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Abstract
The use of surface versus intramuscular electrodes as well as the effect of electrode targeting on
pattern-recognition-based multifunctional prosthesis control was explored. Surface electrodes are
touted for their ability to record activity from relatively large portions of muscle tissue.
Intramuscular electromyograms (EMGs) can provide focal recordings from deep muscles of the
forearm and independent signals relatively free of crosstalk. However, little work has been done to
compare the two. Additionally, while previous investigations have either targeted electrodes to
specific muscles or used untargeted (symmetric) electrode arrays, no work has compared these
approaches to determine if one is superior. The classification accuracies of pattern-recognition-
based classifiers utilizing surface and intramuscular as well as targeted and untargeted electrodes
were compared across 11 subjects. A repeated-measures analysis of variance revealed that when
only EMG amplitude information was used from all available EMG channels, the targeted surface,
targeted intramuscular, and untargeted surface electrodes produced similar classification
accuracies while the untargeted intramuscular electrodes produced significantly lower accuracies.
However, no statistical differences were observed between any of the electrode conditions when
additional features were extracted from the EMG signal. It was concluded that the choice of
electrode should be driven by clinical factors, such as signal robustness/stability, cost, etc., instead
of by classification accuracy.
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I. Introduction and Background
For persons with transradial amputation, current clinical prosthetics practice uses surface
electromyograms (EMGs) from the wrist flexor and extensor muscle groups to control a
small number of movements. Generally, the prosthetic component is driven at a speed that is
proportional to the difference in the amplitude of the two EMG signals. This form of control
is referred to as “direct control.”

The most frequently implemented myoelectric prosthesis for the transradial population is a
single-degree-of-freedom pre-hensor. While it is possible to control other movements (e.g.,
wrist pronation/supination or wrist flexion/extension), these additional degrees of freedom
are often controlled in a serial fashion and require unintuitive movements of the phantom
limb to produce both the control signals and the cocontractions necessary to toggle between
the different degrees of freedom. While serial control is adequate for a small number of
movements, it does not allow for simultaneous control or multiple joints and quickly
becomes cumbersome as more degrees of freedom need to be controlled.

Many of the muscles that were used to actuate the hand and wrist are still present after
amputation and produce relatively distinct patterns of activity with different movements of
the phantom limb. Therefore, rather than use the cumbersome direct control approach for
multiple-degree-of-freedom devices, many researchers have attempted to recognize patterns
of muscle activity associated with different movements of the phantom limb and link these
patterns to movements of the prosthesis. While good offline performance of these controllers
has been reported, pattern recognition systems have yet to be implemented commercially.

The typical steps of a pattern-recognition-based classifier are shown in Fig. 1. The raw data
from the EMG channels are often collected in windows or bins. These windows then
undergo some form of signal processing to extract different features from the EMG data.
These features can be basic amplitude information or more complex features such as the
coefficients of an autoregressive (AR) model. The features are then input into a classifier
that compares the features extracted from the current data window to previously collected
feature sets extracted for each of the possible movement classes. The movement class that
best matches the features from the current window is then selected as the “output class.”

It is also possible to perform postprocessing techniques such as majority voting to increase
the stability and robustness of the class decision stream. Majority voting stipulates that the
output of the controller is not simply the most recent class decision but the class that appears
the most often in the previous n class decisions. The output of the postprocessing stage
dictates which degree of freedom is to be actuated and this signal is then passed into a motor
controller that drives the requisite prosthesis component.

Most previous studies have used “classification accuracy” as the metric of success for
pattern-recognition-based classifiers. Classification accuracy is defined as the percentage of
time that the classifier is able to correctly decipher the intended movement of the user. To
maximize classification accuracy, many researchers have examined a variety of different
classifiers ranging from AR filters [1] to “evidence accumulation” methods [2], [3], fuzzy
logic classifiers [4]–[7], Gaussian mixture matrices [8], hidden Markov models [9], linear
discriminant methods [8], [10]–[16], maximum likelihood approaches [17], [18], multiple-
hypothesis testing methods [19], nearest-neighbor approaches [18], [20], [21], and a variety
of neural-type networks [6], [9], [22]–[39]. In addition, to help the classifiers better interpret
the intended movement of the user, researchers have attempted to extract more complex
information from the EMG signals. A variety of signal features representing both EMG
amplitude and spectral content have been used and most have been shown to increase
classification accuracy. Examples of these features include AR model coefficients [1]–[3],
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[6], [8], [9], [17], [19], [21], [25], [29], [30], [38], time-domain (TD) features [8], [10]–[12],
[28], [33], [34], various frequency spectra [10]–[12], [16], [25], [27], wavelet features [10]–
[12], [22], [24], and cepstral coefficients [2], [3], [6], [17].

These previous efforts attempted to improve the classification accuracies of multifunctional
prosthesis controllers using different feature sets or classifiers; however, nearly all of these
efforts used surface EMG recordings. Surface electrodes are advantageous because they are
relatively cheap, noninvasive, and have a large pickup area. The large pickup area may be
beneficial for pattern-recognition-based classifiers because it allows the electrode to detect
activity from muscles other than the muscle located directly beneath the electrode. By
extracting features from the surface recordings, it is possible for a classifier to parse out the
activity of the different muscles that sum together to produce the recorded surface EMG
signal. Detecting activity from many muscles on one channel may increase the amount of
information available to the pattern recognition system and allow it to “take advantage of the
crosstalk.”

Alternatively, intramuscular EMG may have advantages over surface recordings for
prosthesis control. These advantages include the ability to record focally from deep muscles,
the ability to provide consistent recording sites as the user changes arm orientation or dons
and doffs the prosthesis, and a reduction of crosstalk, which would allow an increase in the
number of independent muscle sites for one muscle/one function control or forward dynamic
models of the forearm. However, intramuscular EMG has seldom been investigated. Some
early work was done with intramuscular EMG to implement direct control using implanted
electrodes [40], [41] and the authors are aware of only two groups that have investigated
intramuscular EMG for pattern-recognition-based control [42]–[45]. Only Hargrove et al.
[42] has compared surface and intramuscular electrodes, recording from 16 untargeted
surface (US) and six targeted intramuscular (TI) channels.

As well as almost solely utilizing surface electrodes, previous studies in pattern-recognition-
based multifunctional prosthesis control chose to either target the electrodes to specific
muscles or use untargeted arrays of electrodes. Studies using only EMG amplitude tended to
target their electrodes to specific muscles to increase signal independence [4], [13], [14],
[18], [23], [26], [31], [32], [36], [37], [46]–[48]. Only one amplitude—only study did not
[20]. Those studies that used additional signal features tended to use untargeted electrode
arrays in what the authors perceive as an attempt to capture as much muscle activity as
possible. When using additional signal features, most researchers did not target their
electrodes to specific muscles [1]–[3], [8]–[11], [19], [21], [27], [28], [30], [33], [35], [49]–
[52], but there were a few exceptions [16], [17], [22], [24], [25], [38], [53], [54]. However,
the authors are not aware of any study that has attempted to directly compare the use of
targeted and untargeted electrodes to determine which method is superior.

Untargeted electrodes are simpler to implement and therefore are preferable for both
intramuscular and surface recordings. When considering surface EMG recordings, socket
fabrication can be simplified if it is shown that EMG sites for the surface channels simply
need to be arranged in an equally spaced array around the forearm instead of targeted over
specific muscles. Additionally, while it may be beneficial for increasing signal
independence, targeting implantable sensors to specific muscles is not a trivial task. If it can
be shown that untargeted intramuscular (UI) EMGs produce similar or better classification
accuracies than targeted recordings, the potential need for additional procedures (e.g.,
ultrasound guidance) to insert the intramuscular electrodes into specific muscles would be
eliminated.

Farrell and Weir Page 3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Given that relatively little work has been done to examine the effect of either electrode
targeting or electrode implantation, the goals of this paper were to compare the classification
accuracies of multifunctional prosthesis classifiers that used either surface or intramuscular
EMG as well as those that used either targeted and untargeted electrodes. These goals were
accomplished by comparing the accuracies resulting from targeted surface (TS), TI, US, and
untargeted intramuscular (UI) electrode recordings.

II. Methods
The protocol was approved by the Northwestern University Institutional Review Board and
all patients signed informed consent forms. Eleven subjects (mean age 29 ± 8 years)
including seven males and four females were enrolled in this study.

A. Hardware
The EMG signals were collected using a 16-channel Noraxon (Scottsdale, AZ) Telemyo
2400 system. The surface EMG electrodes were dual-snap, self-adhesive Ag/AgCl gel
electrodes with a recording area diameter of 1 cm and a 2 cm center-to-center spacing
(Noraxon, Scottsdale, AZ). The fine wire electrodes were inserted into the forearm using 1.5
in, 25 gauge hypodermic needles (Kendall OEM, Mansfield, MA). The fine wire electrodes
were made from 0.002 in. stablohm 800 metal coated with h-poly nylon insulation
(California Fine Wire, Grover Beach, CA). Approximately 2–3 mm of the nylon insulation
was removed from the ends of the wires. Two wires were contained in each needle.
Therefore the exposed portions of the wires were staggered to prevent the fine wires from
shorting after insertion into the forearm. The center-to-center spacing of the exposed
portions of the wires was approximately 3 mm.

The electrical stimulation used to verify TI site locations was provided by a Digitimer DS7A
Constant Current Stimulator (Digitimer Ltd., Hertfordshire, U.K.). Muscle tetanus was
achieved using a 200 ms stimulus train that consisted of 200 μs pulses at 30 Hz.

B. Electrode Application and Insertion
The study investigated four different electrode conditions: targeted surface (TS), targeted
intramuscular (TI), untargeted surface (US), and untargeted intramuscular (UI). The
experiment was divided into two halves, with each half being performed on different days.
In one half, TS and UI recordings were collected. Recordings from TI and US electrodes
were collected in the other half of the experiment. The half of the experiment that was
performed first was randomized among the 11 subjects. Six subjects completed the TI/US
condition first while five completed the TS/UI condition first.

In each half of the experiment, either the surface or the intramuscular electrodes were
targeted to specific muscles while the other electrodes were equally spaced around the
forearm. Eight muscles from the proximal forearm were chosen for the targeted electrode
sites: extensor carpi radialis longus or brevis (ECRL/B), extensor carpi ulnaris (ECU),
extensor digitorum communis (EDC), flexor carpi radialis (FCR), flexor carpi ulnaris
(FCU), flexor digitorum superficialis (FDS), pronator teres (PT), and supinator (SUP). The
anatomical orientation of these muscles is shown in Fig. 2(A) and (B). The US and UI
electrode arrays were positioned on the forearm at 40% of the distance from the medial
epicondyle of the humerus to the styloid process of the ulna. The eight untargeted electrodes
were equally spaced around the circumference of the forearm at this point [Fig. 2(A)], with
channel 1 placed just lateral to the ulnar exposure, channel 2 further lateral/anterior to
channel 1, and so on around the forearm [Fig. 2(B)]. The array was oriented such that the
distance between two electrodes was bisected by the ulnar exposure to avoid attempting to
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insert an intramuscular electrode into bone. The insertion depth of the UI electrodes was
varied based upon the size of the subject’s forearm by dividing the circumference of the
forearm at the location of the electrode array by 16. The insertion depths ranged from 1.5 to
2.0 cm. The needle was typically oriented perpendicular to the surface of the forearm but
was occasionally inserted at a slight angle to achieve the proper depth without contacting
bone.

The TS sites were located using an approach commonly used in clinical prosthetics practice.
The subjects repeatedly produced test movements that were specific to each targeted muscle
(e.g., pronation was the test movement for pronator teres). While the subjects repeatedly
produced contractions of similar intensity, a test electrode was iteratively moved around the
surface of the forearm to find the site that produced the largest EMG signal.

The TI insertion sites were primarily found via palpation. After the fine wires had been
inserted, the location of the intramuscular electrodes was verified by electrically stimulating
the muscle and observing the induced movement. For example, it was concluded that an
electrode was properly located in ECU if wrist extension and ulnar deviation were observed
when the muscle was stimulated. The insertion process was repeated until the movement
associated with the target muscle was observed. One reason that able-bodied subjects were
chosen for this study was that their wrists and hands were still intact, which allowed the use
electrical stimulation to verify that the electrodes were properly located. This verification
process would not have been possible if persons with amputation were used as subjects as
their hands and wrists are no longer present. We believe able-bodied subjects provided a
good representation of the data that would be acquired from persons with amputation while
allowing verification of the placement of the TI electrodes.

If the desired sites of both a targeted and an untargeted electrode overlapped, the untargeted
electrode was moved so that it did not lie on the targeted site but was as close as possible to
the originally intended location. An example of the TS electrode locations (the fine wires are
too small to see) are shown in Fig. 2(C), and an example of US electrodes are shown in Fig.
2(D). Surface electrode liftoff was a frequent problem in pilot experiments. To address this
problem, the forearm was wrapped in Coban after the surface electrodes were applied to
ensure that the electrodes retained good contact over the course of the experiment.

C. Data Collection
A preliminary power analysis conducted on pilot data found that 11 subjects would be
required to obtain sufficient statistical power for the comparison of the different electrode
conditions [55]. Each of the 11 subjects performed a series of trials in which they alternated
between relaxing and performing 1 of 12 movements of the hand and wrist. In each of the
trials, the users were cued to contract or relax via audio cues that were spaced by
approximately 4 s. Four contractions were contained in each trial and four trails were
collected for each movement. To increase the robustness of the estimated classification
accuracies, all of the reported accuracies were calculated using a fourfold cross-validation
technique in which the accuracies were calculated four times for each condition and then
averaged. The four accuracies were calculated by rotating the three trials from each
movement class used to train the classifier and the remaining trail from each class used to
calculate the classification accuracy. The 12 movements investigated were as follows: wrist
flexion, wrist extension, pronation, supination, hand open, palmar grasp, radial deviation,
ulnar deviation, lateral grasp, power grasp, and point and hand flat hand postures (Fig. 3).
The order in which the movements were performed was randomized for each subject.

The users were first shown a photograph of the final hand posture and the desired movement
was demonstrated. The user’s arm hung in a relaxed position at their side with their fingers
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pointed toward the floor. After performing a contraction, the users were instructed to relax
and allow gravity to return them to a neutral position instead of actively returning to neutral.
The users were instructed to keep their fingers relaxed when they performed movements of
the wrist and were also instructed to produce a comfortable amount of force after achieving
the different hand grasp patterns.

D. EMG Data Processing
The EMG data were preprocessed by filtering, decimating, and extracting signal features
from the raw data. The cutoff frequencies of the EMG preamplifier filters were set to 1500
Hz and the EMG data were initially collected at 3000 Hz. Matlab (Mathworks, Natick, MA)
software was then used to apply a fourth-order Butterworth bandpass filter (30–1000 Hz)
and then down-sample the data to 1000 Hz.

As mentioned previously, prior work has shown success in increasing classification
accuracies by extracting additional signal features from the EMG signal. The group at the
University of New Brunswick (UNB) has extensively explored the use of signal features for
multifunctional prosthesis control. Features that have been investigated by this group
include TD features, several forms of wavelet analysis, Fourier transforms, and AR
coefficients. The group’s most recent work found that when used in isolation, AR features
produced the best classification accuracies [42]. In a previous work, it was reported that
combining additionally, Hudgins et al.’s [28] TD features with the AR features produced
even higher classification accuracies than either feature set by itself [8]. Thus, TD features
and AR coefficients were the features that were chosen for this study. Additionally, the rms
of the EMG signal was calculated for each data window to extract basic amplitude
information.

E. Classifier
Classification accuracies are dependent upon a number of different variables, several of
which are associated with the steps shown in Fig. 1. Classification accuracy can be affected
by the length of the data analysis windows, EMG signal features, classifier, and number of
majority votes as well as the composition of the training data set. Many different
combinations of these variables have been examined by previous researchers. However, due
to differences in these studies with regard to the number and placement of electrodes,
number and type of output classes, training data set compositions, as well as classifiers and
features used, there is little consensus on the features, classifiers, etc., that produce the best
classification accuracies. Farrell [55] examined a number of conditions in an attempt to
optimize each of these variables for the data collected in this study before comparing the
effects of electrode targeting, the use of surface versus intramuscular electrodes, and the
effects of varying the number of channels or output classes.

Farrell examined different combinations of analysis window lengths and majority votes, the
use of linear discriminant analysis and multinomial logistic-regressive-based classifiers, the
use of rms, TD, and AR feature sets, and the effect of including transient data into the
training data sets. The following was found.

1. 160 ms analysis windows shifted in 10 ms increments with no majority voting
providing the best combination of computational efficiency and classification
accuracy when compared to smaller analysis window lengths that employed
majority voting.

2. Fourth-order AR models provided the best combination of computational efficiency
and classification accuracy.

3. Feature sets utilizing all signal features produced the highest accuracies.
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4. Linear discriminant classifiers produce statistically similar accuracies to
multinomial logistic regression classifiers at a much lower computational cost.

5. Including the onset transient of each contraction in the training data improved
classification accuracies when compared to training matrices that included only
steady-state data.

Therefore, the classification accuracies that are reported in this paper were obtained using a
linear discriminant analysis (LDA) classifier with 160 ms analysis windows and no majority
voting, all features (rms, TD, and fourth-order AR coefficients) and training data sets that
included the onset transient.

F. Analysis
As mentioned previously, it appears as though most researchers either targeted or did not
target their electrodes based upon whether or not additional signal features were used.
Therefore, classification accuracies were calculated for feature sets that both included and
excluded additional signal features. A two-factor, two-level (targeted/untargeted and
surface/intramuscular) repeated-measures analysis of variance (ANOVA) was conducted on
each data set. All results from ANOVA analyses conducted in this paper underwent
Bonferroni correction for multiple comparisons. Additionally, all data sets underwent
Mauchly’s test of sphericity and, if the data did not show equal variances, a Greenhouse–
Geisser correction was used [56]. In addition to comparing the classification accuracies
obtained from the full complement of eight electrodes classifying all 12 output classes,
subsets of these two variables were also investigated.

1) Class Subsets—Twelve different movement classes were chosen to make the
classification problem difficult in an attempt to highlight the potential differences between
the electrode conditions. However, current commercially available devices are not capable
of producing the full set of 12 movements. Six degrees of freedom can be implemented in a
transradial prosthesis using commercially available hardware: hand open/close (many
options), pronation/supination (Otto Bock wrist rotator, Otto Bock Healthcare, Duderstadt,
Germany) and wrist flexion/extension (Kesheng Prostheses Company, Ltd., Shanghai,
China). Therefore, to examine the potential differences in the electrode conditions for more
currently clinically relevant problems, classification accuracies were calculated for smaller
numbers of output classes. Two types of class subsets were investigated: the first subsets
were chosen based on clinical criteria while the other subsets were chosen at random. A
two-factor (electrode type and number of classes) repeated-measures ANOVA was
conducted on the resulting classification accuracies.

The accuracy for the clinically relevant two-class classifier was calculated using the hand
open and palmar prehension classes to mimic the results that would be observed for a typical
single-degree-of-freedom transradial prosthesis. The four-class condition used the hand open
and palmar prehension classes in combination with pronation and supination, as these four
movements are the most frequently implemented in transradial prostheses with two degrees
of freedom. The six-class condition examined all of the commercially available movements
described in the previous paragraph. Finally, the eight-class condition examined the hand
open and palmar prehension classes along with all of the wrist movements (pronation/
supination, wrist flexion/extension, and radial/ulnar deviation).

The classification accuracies for the random combinations of classes were obtained from 12
random combinations of two-, four-, six-, eight-, and ten-class subsets. In addition to the
repeated measures ANOVA analysis described earlier, a linear mixed effects model was
constructed on the random subset accuracies to provide an estimate of the effect of adding
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additional classes to the classification problem as well as examining the effects of the
different electrode conditions and different numbers of output classes.

2) Channel Subsets—Eight channels of data were collected for each of the four electrode
conditions. However, if similar classification accuracies could be obtained using a smaller
number of channels, then fewer sensors would need to be implanted into the forearm or
fewer surface electrodes would have to be laminated into the socket. Therefore, the effect of
reducing the number of channels on classification accuracy was also investigated.

The channel subsets were chosen using a forward addition approach, which is a
computationally efficient means of finding subsets of channels that produce high
classification accuracies across the subject population. All eight channels were tested
individually and the single channel that produced the best classification accuracy across all
subjects was chosen for the one-channel condition. Classification accuracies were then
calculated for each of the remaining seven channels paired with the best single channel.
Then, the remaining six channels were each paired with the prevailing two-channel subset,
and so on. A two-factor (electrode condition/number of channels) repeated-measures
ANOVA was conducted on the resulting classification accuracies to examine the effects of
reducing the number of channels for each electrode condition.

III. Results
A. EMG Amplitude Only With All Channels and All Classes

The average classification accuracies for the four electrode conditions using only EMG
amplitude features to classify all 12 movement classes using all eight channels for each
condition are shown in Fig. 4(A). Two ANOVA analyses, which will be described in greater
detail, found that the TS, TI, and US electrode conditions produced similar classification
accuracies while the accuracies resulting from the UI electrodes were significantly lower.

Initially, a two-factor, two-level (targeted/untargeted and surface/intramuscular) repeated-
measures ANOVA was conducted. The ANOVA found statistical differences between the
targeted and untargeted electrode conditions (p < 0.0005), surface and intramuscular
electrode conditions (p = 0.003), and the interaction between the two (p = 0.017). The post
hoc test results from the ANOVA analysis and the data in Fig. 4(A) appeared to indicate that
the TS, TI, and US conditions were statistically similar while the UI condition was
statistically different from these three. However, the two-factor repeated-measures ANOVA
does not allow for a direct comparison of the TS and UI conditions or the US and TI
conditions.

Therefore, a one-factor, four-level (one for each of the electrode conditions), repeated-
measures ANOVA was performed to verify these assumptions. As expected, the ANOVA
found a statistical difference between the electrode conditions (p < 0.0005). Bonferroni-
corrected post hoc pair-wise analysis showed no difference between the TS, TI, and US
conditions (p = 1.000 for all comparisons) and that the UI condition differed from the other
three: TS (p = 0.005), TI (p = 0.011), and US (p = 0.013).

B. All Signal Features With All Channels and All Classes
The average classification accuracies for the four electrode conditions using TD and AR
features in addition to the signal amplitude to classify all 12 movements using all eight
channels for each condition are shown in Fig. 4(B). Comparing Fig. 4(B) to Fig. 4(A)
highlights the increases in classification accuracy created by including the additional signal
features (~90% to ~95%).
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No statistical differences were detected between the electrode conditions when additional
signal features were used. The repeated-measures ANOVA found that electrode targeting (p
= 0.636) and using surface versus intramuscular electrodes (p = 0.053) did not produce
statistically significant differences in classification accuracy. While the effect of using
surface versus intramuscular electrodes may be considered “marginally significant,” it is
greater than the preestablished a threshold of 0.05.

C. Effect of Output Class Number
The classification accuracies for the “clinically relevant” subsets of output classes (described
in Section II-F1) for each of the four electrode conditions using all available signal features
and all eight channels for each condition are shown in Fig. 5(A) and (B). Fig. 5(A) shows
the relationship between the average classification accuracy and the number of output
classes while Fig. 5(B) contains the mean and standard deviation for each condition. A
nearly monotonic trend of decreasing classification accuracy with increasing output class
number was observed.

The repeated-measures ANOVA results showed statistical differences between the different
numbers of output classes (p < 0.0005). However, post hoc analyses from the ANOVA
found no statistical differences between the different electrode conditions (p > 0.08 for all
comparisons).

When the class subsets were chosen based upon clinical criteria, a nonlinear relationship
results [Fig. 5(A)]. However, when the classes were selected at random, a more linear
relationship was observed [Fig. 5(C)]. A repeated-measures ANOVA was also conducted on
the data in Fig. 5(C) and (D). As with the previous analysis, there were no statistical
differences between the electrode conditions (p = 0.12) but a difference was found between
the different numbers of classes (p < 0.0005). Post hoc analyses found differences between
each number of output classes for every electrode condition (p < 0.01 for all comparisons).

Additionally, a linear mixed effects model was constructed on the data shown in Fig. 5(C)
and (D) with both fixed and random (to account for intersubject differences) effects for the
intercept, the electrode condition, and the number of output classes. This model yielded the
same statistical conclusions as the repeated-measures ANOVA by finding that there was no
difference between the electrode conditions, but there were differences between the different
numbers of output classes. Additionally, the model was able to provide an estimate of the
decrease in accuracy that would be expected if the classifier was required to classify an
additional movement class. The co-efficient of the fixed parameter associated with the
number of output classes indicated that a decrease of 0.26% in classification accuracy was
observed for each additional movement class that was included in the classifier.

D. Effect of Output Class Number
The average classification accuracy results for the reduced subsets of channels obtained
using the methods described in Section II-F2 are shown in Fig. 6. Fig. 6 shows a trend of
increasing classification accuracy with an increasing number of channels. While large
increases in classification accuracy were observed as the first few channels were included,
there were diminishing returns with each additional channel. The reduction was especially
apparent after approximately four channels were included.

The order/rank of the channels that were selected using the forward addition process was as
follows.

1. Targeted surface: FDS, ECR, ECU, FCU, EDC, SUP, PT, FCR.

2. Targeted intramuscular: EDC, FDS, ECU, ECR, PT, SUP, FCU, FCR.
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3. Untargeted surface: 7, 3, 1, 6, 2, 8, 5, 4.

4. Untargeted intramuscular: 1, 3, 7, 2, 5, 4, 8, 6.

Refer to Fig. 2(B) for the relative anatomical positions of the different muscles.

The repeated-measures ANOVA analysis found that the number of channels (p < 0.0005),
electrode condition (p <0.0005), and the interaction term (p < 0.0005) were all found to be
statistically significant. In almost all cases, post hoc testing showed that reducing the
number of channels by one caused a statistically significant drop in classification accuracy.

Fig. 6 shows that the intramuscular EMG conditions appear to be more affected by the loss
of channels than the surface recordings [compare open and filled points in Fig. 6(A)]. No
statistical differences were detected between the electrode conditions when eight channels
were used and post hoc pair-wise analysis showed that this lack of difference was generally
true when five to seven electrodes were used. For the one through three channel conditions,
differences were generally detected between each of the surface and intramuscular
conditions but not within the surface or intramuscular conditions, i.e., TS/US were different
from both TI/UI but were not different from one another and vice versa.

IV. Discussion
A. Conditions Using All Channels and All Output Classes

Feature sets using either EMG amplitude or TD and AR features in combination with EMG
amplitude were investigated. Classifiers using only the amplitude of the EMG signal will be
discussed first. However, as it has been shown that the classification accuracies can be
substantially increased for all conditions by extracting additional signal features and the
relative cost of doing so is minimal (calculations can be relatively easily performed by
digital signal processors), the results from the data using all available features will be used
to address the primary goals of this paper.

1) Classifiers Using Only EMG Signal Amplitude—The statistical analysis
performed on the data shown in Fig. 4(A) indicated that the TS, TI, and US electrodes
produced similar classification accuracies while the accuracies from the UI electrodes were
significantly lower. These results suggest that if additional signal features are not going to be
used with data from all eight channels, it is necessary to make sure that the implanted
sensors are targeted to muscles that are involved in the movements being controlled. In
addition, it does not appear necessary to target the surface electrodes to specific muscles,
which simplifies socket fabrication.

The authors hypothesize that when amplitude information was available from most of the
residual musculature involved in the movements being controlled, the classifiers tended to
show higher classification accuracies. Attaining amplitude information from most of the
residual musculature could be done by either using surface electrodes with a large pickup
area (TS, US) or targeting the intramuscular electrodes to specific muscles (TI). When the
intramuscular electrodes were not targeted to specific muscles (UI), a smaller amount of
information was available to the classifier because the electrodes were unable to detect any
activity from some muscles (e.g., pronator teres) that were heavily involved in some of the
movements. This lack of information likely resulted in lower classification accuracies.
Comparing Fig. 4(A) and (B) shows that including signal features in addition to amplitude
metrics substantially increased the classification accuracies for all electrode conditions. This
increase in accuracy is likely a result of increased information made available to the
classifier by the features.
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The literature review found that most of those groups that did not use additional signal
features targeted their electrodes to specific muscles. Additionally, each of these previous
attempts used surface EMG electrodes. The data presented in this paper show that targeting
electrodes to specific muscles does not increase classification accuracy when surface
electrodes were employed. An additional analysis shows this to be true regardless of the
number of electrodes used [55]. These data appear to indicate that it was unnecessary for
previous researchers that used only EMG amplitude to target their electrodes to specific
muscles and that similar results would have been obtained with a symmetric electrode
orientation.

2) Classifiers Using Additional Signal Features—The two main goals of these
experiments were to compare the use of surface and intramuscular electrodes as well as
targeted and untargeted recordings. Section III-B showed that when additional features are
extracted from the EMG signals, there were no statistical differences between the electrode
conditions. Two conclusions that can be drawn from these results are that similar
classification accuracies can be obtained when using 1) surface or intramuscular electrodes
and 2) targeted or untargeted electrodes.

From the point of view of electrode targeting, this finding has application to both surface
and intramuscular electrodes. The fact that targeting surface channels does not increase
classification accuracy means that the socket does not need to be fabricated such that the
electrodes are placed over specific muscles bellies; a requirement that increases the
difficulty of socket fabrication. Instead, socket fabrication can be simplified by arranging the
electrodes in a symmetric array around the circumference of the forearm.

The lack of improvement seen by targeting the intramuscular electrodes is also noteworthy.
As stated earlier, targeting the implants to specific muscles is not trivial and may require
additional equipment/procedures (e.g., ultrasound guidance) to accomplish. Since targeting
the intramuscular electrodes to specific muscles did not improve classification accuracy,
these more complicated medical procedures may not be necessary if a pattern-recognition-
based control scheme is implemented. However, these results need to be used with caution
as long-term studies have yet to be conducted on chronically implanted myoelectric sensors.
These long-term studies may determine that the electrodes do need to be targeted to specific
muscles for clinical reasons not related to maximizing classification accuracy, such as the
prevention of sensor migration.

Both surface and intramuscular electrodes were thought to have their advantages for pattern-
recognition-based prosthesis control. Surface electrodes have a large pickup area that allows
for information to be recorded from a larger volume of muscle whereas intramuscular
electrodes provide the ability to record focally and obtain independent recordings from the
deep muscles of the forearm. However, similar classification accuracies were obtained for
all electrode conditions.

The similarity in accuracies shows that intramuscular electrodes can perform as well as
surface electrodes. Therefore, the choice of using implanted versus surface electrodes should
be made, not based upon classification accuracy, but based upon other clinical factors.
Clinical factors include comfort, cost, consistent electrode contact (i.e., surface electrode
“liftoff”), invasiveness, signal consistency with donning and doffing, signal robustness, and
skin impedance changes. While work is underway to create classifiers that are able to adjust
to erroneous signals due to electrode liftoff, changes in skin impedance, or variable electrode
locations with donning and doffing, intramuscular electrodes would likely address these
problems.
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From Fig. 4(B), it is evident that good performance is achieved with all electrode conditions
when additional signal features are used. From the point of view of strictly maximizing the
classification accuracy, the US electrodes provide similar classification accuracies to the
other three conditions and do so with the lowest cost, invasiveness, and difficulty in socket
fabrication. However, good clinical performance is based on more than having a high
accuracy in a laboratory setting. Two major clinical problems with surface electrodes for
pattern-recognition-based control, i.e., liftoff and repeatability/consistency, were not
considered in this study and may be addressed with intramuscular electrodes. Therefore, it
needs to be stressed that the electrodes should be selected based upon these other clinical
criteria as all of the electrodes produced similar classification accuracies in the laboratory.

B. Output Class Subsets
As expected, classifiers attempting to differentiate between smaller numbers of output
classes tended to have higher classification accuracies for each electrode condition. If the
feature space is less densely populated by different classes, it makes intuitive sense that the
classifier is able to more accurately separate the different movements.

Twelve output classes were used to make the classification problem difficult in an attempt to
tease out differences between the electrode conditions. However, the analyses performed on
the class subsets chosen using clinical criteria or random methods showed a consistent lack
of statistical difference between the electrode conditions regardless of the number of output
classes. These results provide further evidence that similar accuracies can be obtained using
either surface or intramuscular as well as targeted or untargeted electrodes when pattern
recognition is used to control gross movements of the wrist and hand. Therefore, the
conclusions from the previous section also hold for prostheses that utilize commercially
available componentry.

When the output classes were chosen based upon clinical criteria, the relationship between
the number of output classes and the classification accuracy [Fig. 5(A)] appears to be
nonlinear with steeper drops in accuracy occurring between the two- and four-class
conditions as well as between the 8- and 12-class conditions. The increase in the slope from
the 8- to 12-class conditions (when compared to slopes from the four- to six- and six- to
eight-class conditions) is likely a result of the fact that the four added classes were all hand
grasp patterns (point, lateral, hand flat, and power). The proximal location of the electrodes
does not allow for the detection of activity from many of the muscles needed to produce
these motions, and therefore, a larger percentage drop in classification accuracy would be
expected as hand motions are added to the classifier.

When the subsets of classes were chosen in a random manner, a more consistent linear
relationship was observed [Fig. 5(C)]. Analyzing the data for the two-class condition is
beneficial in that it represents a baseline error (2.6%). Even when only attempting to
differentiate between two classes, a small number of errors are produced as a result of
increased tonic activity from pain associated with the intramuscular electrodes, the subjects
not responding at precisely the same time to the movement cues, etc. Any error in addition
to this baseline level can be assumed to be a result of misclassifications caused by the
increase in the number of output classes.

By examining random combinations of classes, an estimate of the expected decrease in
classification accuracy with additional output classes can be determined. The linear mixed
effects model provides a rule of thumb that each additional output class that is included into
the classification problem will cause the classification accuracy to drop by 0.26%. The linear
relationship that was observed for the randomly selected classes may become nonlinear if

Farrell and Weir Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



more classes were added, but the relationship holds when a maximum of 12 classes are
examined.

Another observation from Fig. 5(C) is that the difference between the electrode conditions
appears to grow with an increasing number of output classes. While no differences were
detected with 12 output classes, if the trend of increasing separation between the electrode
conditions continues, it is likely that a difference may have been detected if a larger number
of output classes were tested.

Finally, average classification accuracies for the six output classes that represent movements
that can be implemented through commercially available products range between 95% and
97%. These results, in combination with previously conducted studies, indicate that while
there may be clinical issues that will need to be addressed before a commercial system can
be successfully implemented, there appears to be substantial potential for the clinical success
of myoelectrically controlled multifunctional transradial prostheses with at least three
degrees of freedom.

C. Channel Subsets
Fig. 6 shows a monotonic increase in classification accuracy as the number of channels is
increased. The increase in accuracy was expected as a larger number of channels provide the
classifier with more information about the muscular activity of the forearm. Diminishing
returns were observed with larger numbers of channels and the “knee” in the curve occurred
at approximately three to four channels. Davidge et al. [57] and Hargrove et al. [42] showed
a similar relationship in the improvement in classification accuracy with increasing numbers
of channels in studies that used US electrodes. Davidge et al. and Hargrove et al. also found
substantially diminishing returns above approximately four channels.

The ANOVA results generally showed a statistically significant decrease in classification
accuracy with each incremental decrease in the number of channels. While this decrease in
performance was statistically significant, the changes in accuracy were relatively small for
the conditions with larger numbers of channels. For example, decreasing the number of
channels from seven to six (which was statistically significant for all electrode conditions)
produced an average decrease of only 0.64% across the four electrode conditions. A small
but consistent decrease across subjects will show statistical significance when repeated
measures approaches are used. While these differences were statistically significant, the
authors hypothesize that this small decrease in accuracy would have little impact on the
clinical performance of the device. Regardless, using at least four electrodes appears prudent
as larger decreases in classification accuracy are observed when fewer than four channels
were used.

Much like the results shown in Section III-B, the ANOVA results for the channel subset data
showed that there was generally no difference between most combinations of electrode
conditions when as few as five electrodes were used. However, the intramuscular electrodes
showed consistently lower classification accuracies than the surface electrodes when three or
fewer channels were used. These results indicate that surface channels are preferable if small
numbers of channels are used for pattern-recognition-based control.

The relatively poor performance of the intramuscular electrodes with small channel numbers
is likely a result of the fact that closely spaced (2–3 mm) intramuscular electrodes were
used. These closely spaced electrodes produce more focal recordings [58], [59] with a
smaller pickup area. The intramuscular electrodes are likely only measuring EMG from the
muscle in which they are implanted with the possibility of measuring small amounts activity
from muscles that are immediately adjacent to the targeted muscle. When many electrodes
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are used, the intramuscular recordings are able to acquire data from many individual
muscles, and thus, most of the forearm musculature’s activity is captured. However, when
an intramuscular channel is removed, the classifier likely no longer receives information
from that muscle and will suffer accordingly. The superior performance of the surface
electrodes with smaller numbers of channels is likely a result of their larger pickup area,
which allows them to acquire activity from muscles that are relatively distant to the
recording site. Therefore, even when a surface channel is removed, adjacent surface
channels are still able to detect some activity from the muscles that were the primary
contributors to the EMG measured on the removed channel.

Several observations can be made with regard to the channels that were selected using the
forward addition approach. FDS, ECR, and ECU were all contained in the best four channels
for both of the targeted electrode conditions. Likewise, PT, SUP, and FCR were all
contained in the four least important channels for both targeted conditions. Similar
correlations were observed with the untargeted conditions with channels 1, 3, and 7 being
the best three channels and channels 4, 5, and 8 being added later for both conditions. It is
not surprising that the channels that gave the best accuracies for small subsets (1, 3, and 7)
were spaced relatively far from one another. When incrementally adding new channels,
classification accuracy will be maximized by adding channels that provide the most new
information to the classifier. The channels that will possess the most new information are
likely not going to be immediately adjacent to channels that are currently being used but
instead will be located at some relatively distant section of the forearm. Finally, it was found
that the least useful channel for the untargeted electrodes was channel 4, which Fig. 2(B)
shows was usually placed over the brachioradialis. This makes intuitive sense as elbow
flexion, which is the primary movement produced by brachioradialis, was not included in
the movement classes used in this study.

D. General Observations
Pain was experienced by almost all subjects for at least a few of the 12 movements. The pain
appeared to increase tonic muscle activity and likely caused increased cocontraction. In turn,
these increases in muscle activity may have caused the classification accuracies reported
here to be lower than those that would be observed if no fine wire electrodes were used.
However, this problem was addressed by collecting data for both the surface and
intramuscular conditions when fine wires were present in the forearm. Collecting both
surface and intramuscular activity simultaneously required the classifiers for both electrode
conditions to have to cope with the increased tonic activity and cocontraction.

The initial impetus for the experiments comparing the surface and intramuscular recordings
was the development of the implantable myoelectric sensor (IMES) [60]–[62]. IMESs are
small, hermetically sealed, implantable devices that were designed to acquire focal EMG
recordings to control a prosthesis via independent site control (one EMG site for each degree
of freedom) or forward dynamic models. The focal recordings from the IMES were not
initially intended to be used with pattern recognition systems and, as shown in the previous
section, intramuscular recordings may not be advantageous for pattern-recognition-based
control if a small number of channels are used. However, these devices are expected to
possess certain clinical advantages (e.g., produce consistent recording sites) over surface
electrodes that may allow them to be particularly useful with pattern recognition systems
and it was encouraging to see that intramuscular recordings can perform as well as surface
recordings in these systems.

The IMES use a transcutaneous magnetic link to both provide power to the implants and
telemeter out the recorded EMG data. The capsules are approximately 13 mm in length and
have an electrode at either end. While the goal was to try to mimic IMES recordings, it was
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determined that it was not reasonable to attempt to obtain the electrode spacing of the IMES
as it would require two successful needle sticks for each muscle. The present protocol
required only one successful insertion per muscle as two wire electrodes were contained in
each needle. Using two wires per needle made the study more tractable but also meant that
the spacing of the IMES sensors was no longer being reproduced. Using larger electrode
spacing would increase the pickup area of the intramuscular electrodes and may increase
their classification accuracies by allowing activity from neighboring muscles to be detected
by the implants. However, Lowery et al. [63] performed simulations to show that the pickup
area of the IMES sensors was relatively small. While small amounts of activity could be
detected from neighboring muscles, if the implants were located in the center of the muscle
belly and aligned along the length of the muscle, a vast majority of the activity measured by
the IMES would originate from the muscle in which it was implanted. Therefore, while the
focal recordings from the closely spaced electrodes used in these experiments did not
exactly recreate those signals that would be measured by the IMES, they provided a
reasonable estimate of these recordings.

The classification accuracies reported in this paper may differ from those that would be
observed during clinical use. For example, these experiments did not account for variable
electrode positions as the user dons and doffs the prosthesis, motion artifacts, surface
electrodes “lifting off,” skin impedance changes throughout the day, other motions of the
arm being conducted (i.e., flexion/extension of the elbow) while the hand/wrist are being
controlled, etc. These other sources of noise, etc., may have different effects on the relative
performance of each electrode condition (i.e., the intramuscular electrodes would not have
the problem of ‘lifting off’), which could affect the relative advantages/disadvantages of
each electrode type. However, these experiments successfully provided a comparison of the
different electrodes in a laboratory setting and concluded that further investigation into the
clinical advantages of the different electrode conditions is warranted.

Inconsistent electrode location, as well as skin impedance changes and electrode liftoff can
be particularly problematic in a pattern-recognition-based system. These problems
associated with surface electrodes cause changes in the EMG that will cause the classifier to
be operated with signals that are different from those that were used to train it. For example,
Hargrove et al. [64] showed substantial decreases in accuracy with 1 cm shifts in the
electrode position. The fact that intramuscular electrodes can produce classification
accuracies that are as high as those produced by surface electrodes and have the potential
ability to address the major problems associated with surface electrodes (e.g., liftoff,
consistent placement, skin impedance changes, etc.) indicates that these devices may
produce a better clinically functioning prosthesis. However, further investigation is
necessary to verify that intramuscular electrodes will indeed address these problems.

V. Conclusion
The primary goals of this paper were to compare the pattern recognition classification
accuracies produced by both targeted and untargeted as well as surface and intramuscular
electrodes. No previous work had compared the use of targeted and untargeted electrodes
and only a single comparison of surface and intramuscular electrodes had been conducted.
This study found that when additional signal features are extracted from the EMG, there was
no difference between the electrode conditions. Both targeted and untargeted as well as
surface and intramuscular electrodes produced similar classification accuracies. The
similarity between the electrode conditions was also seen for several subsets of the 12 output
classes when the full complement of electrodes was used. Differences between the electrode
conditions for classifiers utilizing additional signal features were only observed when small
numbers of electrodes (≤3) were employed. In these cases, the surface EMG recordings
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produced higher classification accuracies. Classification accuracies were shown to increase
with increasing numbers of channels but diminishing returns were observed for all electrode
conditions when more than four electrodes were used. Finally, when no additional signal
features were used, the UI electrodes produced statistically lower classification accuracies
than the other three conditions.

From the point of view of strictly increasing classification accuracy in a laboratory setting,
the US electrodes perform as well as the other three conditions and do so with the lowest
cost, invasiveness, and difficulty in socket fabrication. However, good performance in the
clinical realm is dependent upon more than producing a high classification accuracy in a
laboratory setting. Several clinical issues that are known to profoundly affect pattern-
recognition-based control, such as electrode liftoff and signal repeatability/consistency, were
not considered in this study. Therefore, the similarity of the classification accuracies
produced by both the surface and intramuscular electrodes in the laboratory indicate that
electrodes should be chosen based upon clinical issues such as signal robustness as opposed
to which electrodes produce the highest classification accuracies.
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Fig. 1.
Schematic diagram of the typical steps of pattern-recognition-based classifiers.

Farrell and Weir Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
(A) Representation of the anterior and posterior musculature of the left forearm in the
anatomical position. The eight muscles that were targeted in this study are indicated.
Additionally, the approximate locations of the untargeted sites are indicated by the large
black dots. These sites are equally spaced around the circumference of the forearm at 40%
of the distance between the medial epicondyle and the styloid process. (B) Cross section of
the left forearm musculature, from a superior (proximal) viewpoint looking inferiorly
(distally), indicating the approximate locations of the untargeted electrodes. APL: abductor
pollicis longus; BRAD: brachioradialis; ECR: extensor carpi radialis; ECU: extensor carpi
ulnaris, EDC: extensor digitorum communis; EDM: extensor digiti minimi; FCR: flexor
carpi radialis; FCU: flexor carpi ulnaris; FDP: flexor digitorum profundus; FDS: flexor
digitorum superficialis; FPL: flexor pollicis longus; PL: palmaris longus; PT: pronator teres;
SUP: supinator. (C) Photographs of a forearm with UI (the wires are too fine to see) and TS
electrodes. The TS electrodes were placed at the locations that produced the maximum EMG
signal during the performance of test movements associated with the target muscle. (D)
Photographs of a forearm with TI and US electrodes. Note that the US electrodes are
arranged in an equally spaced array around the circumference of the forearm.
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Fig. 3.
Photographs of the 12 movement classes that were investigated in this study. (A) Wrist
flexion. (B) Wrist extension. (C) Pronation. (D) Supination. (E) Hand open. (F) Palmar
prehension. (G) Radial deviation. (H) Ulnar deviation. (I) Lateral prehension. (J) Power
prehension. (K) “Point.” (L) “Hand flat” hand postures.
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Fig. 4.
(A) Average classification accuracies for the four electrode conditions using only amplitude
features with 12 movement classes. ANOVA analyses reported no statistical differences
between three of the conditions: TS, TI, and US. However, statistical differences were found
between these three conditions and the UI condition. (Note: Nonzero y-axis for clarity.) (B)
Average classification accuracies for the four electrode conditions using all available signal
features with 12 movement classes and all eight electrodes for each condition. A repeated-
measures ANOVA reported no statistical differences between the four conditions. Electrode
conditions—TS: targeted surface; TI: targeted intramuscular; US: untargeted surface; UI:
untargeted intramuscular. (Note: Nonzero y-axis for clarity.)
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Fig. 5.
(A) and (B). Average classification accuracies for either 2 (hand open and palmar
prehension), 4 (pronation, supination, hand open, and palmar prehension), 6 (wrist flexion,
wrist extension, pronation, supination, hand open, and palmar prehension), 8 (ulnar
deviation, radial deviation, wrist flexion, wrist extension, pronation, supination, hand open,
and palmar prehension), or 12 [shown in Fig. 4(B)] output classes using all eight EMG
channels for each condition. (A) Relationship between the average classification accuracy
and the number of output classes. (B) Mean and standard deviation information for each data
set. [Note: Nonzero y-axes for clarity and y-axes are zoomed in from those shown in Fig.
4(A) and Fig. 4(B)]. (C) and (D). Average classification accuracies for random combinations
of either two, four, six, eight, or ten output classes using all eight EMG channels for each
condition. Twelve random combinations of output movements were selected for each
condition with less than 12 output classes. The 12-class conditions used all of the available
classes. (C) Relationship between the average classification accuracy and the number of
output classes. (D) Mean and standard deviation information for each data set. Electrode
conditions—TS: targeted surface; TI; targeted intramuscular; US: untargeted surface; UI:
untargeted intramuscular. [Note: Nonzero y-axis for clarity and y-axes are zoomed in from
those shown in Fig. 4(A) and Fig. 4(B)].
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Fig. 6.
Average classification accuracies for the four electrode conditions for all 12 output classes
as a function of the number of channels used for classification. (A) Relationship between the
average classification accuracy and the number of channels used. (B) Mean and standard
deviation information for each data set. The open points in (A) represent the intramuscular
conditions while the filled points represent the surface conditions. TS: targeted urface; TI:
targeted intramuscular; US: untargeted surface; UI: untargeted intramuscular. (Note:
Nonzero y-axis for clarity.)
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