley model (1952). This is a set of four coupled differential equations. One
describes fast changes in intracellular voltage and three describe slow changes in various ion
concentrations (i.e., for Na+, K+, and Cl-). The model correctly accounts for action potentials
(both the upstroke and downstroke), the refractory period, and subthreshold depolarizations
that fail to produce a spike. From a computational perspective, perhaps the greatest
drawback is that four differential equations must be solved for every unit in the model. Also,
for most CCN applications the Hodgkin-Huxley model violates the Simplicity Heuristic
because rarely do such applications attempt to account for data that depend on intracellular
concentrations of sodium, potassium, or chloride.

For these reasons, there have been a number of attempts to produce models with fewer
equations that display as many of the desirable properties of the Hodgkin-Huxley model as
possible. Some of these attempts are described in the following subsections.

5.1 The leaky integrate-and-fire model
The simplest cell model, and also the oldest (Lapicque, 1907), is the leaky integrate-and-fire
model (e.g., Koch, 1999). Suppose neuron B receives an excitatory projection from neuron
A. Let VA(t) and VB(t) denote the intracellular voltages at time t in neurons A and B,
respectively. Then the leaky integrate-and-fire model assumes that the rate of change of
VB(t) is given by

(1)

where α, β, and γ are constants and the function f [VA(t)] models temporal delays in the
propagation of an action potential from the pre- to the postsynaptic neuron. This function is
described in detail in Section 5.4. The parameter α is a measure of synaptic strength because
the larger this value the greater the effect of an action potential in the presynaptic cell. In
many applications, learning is modeled by assuming that α changes as a function of
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experience. The parameter β determines the spontaneous firing rate of cell B, and γ
determines the rate at which charged ions leak out of the cell.

Equation 1 does not produce spikes. Rather it predicts continuous and smooth changes in
activation. To generate spikes from this model a threshold Vpeak is set on VB(t). When VB(t)
exceeds Vpeak it is reset to Vreset and a spike is drawn by hand. An example of activation
produced by this model is shown in Figure 1. The top panel shows the membrane potential
predicted by the model when Vpeak = -10 and Vreset = -50. The bottom panel adds hand-
drawn spikes.

The fact that the leaky integrate-and-fire model does not naturally predict spiking is widely
considered a weakness of the model (e.g., Izhikevich, 2007). Also, it does a relatively poor
job of describing msec by msec changes in the membrane potential of real neurons and it is
not flexible enough to model qualitative differences in the dynamics of different types of
neurons. For these reasons, other single-equation models have been developed.

5.2 The quadratic integrate-and-fire model
Perhaps the most popular single-equation alternative replaces the linear decay term in the
leaky integrate-and-fire model with a quadratic polynomial. The resulting model is known as
the quadratic integrate-and-fire model (Ermentrout, 1996; Latham, Richmond, Nelson, &
Nirenberg, 2000). For the scenario modeled in Eq. 1, the quadratic integrate-and-fire model
assumes that the rate of change of VB(t) is given by

(2)

where α, β, and γ are constant, Vr is the resting membrane potential, Vt is the instantaneous
threshold potential and, as before, the function f [VA(t)] models temporal delays in the
propagation of an action potential from one neuron to another. Unlike the leaky integrate-
and-fire model, Eq. 2 produces the upstroke of action potentials by itself, although it does
not produce the downstroke. To create spikes, when VB(t) reaches Vpeak it is reset to Vreset.
Figure 2 shows an example of the spiking behavior produced by Eq. 2.

When comparing the leaky and quadratic integrate-and-fire models, the appropriate
comparison is between Figure 2 and the top panel of Figure 1 since these show the
membrane potential predictions of the two models. The quadratic integrate-and-fire model
requires an extra voltage resetting step to generate the downstroke of the action potential.
Even so, the upstroke is produced via the model's natural dynamics and therefore the model
naturally produces spikes –unlike the leaky integrate-and-fire model. Thus, the quadratic
integrate-and-fire model is generally viewed as a superior alternative to the leaky integrate-
and-fire model (Izhikevich, 2007).

5.3 The Izhikevich model
Even more realistic behavior is possible if a second differential equation is added that
models slow changes in ion concentration. One of the first of these two-equation models was
the FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo, Arimoto, & Yoshizawa, 1962). In
this model, the rate of change in voltage (i.e., the derivative) is modeled as a cubic
polynomial and slow changes in ion concentrations are modeled with a linear differential
equation. Izhikevich (2003) proposed a similar model that replaces the cubic polynomial
with the quadratic integrate-and-fire model. The Izhikevich (2003) model requires less
computing time to evaluate than the FitzHugh-Nagumo model, has simpler dynamics, and
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can account for some qualitative firing phenomena that are outside the scope of the
FitzHugh-Nagumo model (e.g., tonic and rebound bursting; Izhikevich, 2004). The
Izhikevich (2003) model assumes

(3)

where the quadratic integrate-and-fire model is as before and λ and ω are constants. In these
equations VA(t) and VB(t) again denote intracellular voltages at time t and UB(t) is an
abstract regulatory term that is meant to describe slow recovery in unit B after an action
potential is initiated. UB(t) could represent activation in the K+ current or inactivation in the
Na+ current, or some combination of both. As before, when VB(t) reaches Vpeak it is reset to
Vreset. At the same time however, U(t) is also reset to U(t) + U0.

The Eq. 3 model is highly flexible and produces some extremely realistic spiking behavior.
Figure 3 shows examples of 20 qualitatively different kinds of dynamical behavior that can
be produced from this model (from Izhikevich, 2003) when different numerical values are
chosen for its parameters. Especially when noise is added, many of these are almost
indistinguishable from single unit recordings collected from real neurons (for many
examples, see Chapter 8, Izhikevich, 2007). One reasonable strategy, which follows from
the Simplicity Heuristic, is to use the Eq. 3 model for any units in the network for which
single-unit recording data are available. If no such data are available then the simpler
quadratic integrate-and-fire model could be used instead. Numerical solutions of Eqs. 1 – 3
are readily obtained using Euler's method. For example, Izhikevich (2007) provides Matlab
code that solves Eqs. 3 using this approach.

5.4 Axons and synaptic delays
Regardless of which model is used, the free parameters that determine the dynamics of each
unit should be set so that the behavior of the unit is as consistent as possible with what is
known about the behavior of the real neurons the unit is meant to model. Then by the Set-in-
Stone Ideal these parameter values should remain invariant across all applications of the
model.

Equations 1 – 3 describe changes in membrane potential at one particular spatial location
within a neuron. They do not describe the propagation of action potentials throughout the
cell. Modeling the propagation of action potentials is considerably more complex. The
standard approach (e.g., Koch, 1999) is to write partial differential equations that describe
how the action potential would propagate down a perfect cylinder in the case of an axon or
dendrite and throughout a sphere in the case of the soma. The standard partial differential
equation that results is called the cable equation (e.g., Koch, 1999). As mentioned earlier, in
this approach a neuron is modeled as a collection of cylinders and spheres, each of which is
called a compartment. Separate partial differential equations are written for each
compartment and all these equations are used to predict how an action potential propagates
from a dendrite down to the end of an axon.

Compartment models of this type are highly complex, at least compared to the ordinary
differential equations in the Izhikevich (2003) model of Eq. 3, for example. They also make
predictions that are far more detailed than could be tested with standard single-unit
recording data. Instead they typically require extensive patch-clamp data to test. For most
CCN applications, compartment models would be used only to predict the time it takes an
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action potential to travel from a dendrite to the end of an axon. If this is the goal then
simpler alternatives should be used.

In addition to the time it takes a spike to propagate down the length of a neuron there are
also significant temporal delays at each synapse. When an action potential reaches the end of
an axon, it opens synaptic vesicles, neurotransmitter is released, it diffuses across the
synapse, binds to receptors on the postsynaptic membrane, and either opens ion channels in
the case of ionotropic receptors or else activates a G-protein in the case of metabotropic
receptors. In either case, there is a further delay (longer in the latter case) until the
postsynaptic cell is depolarized. In addition to the extra temporal delays they induce, these
synaptic processes also temporally smear the effects of the action potential. The action
potential is a spike but its postsynaptic effects are not.

The problem is to model the temporal delays of spike propagation and the temporal
smearing that occurs at the synapse in a simple way that can be combined with any of the
single- or double-equation models of spiking considered above. A standard solution is to use
the so-called alpha function (e.g., Rall, 1967). This is the function f [VA(t)] in Eqs. 1 – 3.
The idea is that every time the presynaptic cell spikes, the following input is delivered to the
postsynaptic cell (with spiking time t = 0):

(4)

This function has a maximum value of 1.0 and it decays to .01 at t = 7.64λ. Thus, λ can be
chosen to model any desired temporal delay. If a second spike occurs before f(t) decays to
zero then a second alpha function is added to the residual f(t) (again, with time of the second
spike t = 0).

6. Learning
There are many forms of neural plasticity that operate over a wide range of different time
scales. A complete review of this literature is well beyond the scope of this article (for
reviews, see e.g., Malenka & Siegelbaum, 2001; Stanton, Bramham, & Scharfman, 2005).
The plasticity-related phenomena that are widely thought to form the neural basis of learning
and memory are long-term potentiation (LTP) and long-term depression (LTD) (e.g.,
Grimwood, Martin, & Morris, 2001). LTP and LTD refer to a long-lasting increase and
decrease, respectively, in the efficacy of a synapse, which results from simultaneously
stimulating the pre- and postsynaptic neurons. LTP and LTD have been closely studied in
many different brain regions and in many different cell types. For computational modeling,
it is especially important to understand LTP and LTD at glutamatergic synapses, since
glutamate is the most common excitatory neurotransmitter in the brain and virtually all long-
range cortical projections are glutamatergic. Sections 6.1 and 6.2 review some biological
details of how LTP and LTD are thought to be mediated in the brain, while Sections 6.3 and
6.4 present computational models of these processes. Readers already familiar with (or not
interested in) the biological details of LTP and LTD can skip to Section 6.3 without losing
the thread of discussion.

6.1 LTP
The most widely studied form of LTP at glutamatergic synapses requires activation of
postsynaptic NMDA receptors. Glutamate binds to a number of different types of receptors,
but for our purposes these can be divided into two classes – NMDA and non-NMDA (e.g.,
Nestler, Hyman, & Malenka, 2001). A common member of the non-NMDA class is the
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AMPA receptor (see Figure 4). The AMPA receptor is mainly a Na+ channel—that is, when
glutamate binds to the AMPA receptor, it opens a channel that allows Na+ to enter the cell,
thereby causing depolarization (top of Figure 4). The NMDA receptor is a channel for Na+

and Ca2+. However, at resting membrane potentials, an extracellular Mg2+ plug prevents
Na+ and Ca2+ from entering the cell through the NMDA receptor, even after glutamate
binding (bottom of Figure 4). The plug is removed only if the cell is partially depolarized,
which might occur, for example, after Na+ ions enter through the AMPA receptor. Once a
critical level of depolarization is reached, and assuming glutamate is bound to the NMDA
receptor, then the Mg2+ plug dissociates and Na+ and Ca2+ ions rush into the cell through
the open NMDA channel (middle of Figure 4). From a modeling perspective the practical
effect of the Mg2+ plug is that the NMDA receptor has a higher threshold for activation than
the AMPA receptor.

There is now good evidence that one important synaptic trigger for NMDA-mediated LTP is
calcium/calmodulin-dependent protein kinase II (CaMKII). When activated, CaMKII can
remain in the active state for an hour or longer and during this time it initiates a variety of
processes that eventually increase the efficacy of the synapse (e.g., by increasing the number
of AMPA receptors on the same spine; Lisman Schulman, & Cline, 2002).

It takes several seconds before CaMKII becomes fully activated (i.e., phosphorylated) and
during this time it is vulnerable to deactivation by certain proteins, such as protein
phosphatase 1 (PP-1). The neuromodulator dopamine however, can counteract the inhibiting
effects of PP-1. When dopamine is released presynaptically, it binds to postsynaptic D1
receptors and this event triggers a postsynaptic chemical reaction that eventually neutralizes
PP-1. As a result, the increased binding of dopamine to D1 receptors potentiates NMDA-
mediated LTP. However, these facilitating effects of dopamine are time sensitive because
the dopamine must arrive during the critical few seconds when CaMKII is vulnerable to
PP-1.

A large literature shows that dopamine neurons in the ventral tegmental area (VTA) and
substantia nigra pars compacta (SNpc) increase their firing above baseline following
unexpected rewards (e.g., Hollerman & Schultz, 1998; Mirenowicz & Schultz, 1994;
Schultz, 1998). Thus, this form of dopamine-enhanced LTP should be in effect following an
unexpected reward in any brain region that is a target of VTA or SNpc dopamine neurons
and that expresses dopamine D1 receptors. This includes all of frontal cortex but not for
example, visual or auditory cortex. In these regions however, there is evidence that
acetylcholine may play a modulatory role similar to DA in LTP and LTD (e.g., Gu, 2003;
McCoy, Huang, & Philpot, 2009).

6.2 LTD
LTD has not received as much attention as LTP in the literature, and fewer details are
known. LTD is produced by a variety of mechanisms, one of which also requires NMDA
receptor activation (e.g., Bear & Linden, 2001; Kemp & Bashir, 2001).2 When the NMDA
receptor is weakly activated, intracellular Ca2+ levels rise only modestly, and this modest
increase potentiates the dephosphorylating effects of PP-1 (O'Dell & Kandel, 1994). In
addition to dephosphorylating CaMKII, PP-1 also dephosphorylates AMPA receptors (Lee,
Barbarosie, Kameyama, Bear, & Huganir, 2000). In their dephosphorylated state, AMPA
receptors are less effective at depolarizing the cell (Derkach, Barria, & Soderling, 1999), and

2Note that more than one form of LTD has been discussed in the literature (e.g., homosynaptic, heterosynaptic). However,
homosynaptic LTD is more prominent and the presence of heterosynaptic LTD without support from homosynaptic LTD is still under
debate (e.g., Abraham, Logan, Wolff, Benuskova, 2007). Hence, this presentation focuses on homosynaptic LTD.
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therefore dephosphorylating AMPA receptors weakens the synapse. Thus, when the
presynaptic cell fires only weakly, the synapse is weakened.

6.3 Reinforcement Learning
As described above, dopamine modulates synaptic plasticity in any brain region receiving a
prominent dopamine projection. From a computational perspective however, the effects of
this modulation on learning are likely to differ drastically across brain regions. In the
striatum3, dopamine in the synapse is quickly cleared by dopamine active transporter
(DAT). Thus, if some behavior is unexpectedly rewarded, striatal dopamine levels should
quickly rise and cortical-striatal synapses that were recently active are likely to be
strengthened. Striatal dopamine levels will then quickly fall back to baseline, so synapses
that are active prior to a future non-rewarded behavior will likely not be strengthened. These
conditions closely match the conditions identified in the machine learning literature as
reinforcement learning (Dayan & Abbott, 2001; Sutton & Barto, 1998). Reinforcement
learning is critical for skill acquisition because it increases the probability that successful
actions are repeated and decreases the probability of unsuccessful actions (Thorndike, 1911).
Not surprisingly, many researchers have proposed that dopamine serves as the training
signal in striatal-based reinforcement learning (e.g., Houk, Adams, & Barto, 1995).

In contrast to the striatum, cortex has almost no DAT. Instead, cortical dopamine is slowly
degraded by the enzyme catechol-o-methyl transferase (COMT). COMT works on a much
slower time scale than DAT. For example, the delivery of a single food pellet to a hungry rat
elevates dopamine levels in prefrontal cortex for approximately 30 minutes (Feenstra &
Botterblom, 1996). Thus, whereas striatal dopamine is quickly cleared from the synapse
(e.g., Cragg, Rice, & Greenfield, 1997), in frontal cortex and in the hippocampus this
process takes much longer (for reviews, see e.g., Seamans & Robbins, 2010; Seamans &
Yang, 2004; Tzschentke, 2001). As a consequence, if the first response in a training session
receives an unexpected reward, cortical dopamine levels will quickly rise and they are likely
to remain elevated throughout the entire session. If the second response in the session is an
error, then the residual dopamine from the first (rewarded) response will strengthen
inappropriate synapses – namely, those responsible for producing the incorrect response.
This would undo the beneficial learning that occurred following a correct response. For this
reason, it has been proposed that this poor temporal resolution effectively rules out
dopamine as a trial-by-trial reinforcement training signal in cortex (Ashby, Ennis, &
Spiering, 2007). Instead, although dopamine might facilitate cortical LTP, there is much
evidence that synaptic plasticity at cortical-cortical synapses follows classical Hebbian
learning rules (as described in Section 6.4.1.1; for a review, see Feldman, 2009).

6.4 Models of LTP and LTD
The structural changes that accompany LTP and LTD can be modeled in a variety of ways.
One critical decision is whether to build a discrete-time or a continuous-time model. This
choice largely depends on the nature of the data that the model will be tested against. If the
data have a discrete trial-by-trial structure (i.e., the time is reset at the beginning of each
trial), as is common in many cognitive-behavioral experiments, then by the Simplicity
Heuristic a discrete-time model should be used because no data would exist to test the extra
assumptions required of a continuous-time model. On the other hand, when modeling a
continuous-time task (i.e., when the time is reset only once, typically at the beginning of the
experiment), a continuous-time learning model is required. A cognitive example might be a
sequence learning task in which feedback is provided following each response and there is
no pause between responses.4 The next subsection presents examples of learning models

3The striatum is a major input structure within the basal ganglia.
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that have proven useful in previous modeling efforts. Note that alternative learning rules can
be designed as long as they respect the neurobiological constraints listed above.

6.4.1 Discrete-Time Models of Learning
6.4.1.1 Learning at Synapses that Lack Fast Dopamine Reuptake: Discrete-time learning
models are considerably simpler than continuous-time models. For example, Ashby et al.
(2007) used the following model of LTP and LTD at synapses that lack fast dopamine
reuptake (e.g., cortical-cortical synapses). Let wA,B(n) denote the strength of the synapse on
trial n between presynaptic unit A and postsynaptic unit B. The following difference
equation is used to adjust the strength of this synapse between trials n and n+1:

(5)

where VA(t) and VB(t) are the intracellular voltages in the pre- and postsynaptic units at time
t, respectively. Note that ∫f[VA(t)]dt is the integrated alpha function output of the
presynaptic unit, where the integral is taken over the time course of the trial. The function
[g(t)]+ equals g(t) when g(t) > 0, and 0 when g(t) ≤ 0. Thus, ∫[VB(t)]+ dt measures the total
instantaneous positive voltage in the postsynaptic unit, since the delays and temporal
smearing of the alpha function are omitted. The terms αw, βw, θNMDA, θAMPA, and wmax are
all constants. Of these, θNMDA denotes the threshold for strong activation of the NMDA
receptor, and θAMPA denotes the activation threshold of the AMPA receptor (with θNMDA >
θAMPA). The second (positive) term describes the conditions under which LTP occurs
(postsynaptic activation great enough to strongly activate the NMDA receptor) and the third
(negative) term describes conditions that produce LTD (postsynaptic activation above the
AMPA threshold but below the threshold for strong NMDA activation). Note that this model
assumes that the change in synaptic strength is proportional to the product of the pre- and
postsynaptic activations (and the final rate limiting term that prevents the strength of the
synapse from exceeding wmax). The constants αw and βw are learning rates. In brain regions
that are targets of dopamine but that lack fast dopamine reuptake, such as frontal cortex,
these parameters might be assumed to fluctuate with dopamine levels.

This model is closely related to the machine learning construct of Hebbian learning. In
modern forms of Hebbian learning, the LTD term in Eq. 5 is known as the anti-Hebbian
term (Földiák, 1990). The Eq. 5 model is also closely related to the BCM model proposed by
Bienenstock, Cooper, and Munro (1982). The primary difference is that the BCM model
also allows the threshold for LTP (i.e., θNMDA) to vary as a function of prior activation
history. For example, there is evidence that this threshold can decrease following prolonged
periods of low activity and increase following prolonged periods of high activity (Kirkwood,
Rioult, & Bear, 1996). Such flexibility could be added to the current model by allowing
θNMDA to vary across conditions.

6.4.1.2 Learning at Synapses with Fast Dopamine Reuptake: In the striatum, dopamine
reuptake is fast, so at cortical-striatal synapses LTP and LTD follow a form of reinforcement
learning. Ashby and Crossley (2011) proposed the following discrete-time model of synaptic
plasticity at cortical-striatal synapses.

4For a more thorough discussion of time, and its consequences on CCN modeling, see Meeter et al. (2007).
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(6)

where wA,B(n) denotes the strength of the synapse on trial n between cortical unit A and
striatal unit B. Dbase is the baseline dopamine level, D(n) is the amount of dopamine
released following feedback on trial n, and αw, βw, γw, θNMDA, θAMPA, and wmax are all
constants. The first line describes the conditions under which LTP occurs (striatal activation
above the threshold for strong NMDA receptor activation and dopamine above baseline) and
lines two and three describe conditions that produce LTD. The first possibility (line 2) is that
postsynaptic activation is strong but dopamine is below baseline, as for example, one would
expect on trials when an error occurred. The last line (line 3) implements LTD on trials
when postsynaptic activation is weak – that is, above the AMPA threshold but below the
NMDA threshold. Note that this term is independent of dopamine levels. Thus, weak
postsynaptic activation causes LTD regardless of whether the response was correct or
incorrect. Finally, note that synaptic strength does not change if postsynaptic activation is
below the AMPA threshold.

The conditions assumed in Eq. 6 for LTP to occur (i.e., first line) are well accepted and
essentially model the processes described in Section 6.1. The second form of LTD described
in Eq. 6 (line 3) also has empirical support (Ronesi & Lovinger, 2005). Line 2 however, is
more speculative. There is solid evidence for LTD at cortical-striatal synapses (Shen,
Flajolet, Greengard, & Surmeier, 2008), possibly mediated by dopamine D2 receptors, but
these effects are complex. For example, other neurotransmitter systems are likely involved
(e.g., acetylcholine and nitrous oxide; Calabresi, Picconi, Tozzi, & Di Filippo, 2007;
Kreitzer & Malenka, 2008; Wang et al., 2006). Currently, the Eq. 6 model does not violate
the Neuroscience Ideal, but as more is learned about the conditions that produce LTP and
LTD at cortical-striatal synapses, this is likely to change. When a clearer picture emerges,
Eq. 6 should be revised accordingly.

6.4.1.3 Modeling dopamine release: The Eq. 6 model of reinforcement learning requires
that we specify the amount of dopamine released on every trial in response to the feedback
signal [the D(n) term]. The more the dopamine level increases above baseline (Dbase), the
greater the increase in synaptic strength, and the more it falls below baseline, the greater the
decrease.

Although there are a number of powerful models of dopamine release, Eq. 6 requires only
that we specify the amount of dopamine released to the feedback signal on each trial. The
key empirical results are (e.g., Schultz, Dayan, & Montague, 1997; Tobler, Dickinson, &
Schultz, 2003): 1) midbrain dopamine cells fire tonically, 2) dopamine release increases
above baseline following unexpected reward, and the more unexpected the reward the
greater the release, and 3) dopamine release decreases below baseline following unexpected
absence of reward, and the more unexpected the absence, the greater the decrease. One
common interpretation of these results is that over a wide range, dopamine firing is
proportional to the reward prediction error (RPE):

(7)
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A simple model of dopamine release can be built by specifying how to compute Obtained
Reward, Predicted Reward, and exactly how the amount of dopamine release is related to
the RPE. The Ashby and Crossley (2011) solution to these three problems is as follows. If
reward valence is not varied, then a simple model can be used to compute obtained reward.
Specifically, define the obtained reward Rn on trial n as +1 if correct or reward feedback is
received, 0 in the absence of feedback, and -1 if error feedback is received.

Predicted reward can be computed from a simplified version of the well-known Rescola-
Wagner (1972) model. Let Pn denote the Predicted Reward on trial n. Then according to this
account

(8)

where η is a constant (in Ashby & Crossley, 2011, η = 0.075). It is well known that when
computed in this fashion, Pn converges exponentially to the expected reward value and then
fluctuates around this value until reward contingencies change.

Ashby and Crossley (2011) assumed that the amount of dopamine release is related to the
RPE in the manner reported by Bayer and Glimcher (2005). Specifically, they assumed that

(9)

Note that the baseline dopamine level is .2 (i.e., when the RPE = 0) and that dopamine levels
increase linearly with the RPE. However, note also the asymmetry between dopamine
increases and decreases. As is evident in the Bayer and Glimcher (2005) data, a negative
RPE quickly causes dopamine levels to fall to zero, whereas there is a considerable range for
dopamine levels to increase in response to positive RPEs.

6.4.2 Continuous-Time Models of Learning—If a continuous-time model is needed,
then more detail must be added to these models. For example, the evidence is good that the
magnitude and even the direction of plasticity at a synapse depends not only on the
magnitude of the pre- and postsynaptic activations, but also on the timing. This phenomenon
is known as spike-timing dependent plasticity. Considerable data show that if the
presynaptic neuron fires just before the postsynaptic neuron then LTP occurs, whereas if the
postsynaptic cell fires first then LTD occurs (e.g. Bi & Poo, 2001; Sjöström, Rancz, Roth, &
Häusser, 2008). Furthermore, the magnitude of both effects seems to fall off exponentially
as the delay between the spikes in the pre- and postsynaptic neurons increases. Let Tpre and
Tpost denote the time at which the pre- and postsynaptic cells fire. Then a popular model of
spike-timing dependent plasticity (e.g., Zhang, Tao, Holt, Harris, & Poo, 1998) assumes that
the scaling factor on the magnitude of LTP/LTD equals

(10)
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where TM+ and TM- are constant. The idea is that the magnitude of LTP is computed based
on the strength of the pre- and postsynaptic activations, for example by using Eq. 5 or 6, and
then this value is multiplied by Δ.

For continuous-time models of reinforcement learning, a more detailed model of dopamine
release is required. The model described in Section 6.4.1.3 only specifies how much
dopamine is released on each trial. It does not specify when this dopamine is released. A
number of much more detailed models have been proposed that mimic the dynamics of
dopamine release (Best, Nijhout, & Reed, 2009; Brown, Bullock, & Grossberg, 1999; Houk
et al., 1995; Tan & Bullock, 2008). One of these could be incorporated to model the
dynamics of dopamine release more accurately (if such data are to be accounted for by the
CCN model, as per the Simplicity Heuristic).

6.4.3 Local versus global learning rules—Learning rules in neural network models
can be classified as local or global. Local rules, like backpropagation, modify every synapse
using a different error signal. In contrast, global learning rules use the same error signal at
every synapse. The learning models described in this section are all global rules. For
example, each dopamine neuron (in the SNpc) projects to many medium spiny neurons5 in
the striatum. Thus, following feedback, roughly equal amounts of dopamine will be released
at all of these synapses, regardless of whether they were recently active or inactive. The
evidence is good that most of the brain uses global learning rules. The one notable exception
seems to be at synapses between parallel fibers and Purkinje cells in the cerebellum, which
are thought to be modified in a form of supervised learning where the unique training signal
is supplied by cerebellar climbing fibers (Houk, 2010; Jörntell & Hansel, 2006).

One dangerous property of global learning is that it can lead to an attractor state in which
response accuracy is constrained to remain at chance. Consider a simple two-stimulus, two-
response task in which the network must learn to emit one response if stimulus A is
presented and another response if stimulus B is presented. Suppose this learning is mediated
via a process in which, after training, stimulus A activates one striatal medium spiny neuron
more strongly than the others. On each trial, the cell with the highest activation makes the
response (when there is a tie, the response is chosen randomly). In CCN models this requires
that the strength of the cortical-striatal synapse at the correct medium spiny neuron increase
more during training than the strength at any competing synapses. Initially we expect the
unit or units in sensory cortex that encode the perceptual representation of stimulus A to
project to multiple medium spiny neurons with approximately equal synaptic strength. If two
synaptic strengths are equal, then the pre- and postsynaptic activations will be identical at
these two synapses (since the presynaptic activation is from the same cortical unit), and
therefore any global learning algorithm will specify an equal amount of strengthening or
weakening of these synapses on every trial, regardless of whether the response was correct
or incorrect. Thus, if there is no noise then once the weights become equal they must remain
equal for all time, thereby preventing the network from learning the desired associations.
Adding noise to the postsynaptic activation breaks the model free from this attractor state.
When noise is added, the postsynaptic activations at the two synapses will not be the same,
even if the presynaptic activations and synaptic strengths are identical. As long as the
postsynaptic activations are different, the change in synaptic strength will be different at the
two synapses.

A second but equally important consideration when using global learning rules is lateral
inhibition. Because all synapses are modified using the same error signal, global learning
rules work best when only a few units are activated. This way, only those synapses that are

5Medium spiny neurons are GABAergic and represent ∼ 96% of the neurons in the striatum.
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most directly responsible for the behavior are significantly modified. One biologically
plausible method of reducing the number of active units is via lateral inhibition (Bogacz,
Usher, Zhang, & McClelland, 2007). In the brain, lateral inhibition among competing
excitatory neurons is most commonly mediated via projections of these excitatory neurons
onto inhibitory (e.g., GABAergic) interneurons.

Lateral inhibition is often more efficacious in the presence of noise (which increases
activation differences), and when activation in a unit has an immediate effect on other
competing units. Recall that the alpha function from Eq. 4 delays downstream activation
effects. Therefore, to reduce this delay in inhibitory interneurons, a smaller value of λ should
be used in the interneuron alpha function than when modeling projection neurons that
connect separate brain regions. This is biologically justified because (1) projection neurons
tend to have much longer axons than interneurons (e.g., stellate cells) and, (2) GABA
receptors, which are frequent targets of interneurons, generally have faster effects than
glutamate receptors, which are common targets of projection neurons. Some of the delay
modeled by the alpha function is the time it takes action potentials to propagate down the
axon and synaptic delays.

7. Generating behavior
The models described so far predict how neural activation changes in specific brain regions
under different experimental conditions. Of course, neural activations are not behaviors, so
to account for behavioral data with these models, some assumptions must be added that
describe how neural activation is related to behavior. In most cases, this process involves
three steps. The first is to identify which brain region in the hypothesized network controls
the behavioral response – that is, one must decide where to place the decision units. The
second step is to decide, in each unit, what function of neural activity should drive the
decision. For example, should the decision be based on the number of spikes, or the spiking
rate, or perhaps on the integrated membrane potential? Finally, in tasks with multiple
response alternatives, the third step is to decide how to resolve the competition among the
various competing units in the critical brain region.

7.1 Step 1. What brain region controls behavior?
The decision about where to place the decision units depends on one's knowledge of the task
and the relevant neuroscience literature, and on one's modeling goals. In tasks that require
finger or arm movements, typical choices would be the supplementary motor area, dorsal or
ventral premotor cortex, or primary motor cortex. In contrast, if the task requires an eye
movement response then the critical area may be in the lateral intraparietal area, the
supplementary eye fields, the frontal eye fields, or the superior colliculus. On the other hand,
in many cases the goal may be to model cognition rather than the specific motor response
that implements the outcome of the relevant cognitive processes. Ignoring motor processing
simplifies the modeling because all areas downstream of the critical cognitive region can be
omitted. Note that this strategy will underestimate response time since some key synapses
will be omitted, but it might not affect accuracy predictions at all, especially in tasks where
errors are due to cognitive failures, rather than to simple motor errors. For example, models
of working memory typically assume that the key decision units are in prefrontal cortex
(e.g., Ashby et al., 2005; Frank, Loughry, & O'Reilly, 2001), since an extensive literature
implicates the prefrontal cortex as the most critical site for working memory. As a result,
models of working memory often grossly oversimplify or omit altogether projections from
prefrontal cortex to premotor and motor cortices.
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7.2 Step 2. What function of neural activity drives the decision?
After the anatomical location of the decision units has been selected, the next step is to
decide what function of activity in these units will initiate the behavior. In general there are
three popular choices, the feasibility of which may depend on which model of individual
neural activity is used. The intracellular choice is integrated neural activation. This is a
common choice if the integrate-and-fire model is used for each unit in the network. Recall
that in the integrate-and-fire model (see Section 5.1), a threshold is set on the solution of Eq.
1 and a spike is generated when this threshold is exceeded. To select a response, this same
algorithm could be used, although typically a different threshold would be set for initiating a
spike as opposed to a motor response. This method is problematic with the Izhikevich
(2003) model because in that model activation [i.e., VB (t) in Eq. 3] is meant to model
intracellular voltage, and thus is negative when the unit is at rest. Another problem with this
method is conceptual. At best, we expect the motor response to be driven by the output of
the units in the decision region. Intracellular activation is not output. Thus, using the
integrated intracellular activation to initiate a behavior removes the decision from the actual
neural events that trigger that behavior by at least one unnecessary step.

A second choice is to use spiking behavior in the decision units to initiate model behaviors.
For example, a threshold could be set on the number of spikes emitted by the decision unit,
with a behavioral response occurring when this threshold is first exceeded. Spikes are closer
to the output of the unit than intracellular activation, which is an advantage. However, spike
number is a discrete variable, which introduces a discontinuity that can complicate the
parameter estimation process. Also, as discussed in Section 5.4, the postsynaptic effect of
neural activity in the decision unit is not a series of spikes. The neurochemical and physical
nature of the synapse causes a temporal smearing of the spike trains.

A third choice that avoids these weaknesses is to use the integrated output alpha function:

(11)

where f [ ] is defined in Eq. 4. For example, a threshold could be set on this integral and a
behavior initiated when this threshold is first exceeded. This decision variable is continuous
and as close to the behavior as possible without adding another downstream unit to the
model. Note that the integral in Eq. 11 is taken over a single neuron, but in the real brain
there is redundancy and it is likely that more than one neuron computes this integral
simultaneously. In this case, the integral should be over multiple neurons. However, in
practice, one neuron is often simulated for each response and Eq. 11 is used.

7.3 Step 3. How is a response selected when there are multiple alternatives?
There has been considerable work on this problem in the field of neuroscience over the past
decade or so. Especially illuminating have been studies in which single-unit recordings were
made from putative decision neurons during a task in which an animal had to select among
competing motor responses on each trial (for reviews, see e.g., Bogacz, Wagenmakers,
Forstmann, & Nieuwenhuis, 2009; Rangel & Hare, 2010; Wang, 2008). For example, in an
early and influential study, Shadlen and Newsome (2001) reported that neurons in the lateral
intraparietal area reliably predicted the eye-movement response of monkeys in a task that
required the animals to determine the direction of motion of random dot patterns.
Furthermore, these neurons displayed the push-pull profile that one might expect from a
classic diffusion process – that is, neurons that predicted a movement of the eyes to the right
increased their firing rate when the correct response to the stimulus was a rightward
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movement and decreased their firing rate when the stimulus signaled a leftward movement.
The formal correspondence between these properties and the diffusion process was quickly
noted (e.g., Smith & Ratcliff, 2004).

Of course, generalizing the diffusion model to more than two alternatives is not
straightforward, but it is well known that an accumulator or race model with lateral
inhibition among the channels mimics a diffusion process (Bogacz et al., 2007; Usher &
McClelland, 2001). Thus, in tasks with more than two response alternatives, a sound yet
reasonably simple solution is to set a criterion on each decision unit and allow the first unit
that crosses this threshold to control the response, but also to build in lateral inhibition
among all decision units (McMillen & Holmes, 2006; Usher, Olami, & McClelland, 2002).

8. A Complete Example
There are many recent examples of the CCN approach (e.g., Ashby et al., 2005; Chadderdon
& Sporns, 2006; Frank, 2006; Frank & Claus, 2006; Hartley, Burgess, Lever, Cacucci, &
O'Keefe, 2000; Monchi, Taylor, & Dagher, 2000; O'Reilly & Frank, 2006; Reynolds &
O'Reilly, 2009). For illustrative purposes consider the model proposed by Ashby and
Crossley (2011) to account for context effects in striatal-mediated learning. A simplified
version of the architecture of the model is shown in Figure 5. Briefly, the idea is that a key
component of striatal-mediated learning is provided by cholinergic interneurons in the
striatum known as TANs (i.e., Tonically Active Neurons). The TANs are assumed to exert a
tonic inhibitory influence over cortical inputs to the striatum that prevents the execution of
any striatal-dependent actions. The model assumes that the TANs learn to pause in
rewarding environments, and this pause releases the striatal output neurons from this
inhibitory effect, thereby facilitating the learning and expression of striatal-dependent
behaviors. When rewards are no longer available, the TANs cease to pause, which protects
striatal learning from decay. The model accounts for a variety of single-cell recording data,
and some classic behavioral phenomena, including fast reacquisition following extinction.

All projections shown in Figure 5 are known to exist. All projections labeled as excitatory
are known to be glutamatergic, and so are unambiguously excitatory. Except for the
projections from the TAN to the medium spiny neurons, all projections labeled as inhibitory
are known to be GABAergic, and so are unambiguously inhibitory. There are three aspects
of Figure 5 that could be considered speculative. First, many projections and brain areas are
omitted from the model. Second, the TAN projections to the medium spiny neurons are
known to be cholinergic and acetylcholine can have either excitatory or inhibitory effects
depending on the postsynaptic receptor it activates. The inhibitory label on this projection in
Figure 5 is based on data showing that TAN activation reduces the effects of cortical
activation on medium spiny neuron firing (e.g., Pakhotin & Bracci, 2007). Even so, there is
evidence that TAN activation also has postsynaptic excitatory effects (Gabel & Nisenbaum,
1999) that are omitted from the model.

Third, and most important, the functions ascribed to the network shown in Figure 5 are
speculative. This last point is especially important because it is a characteristic of all CCN
models. Neuroanatomical studies do not ascribe function to the networks they identify. To
understand the function of a network, one must relate its activity to the behavior that it
controls. This is the goal of CCN modeling, so it will almost always be the case that CCN
models assign a speculative function to a (hopefully) known neural network.

After settling on the architecture shown in Figure 5, the next challenge was to build a model
of TAN firing. The TANs are challenging to model, because they have unusual dynamics.
For example, when excitatory input is delivered to the TANs, they fire an initial burst and
then pause (Kimura, Rajkowski, & Evarts, 1984; Reynolds, Hyland, & Wickens, 2004). This
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is clearly seen in the top panel of Figure 6, which shows an in vivo intracellular recording
from a single TAN of an anesthetized rat (from Reynolds et al., 2004). In this experiment, a
suprathreshold positive current of 100 ms duration was injected into the cell (denoted by the
small gray bar in the figure). Figure 6 shows that the TAN responded with an initial burst
followed by a prolonged after-hyperpolarization that caused a pause in firing that persisted
for approximately 900 ms.

Ashby and Crossley (2011) developed a model of TAN firing that displays these same
qualitative properties by modifying the Izhikevich (2003) model of intrinsically bursting
cortical neurons (Eq. 3). The bottom panel of Figure 6 shows the response of this model
under the same experimental conditions that were used to collect the recordings in the top
panel. Note that the model also fires a burst to the injected current and then pauses for
roughly 900 ms. Thus, the model displays the same temporal dynamics as real TANs. The
medium spiny neurons in the network were also modeled via the Izhikevich (2003) two-
equation model (Eq. 3). This is because the model was tested against single-unit recording
data from real medium spiny neurons. The model was only tested against single-unit
recordings from TANs and medium spiny neurons, so all other units in the network were
modeled with the single-equation quadratic integrate-and-fire model (Eq. 2). The only
synapses in the model displaying synaptic plasticity were at cortical – medium spiny neuron
synapses and at the CM-Pf – TAN synapse. Evidence suggests that at both types of
synapses, LTP and LTD follows dopamine-mediated reinforcement learning rules (Aosaki,
Graybiel, & Kimura, 1994a; Arbuthnott, Ingham, & Wickens, 2000; Calabresi, Pisani,
Mercuri, & Bernardi, 1996; Reynolds & Wickens, 2002; Suzuki, Miura, Nishimura, &
Aosaki, 2001). Thus, learning at these synapses was modeled via Eqs. 6 – 9.

Figure 5 also illustrates an application of the entire model to a simple conditioning task in
which the participant must execute some specific response (e.g., button press) when a
certain sensory cue is presented (e.g., a tone) in order to receive a reward. Figure 5 shows
activation in each brain region in the model during two trials of the experiment – one early
in training and one late in training – before and after the model has learned to respond
reliably to the sensory cue. Note that the CM-Pf and sensory cortex activations are both
modeled as simple square waves that are assumed to coincide with the stimulus presentation.
Initially the TAN has not yet learned that the cue is associated with reward, so it fails to
pause when the stimulus is presented. As a result of the tonic inhibition from the TAN, the
medium spiny neuron does not fire to the stimulus, although stimulus presentation does
move it from the down state to the up state.6 In the absence of any inhibitory input from the
striatum, the globus pallidus7 does not slow its high spontaneous firing rate, and therefore
the thalamus is prevented from firing to other excitatory inputs. The network is assumed to
make a behavioral response when the firing rate in any premotor unit first exceeds a
threshold (as described in Section 7). In this example, the premotor unit fires at a slow tonic
rate, but note that this rate does not increase during stimulus presentation. As a result, the
model does not respond on this trial. Later in training, however, the TAN pauses when the
stimulus is presented. This pause allows the medium spiny neuron to fire a vigorous burst,
which inhibits the globus pallidus. The pause in pallidal firing allows the thalamus to
respond to its other excitatory inputs, and the resulting burst from the thalamus drives the
firing rate in the premotor unit above the response threshold. The model now responds to the
sensory cue.

6The up and down states refer to intracellular voltage that are below the spiking threshold. In the up state, the spiking threshold is
reduced, and a smaller input is required to produce a spike.
7The globus pallidus is a major basal ganglia output structure.
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The spiking data shown in Figure 5 could also be used to test the model against fMRI BOLD
responses. Logothetis and colleagues reported evidence that the BOLD response is more
closely related to local field potentials than to the spiking output of individual neurons
(Logothetis, 2003; Logothetis, Pauls, Augath, Trinath, Oeltermann, 2001). Local field
potentials integrate the field potentials produced by small populations of cells over a sub-
millimeter range, and they vary continuously over time. So to test the model against fMRI
data, the first step is to convert from the spiking data shown in Figure 5 to local field
potentials. This can be done by low-pass filtering the Figure 5 spike trains. Next, the
methods of Ashby and Waldschmidt (2008) can be used to test the model against BOLD
responses collected in an experiment (see also Anderson et al., 2008). First, the local field
potentials predicted by the model are transformed to predicted BOLD responses by
numerically convolving the local field potentials with a hemodynamic response function (or
by using a nonlinear method, such as Volterra kernels; e.g., see Ashby, 2011). The second
step is to identify exactly which voxels should be used to provide the data that the model
will be tested against. The third and final step is to compare the observed and predicted
BOLD responses in each of these voxels.

The model can also now be tested against single-unit recording data from any brain region
included in the model or against behavioral data. For example, Ashby and Crossley (2011)
showed that the model provides good accounts of single-unit recording data collected from
TANs of monkeys before and after conditioning (Aosaki et al., 1994b), from medium spiny
neurons of a rat during the conditioning, extinction, and reacquisition of an instrumental
response (Barnes, Kubota, Hu, Jin, & Graybiel, 2005), and from medium spiny neurons of a
monkey during category learning. In addition, they showed that, at the behavioral level, the
model correctly predicts that reacquisition following extinction occurs much faster than
original acquisition, which is among the best known phenomena in the conditioning
literature.

The model highlighted here has considerable biological detail but it lacks some types of
complexity that are common in many other models. For example, even when applied to
more complex tasks, each brain region in the Figure 5 model includes only a few units and
the model is essentially feedforward – that is, it includes no recurrent projections that could
cause reverberation or synchronous firing. It is important to note however, that these
limitations hold for this example, but not for the CCN approach in general. CCN models like
the one shown in Figure 5 could be constructed with many units in each region and with
recurrent projections. For example, using the Eq. 3 model for each individual unit,
Izhikevich (2005) constructed a model that included as many units as there are neurons in
the human brain (i.e., 1011) and approximately 1015 synapses. Simulations of this model
were excessively time consuming (i.e., 50 days on a beowulf cluster of 27 processors were
required to simulate 1 second of activity), so such large-scale simulations are currently of
limited value in psychology. Nevertheless, this huge model illustrates that there really are no
upper limits on the complexity of CCN models.

9. Conclusions
Compared to purely cognitive models, CCN models have several important advantages.
First, whereas cognitive models are limited to making predictions about purely behavioral
dependent measures (i.e., accuracy and response time), CCN models should also be able to
make predictions about other types of data. Included in this list are data collected using
fMRI, EEG, TMS, and single-unit recordings. In addition, neuroscience models can often
make predictions about how drugs, genes, and focal lesions affect behavior.
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Second, grounding a model in neuroscience adds a huge number of constraints that can be
used to rapidly confirm or falsify the model, and therefore quickly improve our
understanding of the scientific domain under study (as described in Section 4). With only
behavioral results to supply constraints, cognitive models are difficult to differentiate. For
example, many studies have shown that people are exquisitely sensitive to across-trial
correlations between features during category learning. This result is so well accepted that it
must be predicted by any complete theory of human categorization. The problem is that
many alternative computational models can account for this result (e.g., exemplar models,
Medin, Altom, Edelson, & Freko, 1982; decision bound models, Maddox & Ashby, 1993).
The same is true for many other purely behavioural results. For this reason, when the major
theories in a field attend only to behavioral phenomena, it seems likely that there will be
many alternative models that seem almost equally viable. In such an unsettled world, it can
be difficult to see progress.

In contrast, by building models that are based in neuroscience, cumulative progress may
become easier. For example, many studies have shown that the striatum is critical to
category learning. This result is now so well established that any theory of category learning
that attends to neuroscience must assign some key role to the striatum. Since the
neuroanatomy of the striatum is well understood, along with its major inputs and outputs,
this means that any neuroscience-sensitive theory of category learning must converge on a
similar architecture. More details will be added, and a somewhat different computational
role might be assigned to certain components, but it is unlikely that this basic architecture
will disappear from any future theory. Continuity of this type can facilitate progress.

CCN is not meant to replace the cognitive modeling that has dominated mathematical
psychology since its inception. There are still many behavioral phenomena where a CCN
approach is premature. In most cases, a more detailed understanding of the behavior is
required to build a CCN model as compared to a more traditional cognitive model. CCN
modeling requires a good understanding of the cognitive processes that mediate the
behavior, but also an understanding of how these processes are mediated in the brain. Thus,
rather than serve as competitors, CCN and cognitive modeling are complementary.
Cognitive modeling results will often be critical to the process of building up the knowledge
base needed to develop a CCN model. Likewise, cognitive modelers can use CCN to more
rigorously test and refine their models.
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Highlights: Ashby & Helie -- JMP-10-87

• A new field of computational cognitive neuroscience (CCN) is described

• CCN lies at the intersection of computational neuroscience, machine learning,
and neural network theory

• The ideal CCN model provides good accounts of behavioral and neuroscience
data

• Compared to traditional neural network models, CCN uses more biologically
detailed models of activity in each unit, in learning, and in how behavior is
generated from the network
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Figure 1.
The leaky integrate-and-fire model (with β = 1/60, γ = 7/60, Vpeak = -10, and Vreset = -50).
The top panel shows the membrane potential predicted by Eq. 1. In the bottom panel vertical
lines have been drawn by hand to simulate spiking.
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Figure 2.
Spike train produced by the quadratic integrate-and-fire model of Eq. 2 (with β = 11.83, γ = .
117, Vr = -60, Vt = -40, Vpeak = 35, and Vreset = -50).
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Figure 3.
Examples of some of the different dynamics that can be modeled with Eq. 3. An electronic
version of this figure and reproduction permissions are freely available at
www.izhikevich.com.
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Figure 4.
AMPA and NMDA glutamate receptors (Na+ = sodium, Ca2+ = calcium, Mg+ =
magnesium).
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Figure 5.
The neural architecture of the Ashby and Crossley (2010) model in a task with one response
alternative. The thick black arrows represent the information flow. Also shown are
activations from trials early and late in training, i.e., before and after the TAN has learned
that the environment is rewarding. Initially the stimulus does not cause the TAN to pause,
and therefore the MSN does not fire to stimulus presentation. As a result, the firing rate of
the premotor unit (pre-SMA/SMA) does not change after stimulus onset. After training, the
TAN pauses to the stimulus, which releases the MSN from its tonic inhibition. This allows
the MSN to fire to the stimulus, which causes the firing rate in pre-SMA/SMA to increase
above baseline (SMA = supplementary motor area, VA = ventral anterior nucleus of the
thalamus, VL = ventral lateral nucleus of the thalamus, CM-Pf = centremedian and
parafascicular nuclei of the thalamus, GPi = internal segment of the globus pallidus, MSN =
medium spiny neuron, TAN = tonically active neuron).
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Figure 6.
Patch-clamp recording from the TAN of a rat (top panel; from Reynolds et al., 2004) and
simulated responses of the Ashby and Crossley (2010) TAN model (bottom panel) during a
patch clamp experiment when positive current is injected into the cell for 100 ms (denoted
by the solid gray rectangle).
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