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Abstract

Background: Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in
the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species.
For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant
reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P.
damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the
Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e.
larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic
structure and the dispersal potential of P. damicornis in the TEP.

Methodology: Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and
within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in
Panama.

Principal Findings/Conclusions: We detected significant levels of population genetic structure (global RST = 0.162),
indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions
(RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama,
indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized
by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized
spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is
limited in TEP P. damicornis populations, particularly among regions, but even over meter scales within populations.
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Introduction

Populations at the periphery of species’ distribution ranges often

exist in suboptimal and/or unstable conditions at the organism’s

physiological or ecological limits [1]. They tend to be small as well

as geographically and genetically isolated from central core

populations [2,3]. Their small population sizes and genetic

isolation increase genetic drift and inbreeding and limit genetic

diversity and cohesiveness among populations [4,5,6]. As a result,

peripheral populations tend to have reduced genetic diversity and

are often heavily reliant on local sources of recruitment rather than

long-distance recruitment from core populations [e.g. 7,8,9,10].

Their isolation and low levels of genetic diversity may also hamper

their ability to cope with environmental changes (e.g. global

climate change) and to recover from disturbances, making them

more vulnerable to extinction [11,12]. However, small population

sizes in genetic isolation can also facilitate local selection and

adaptation, give rise to evolutionary innovation [13] and allow

peripheral populations to exploit new ecological niches [14,15].

One of the most isolated and peripheral biogeographic regions

of the world’s oceans is the Tropical Eastern Pacific (TEP). It is

separated from the Indo-West Pacific by 5000 km of open-ocean

that Darwin [16] described as ‘‘impassable’’ for shallow water

marine species [17,18]. While not completely impassable, the

marine fauna of the TEP consists of a limited subset of trans-

Pacific species (i.e. species distributed across the Pacific), which are

typically interconnected by low levels of gene flow [e.g.

19,20,21,22,23,24,25], as well as numerous endemic species

[22,26,27]. For example, 34 species of reef-building corals are

recognized in the TEP (compared to 581 in the Western Pacific),

of which 27 are trans-Pacific (80%) and seven (20%) are regional

endemics [28]. Major environmental challenges for reef corals in

the TEP include significant freshwater discharges and seasonal

upwelling, leading to high turbidity, elevated nutrient levels and

reduced seawater temperatures. Reef habitats in the TEP are

confined mostly to a narrow continental shelf and often

fragmented by long stretches of estuaries, mangroves and sandy

beaches [27,29].

The isolation of the TEP from the Indo-West Pacific and major

differences in environmental factors and species compositions

between these regions enabled significant ecological and life-

history shifts in many TEP species. For example, the scleractinian
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coral Pocillopora damicornis is a minor reef-building coral in the

Indo-West Pacific, but the primary reef-builder in the TEP

[30,31,32]. Pocillopora damicornis in the TEP forms large, mono-

specific carpets measuring tens to hundreds of hectares [33], that

are thought to be maintained predominantly by asexual (i.e.

vegetative) fragmentation [34,35]. Moreover, while Indo-West

Pacific P. damicornis populations brood mostly asexual (partheno-

genetic) larvae [36,37], populations in the TEP reproduce by

broadcast-spawning its gametes [38]. This reproductive shift could

have important genetic consequences since a broadcast spawning

coral should not be able to produce parthenogenic larvae [39,40]

and because broadcast spawning corals are often considered

to have higher dispersal potentials than brooding corals

[e.g. 41,42,43,44,45], particularly over small spatial scales

[46,47,48,49], but see [50,51]. Hermaphroditic broadcast-spawn-

ing corals might also have a higher potential for selfing and

inbreeding resulting from external fertilization [52,53,54].

Population genetic surveys among larvae-brooding P. damicornis

populations across the Indo-West Pacific indicate that larval

dispersal (i.e. gene flow) is generally limited over hundreds of

kilometers [e.g. 55,56,57] and in some cases even among

neighboring reefs [e.g. 57,58,59]. Some of the highest levels of

genetic structure have been described at the margins of P.

damicornis Indo-Pacific range [55,56,57,60]. For example, popula-

tions in South-East Australia are more genetically distinct over

700 km [FST = 0.32; 56] than more central Great Barrier Reef

populations over 1200 km [FST = 0.06; 61]. Most studied

populations of P. damicornis in the Indo-West Pacific also showed

significant levels of local inbreeding and contained some level of

clonality [61,62,63,64,65].

Little is known about the population structure of broadcast-

spawning P. damicornis populations in the TEP. Combosch et al.

[21] documented evidence for restricted transpacific dispersal

between Central and Eastern Pacific populations of P. damicornis,

using ribosomal DNA sequence data (FST = 0.419, p,0.001).

Using multilocus genetic data, Pinzon & LaJeunesse [66]

examined the genetic structure among multiple TEP Pocillopora

species, including 7 well-recognized Indo-Pacific species (P.

damicornis, P. eydouxi, P. meandrina, P. verrucosa, P. capitata, P. elegans,

P. woodjonesi). They identified three genetic clusters or types (Type

I, II & III) in their multi-species TEP sample of Pocillopora. All three

of these types were found in P. damicornis from across the TEP.

Type I was found throughout the TEP, including Panama, Type II

was found only in Clipperton Atoll and Type III was found in

Panama and Galapagos. Yet, no genetic structure was detected

within the broadly distributed Type I group over 3500 km of the

TEP.

One of the best-studied areas in the TEP is the Pacific coast of

Panama, which is dominated by two major gulfs, the Gulf of

Chiriqui in the west and the Gulf of Panama in the east. The

two gulfs differ in several important ecological factors

[27,67,68,69,70,71,72], most notably in the strength of seasonal

upwelling, which is strong in the Gulf of Panama, but virtually

absent in the Gulf of Chiriqui [27,73]. The Azuero Peninsula,

which separates the two gulfs, is a transition zone with moderate

upwelling [74]. Corals from the two gulfs differ significantly in

their thermal tolerances [74,75] and ability to recover from major

disturbances like El-Niño induced bleaching events [76].

Using multilocus microsatellite data, we examined the popula-

tion genetic structure of TEP P. damicornis within and among nine

Panamanian populations across the three geographically and

ecologically distinct regions (Figure 1). Based on the strong

geographic and ecologic differences between the three regions, we

predicted significant regional differences in P. damicornis population

genetic structure. Within reefs, we analyzed spatial patterns of

genetic diversity to estimate the relative contributions of clones

versus unique genets to localized spatial genetic structure (SGS).

We predict that high rates of vegetative fragmentation should lead

to significant SGS due to clonal aggregations. In contrast, high

rates of sexual reproduction by broadcast spawning should inhibit

SGS due to increased outcrossing and the mixing of genotypes at

the sea surface during larval development.

Results

Genetic diversity, heterozygosity and clonality
Multilocus microsatellite data (n$5 loci) was obtained for 207

Pocillopora damicornis colonies from nine reef populations (Tables 1

and 2). The six amplified loci yielded between four and ten alleles

each (mean NA = 7). Three pairs of loci showed indications of

significant linkage disequilibria, but none showed consistent

significant linkage disequilibria in more than two populations.

Consequently, all six loci were considered as unlinked. Significant

heterozygote deficits were detected in five loci (Table 1), but only

Pv2 showed significant deficits in all populations, which is

indicative of null alleles. The program Micro-Checker confirmed

the presence of null alleles in Pv2, which was then excluded from

further analyses.

Using the five remaining loci, 194 unique genets were identified

with a high probability of identity (p,361025; Table 2) among

the 207 genotyped samples. All nine populations were comprised

predominantly of unique, i.e. sexually derived genets (93.865.5%).

Clonal genotypes were detected in all but two populations (Canal

& Iguana), but only Saboga (Gulf of Panama) contained more than

two clones (n = 4, i.e. 18%). No clonal genotypes were shared

among populations, in contrast to larvae-brooding Indo-West

Pacific populations [64,77]. Since clones introduce biases into

population genetic analyses, only unique genets were used in

subsequent analyses, unless otherwise noted.

Using the genet only dataset, significant heterozygote deficits

were detected in six out of the nine populations (Table 2),

indicating widespread local inbreeding. Inbreeding was signifi-

cant in the Gulf of Panama (FIS = 0.25560.122) and in the Gulf

of Chiriqui (FIS = 0.19660.171), but not in the Azuero Peninsula

(FIS = 0.04860.135) due to an excess of heterozygotes in

Achotines. Each population contained on average 4.7 alleles

per locus. Slightly more alleles were detected in the Gulf of

Chiriqui (avg. NA = 5.160.26) than in the Azuero Peninsula

(4.560.20) and in the Gulf of Panama (4.360.31). Interestingly,

private alleles were only found in Gulf of Chiriqui populations,

which contained the only regional-specific allele (Pd2, 223 bp) as

well.

Genetic Structure among reefs and regions
Hierarchical AMOVA revealed significant levels of population

genetic structure (p,0.005) among populations, among regions,

and among populations within regions (Table 3). Genetic structure

among populations was highly significant for both global RST

(0.162; p,0.001) and global FST (0.053; p,0.001). For the

R-statistics, population structure was equivalent among regions

(RRT = 0.081) and among populations within regions (RSR = 0.089).

All three regions were significantly different from each other

(p,0.001), but the two gulf regions were most distinct (pairwise

RST = 0.138), whereas the Azuero Peninsula, which lies between the

two gulfs, showed lower pairwise genetic structure (Gulf of Chiriqui

RST = 0.070; Gulf of Panama RST = 0.101). For the F-statistics,

population structure was predominantly due to differences among

populations within regions (FSR = 0.045; Table 3).

Population Genetics of a Reef-Builder
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Fourteen out of 36 pairwise RST comparisons between

populations were significant after sequential Bonferroni adjust-

ments (Table 4). Twelve of the significant pairwise RSTs were

between populations from different regions, whereas only two

comparisons within regions were significant, both involving the

Gulf of Chiriqui population Granito. These strong regional

differences can be seen as well in the principal coordinate

analyses, where populations cluster into distinct regional groupings

(Figure 2). However, no significant isolation-by-distance pattern

was observed among populations (p = 0.013).

Bayesian clustering implemented in STRUCTURE detected

five genetic clusters in the dataset (Figure S1). All five clusters were

found in each population, but their distribution differed signifi-

cantly among populations and particularly among regions

(Figure 1). The genetic clusters 1 and 2 were most common in

the Gulf of Chiriqui (28% & 25%, respectively), clusters 4 and 5

were most prevalent in the Gulf of Panama (22% & 39%) and

cluster 3 was dominant in the Azuero Peninsula (32%). Cluster 1

and 2 were also common in the Azuero Peninsula (23% and 24%),

which indicates that its P. damicornis populations are more similar

Figure 1. Map of Panama, showing the three main Pacific regions and the sampled locations. The pie charts show the distribution of the
five genetic clusters identified by STRUCTURE 2.3 [141] in the three regional and nine reef populations. The bar plot shows each individual sample as
a vertical bar with colors indicating the relative proportions of each genetic cluster. Map created on www.aquarius.ifm-geomar.de. U = Uva Island;
C = Canal de Afuera Island; G = Granito de Oro Island; B = Bahia de Damas, Coiba Island; A = Achotines Bay; I = Iguana Island; S = Saboga Island; Co
= Contadora Island; T = Taboga Island.
doi:10.1371/journal.pone.0021200.g001

Table 1. Population genetic indices for the six microsatellite
loci.

Marker N NA Ho ± SE He ± SE FIS

Pd2 183 8 0.55160.035 0.63360.019 0.239**

Pd4 161 5 0.29260.056 0.48960.044 0.606**

Pd5 188 9 0.50960.031 0.64160.014 0.267**

Pd6 187 6 0.62560.077 0.62960.021 0.077

Pv2 173 4 0.10960.033 0.42660.062 0.831**

Pv6 172 10 0.59760.057 0.73860.020 0.298**

Total 194 42 0.44760.032 0.59360.020 0.367**

Indices are based on genets, i.e. unique genotypes, per locus and over all loci
( = Total).
N = Number of samples; NA = Number of alleles per locus; Ho =
Heterozygosity observed; He = Heterozygosity expected; FIS = (He-Ho)/He =
Inbreeding coefficient; SE = Standard Error; *p,0.05, **p,0.005 per loci.
doi:10.1371/journal.pone.0021200.t001
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to the Gulf of Chiriqui than to the Gulf of Panama - as indicated

by the pairwise RST values.

Fine-scale spatial genetic structure (SGS) on reefs
In addition to the genetic structure among regions and

populations, strong fine-scale spatial genetic structure (SGS) was

detected among individuals within reefs. SGS was significant over

10 m intervals in both the ramet dataset (i.e. including clones;

Framets = 0.102; p,0.001) and the genet dataset (i.e. excluding

clones; Fgenets = 0.086, p,0.001). This indicates that corals 10

meters apart are significantly more closely related to each other

than to the rest of the population. Kinship among individuals (Fij)

was only slightly elevated when clones were included, reflecting the

low frequency of clones in the dataset (Figure 3). While SGS is to

be expected in coral populations due to clonal aggregations as a

consequence of asexual (vegetative) fragmentation, significant SGS

in the genet dataset indicates that the observed structure is due to

non-random spatial relatedness among distinct, i.e. sexually

produced, genets. Across all nine populations, the average genetic

patch size (i.e. the distance at which individuals on average are as

related as across the entire population) was 50 m and the Sp

statistic was 0.055 [i.e. rather high compared to plant literature

data; 78].

Significant levels of SGS out to 10 m were detected in all three

regions (p,0.05; Figure 3b–d). Average F10m-kinship in the

Azuero Peninsula and Gulf of Panama was similarly high (F10m

,0.109), almost equivalent to a first-cousin relatedness

(FIJ = 0.125) whereas F10m-kinship in the Gulf of Chiriqui was

two times lower (0.059; p,0.05). The genetic patch size was

almost twice as large in the Gulf of Panama (70 m) than in the

Gulf of Chiriqui and Azuero Peninsula (40 m). These differences

in the strength and extent of SGS are reflected in the Sp statistic,

which indicates that SGS is strongest in the western Gulf of

Panama (0.062), intermediate in the central Azuero Peninsula

(0.059) and lowest in the eastern Gulf of Chiriqui (0.049).

Discussion

The Tropical Eastern Pacific (TEP) is one of the most

geographically isolated biogeographic regions in the world’s

oceans [16]. Its isolation has profound consequences for the

diversity and ecology of TEP ecosystems, most notably coral reefs

[27]. TEP coral reefs are remarkable since they are built

predominantly by Pocillopora damicornis [30,31,32]. TEP P.

damicornis also distinguish by its broadcast gamete-spawning

reproductive strategy. Multilocus microsatellite data from nine

Table 2. Population genetic indices for the nine populations.

Region Pop N NG/N NA ± SE Ho ± SE He ± SE FIS ± SE

Gulf of U 23 0.91 5.260.8 0.58960.069 0.62460.049 0.06260.065

Chiriqui G 21 0.95 5.460.9 0.53160.110 0.68760.018 0.23660.154*

C 18 1.00 5.060.9 0.37860.081 0.64060.039 0.42160.103*

B 30 0.93 4.860.5 0.58060.081 0.61360.075 0.06560.026

Azurero A 23 0.91 4.460.7 0.61560.079 0.60760.044 20.04860.168

Peninsula I 24 1.00 4.661.0 0.54460.120 0.60560.080 0.14360.159*

Gulf of S 22 0.82 4.060.3 0.39060.072 0.57560.059 0.33660.087*

Panama Co 25 0.96 4.660.7 0.44560.093 0.64860.047 0.31460.128*

T 21 0.95 4.260.4 0.56260.057 0.63460.019 0.11460.084*

Total 207 0.94 4.760.2 0.51560.029 0.62660.016 0.18360.042*

Indices are based on genets, i.e. unique genotypes, except for number of samples.
Pop = Population: U = Uva, G = Granito, C = Canal de Afuera, B = Bahia de Damas, A = Achotines, I = Iguana, S = Saboga, Co = Contadora, T = Taboga;
N = Number of samples; NG = Number of unique genotypes; NG/N = Genet ration; NA = Average number of alleles per population; SE = Standard Error; Ho =
Heterozygosity observed; He = Heterozygosity expected; FIS = (He-Ho)/He = Inbreeding coefficient; *p,0.005 per pop.
doi:10.1371/journal.pone.0021200.t002

Table 3. Hierarchical AMOVA results showing levels of genetic structure among regions (RRT/FRT), among populations within
regions (RSR/FSR) and among populations (RST/FST).

Source of Variation df Variance Variation Differentiation p

R-statistics

Among Regions 2 1331 8.1% RRT = 0.081 ,0.001

Among Populations 6 1336 8.1% RSR = 0.089 ,0.001

Within Populations 379 13754 83.8% RST = 0.162 ,0.001

F-statistics

Among Regions 2 0.014 0.8% FRT = 0.008 0.004

Among Populations 6 0.081 4.5% FSR = 0.045 ,0.001

Within Populations 379 1.700 94.7% FST = 0.053 ,0.001

doi:10.1371/journal.pone.0021200.t003
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Panamanian populations demonstrate that TEP P. damicornis

populations from Panama are characterized by strong population

genetic structure (RST = 0.162), within and particularly among its

three major regions, the Gulf of Chiriqui, the Azuero Peninsula

and the Gulf of Panama. Moreover, the large and mono-specific

stands of P. damicornis that characterize TEP reefs are not

dominated by a few, highly clonal genotypes as previously thought

[34,35], but instead are comprised of numerous distinct genets,

indicating frequent sexual reproduction. Significant fine-scale

spatial genetic structure (SGS) among individual genets and highly

significant levels of heterozygote deficits further indicate wide-

spread inbreeding and limited gene dispersal over meter scales,

which is unusual for free-spawners. These tiered layers of

significant population genetic structure indicate that gene flow

(i.e. larval dispersal) is restricted among and within reefs,

particularly between the environmentally distinct regions, which

indicates a significant potential for regional adaptations to the

different ecological conditions in each region.

Population Structure
As hypothesized, we detected strong genetic differences among

the three geographically and ecologically distinct regions in

Panamanian P. damicornis populations (RRT = 0.081). Panama’s

two major gulfs – the Gulf of Chiriqui and the Gulf of Panama -

which are geographically most distant, were most genetically

distinct (RST = 0.138). These genetic differences correspond with

pronounced ecological differences between these two regions, e.g.

in species compositions and environmental factors [e.g. 38,67,73].

The most significant environmental difference is the pattern of

seasonal upwelling, which is strong in the Gulf of Panama

dropping temperatures down to 15uC, but is virtually absent in the

Gulf of Chiriqui [27,73]. The Azuero Peninsula, which bisects the

two regions, is a transition zone with intermediate upwelling

conditions [74]. It also has intermediate levels of genetic structure

compared to the other regions (RST = 0.070 & 0.101).

Upwellings deliver cool, nutrient-rich waters to the near-shore

environment. In tropical habitats like the TEP, they have

significant impacts on nutrient and temperature-sensitive reef

fauna [68,69]. In the TEP, variations in the severity of upwelling

restrict the regional and local distributions of coral reefs [27,70]

and of major reef taxa, including corals [27] and key corallivores

like the sea star Acanthaster planci [67]. Lower temperatures

associated with seasonal upwellings reduce reef development

[71], coral growth rates [68] and coral reproduction [38], while

elevated nutrients increase competition with algae [70,79],

bioerosion [72] and water turbidity [27]. Corals from regions

with different upwelling regimes often display different thermal

tolerances, indicating local adaptations. For example, P. damicornis

from the non-upwelling Gulf of Chiriqui are less sensitive to higher

temperatures than those from the upwelling Gulf of Panama

[74,75]. Similar differences in thermal adaptation among P.

damicornis populations have also been reported from the Great

Barrier Reef [80]. Yet, upwellings can also buffer against critically

high sea surface temperatures and reduce coral bleaching and

mortality. For example, during the 1997/98 El-Niño, seasonal

Table 4. Pairwise RST (above diagonal) and FST (below diagonal) between TEP P. damicornis populations.

Gulf of Chiriqui Azuero Peninsula Gulf of Panama

U G C B A I S Co T

Gulf of U 0.114* 0.025 0.025 0.086* 0.092* 0.053* 0.102* 0.309*

Chiriqui G 0.035* 0.033* 0.124* 0.000 0.000 0.065* 0.085* 0.281*

C 0.033* 0.229* 0.029 0.156* 0.188* 0.080* 0.129* 0.316*

B 0.065* 0.073* 0.047* 0.086* 0.116* 0.014 0.065* 0.243*

Azuero A 0.015 0.001 0.037* 0.069* 0.013* 0.046* 0.072* 0.222*

Peninsula I 0.039* 0.048* 0.025* 0.045* 0.029* 0.039* 0.037* 0.227*

Gulf of S 0.019 0.061* 0.015 0.053* 0.040* 0.022* 0.000 0.133*

Panama Co 0.025* 0.039* 0.040* 0.060* 0.031* 0.033* 0.000 0.091*

T 0.087* 0.072* 0.064* 0.065* 0.071* 0.069* 0.046* 0.030*

*p,0.05; bold = significant after Sequential Bonferroni correction.
GC = Gulf of Chiriqui, AP = Azuero Peninsula, GP = Gulf of Panama; U = Uva, G = Granito, C = Canal de Afuera, B = Bahia de Damas, A = Achotines, I = Iguana, S =
Saboga, Co = Contadora, T = Taboga.
doi:10.1371/journal.pone.0021200.t004

Figure 2. Principal component analysis of Pocillopora damicornis
populations, constructed using GenAlEx 6.1 [130]. Distances
between populations were analyzed as RST pairwise genetic distances.
The two axes explained 90.4% of the total variation. Blue circles =
Populations in the Gulf of Chiriqui; Red triangles = Azuero Peninsula;
Green squares = Gulf of Panama.
doi:10.1371/journal.pone.0021200.g002
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upwelling in the Gulf of Panama reduced rising seawater

temperatures (mean 27uC), preventing significant coral bleaching

and mortality. In contrast, at the same time in the non-upwelling

Gulf of Chiriqui, mean seawater temperature rose to 30uC causing

severe coral bleaching and mortality [76]. While reefs in upwelling

environments may thus be better able to weather predicted

increases in sea surface temperatures and El Niño frequencies

resulting from global climate change [e.g. 81], coral populations in

non-upwelling habitats seem to be better adapted to elevated

temperatures [74,75]. The genetic structure of Panamanian P.

damicornis indicates that even among broadcast-spawning coral

populations, adaptations to different thermal regimes can occur

over distances of ,100 km.

Limited inter-regional gene flow in Panamanian P. damicornis

may also explain prolonged differences in post-disturbance reef

recovery between the Gulf of Chiriqui and the Gulf of Panama.

For example, the 1982/83 El Niño caused mass coral mortalities

and reduced average coral cover on most Panamanian reefs by

80%, but even though mortality rates were similar in both gulfs,

reefs in the Gulf of Panama had recovered by 1992, whereas reefs

in the Gulf of Chiriqui recovered only 3–6% of their populations

by 1997 [76]. The significant population genetic structure between

regions indicates that larval dispersal from recovered Gulf of

Panama populations to the still depauperate Gulf of Chiriqui

populations was very limited and this may have prolonged the

recovery of reefs in the Gulf of Chiriqui. Moreover, due to the

limited gene flow (i.e. larval dispersal) between individual reefs,

damaged populations depended strongly on surviving colonies for

repopulation. Acanthaster predation on surviving colonies in the

Gulf of Chiriqui potentially hampered initial recovery significant-

ly, while corallivorous sea stars are absent in the Gulf of Panama.

Another important factor for the differences in P. damicornis

recovery between Gulfs may be geographic differences in

Symbiodinium identity (or type). Baker et al [82] showed that in

the Gulf of Panama, Pocillopora corals with clade C bleached

severely in 1997 while colonies with clade D were unaffected by

bleaching, which lead to a relative increase in colonies with clade

D from 43% in 1995 to 63% in 2001. Higher levels of clonality in

the Gulf of Panama (e.g. Saboga) further indicate that asexual

fragmentation might have played a more prominent role in the

recovery of Gulf of Panama populations compared to their Gulf of

Chiriqui counterparts.

Using multiple genetic markers, Pinzon & LaJeunesse [66]

recently suggested that TEP Pocillopora are comprised of three

distinct genetic types (Type I–III), independent of species identity

and morphology. This is controversial because they included at

Figure 3. Spatial correlograms of the SpaGeDi [145] analysis of Spatial Genetic Structure (SGS) among specimen within discrete
distance classes. Black lines represent the genet dataset, excluding clones and grey lines show the results for the ramet dataset, including clones.
Dashed lines are the permuted 95% confidence intervals. Error bars are 95% bootstrap errors of the genet datasets. Figure 3a) Spatial correlogram of
the average pairwise kinship Fij [146] as a function of distance over all populations. Figure 3b–d) Spatial correlograms over the populations in each
of the three regions, b) the Gulf of Chiriqui, c) the Azuero Peninsula and d) the Gulf of Panama.
doi:10.1371/journal.pone.0021200.g003
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least seven well-recognized Indo-Pacific species that must then

either be reclassified or synonymized by their genetic types. Their

dataset included a limited number of P. damicornis samples from the

Gulf of Panama (n = 26), which were comprised of two of the three

genetic types (Type I & II). Using a similar set of microsatellites,

our STRUCTURE analyses do not support two distinct genetic

types, but instead identified five genetic clusters (Figure 1 & Figure

S1). In addition, Pinzon & LaJeunesse [66] failed to detect

significant genetic structures within their Pocillopora type I over

3500 km from Mexico to Panama and the Galapagos. Given that

we observe strong genetic structure in P. damicornis within Panama,

it seems likely that the absence of geographic structure in Pinzon &

LaJeunesse’s [66] analyses are an artifact of pooling multiple

species (i.e. gene pools) for population genetic analyses.

Comparisons with brooding Indo-West Pacific P.
damicornis populations

Similar levels of population genetic structure over scales of

hundreds of kilometers have also been observed in other brooding

and broadcast-spawning coral species in the Indo-Pacific and the

Caribbean [83,84]. In P. damicornis, allozyme studies from across

the Indo-West Pacific indicate that populations exhibit a range of

significant population genetic structures with FST values ranging

from 0.06 to as high as 0.39 (Table 5). Some of the highest levels of

population structure have been detected in isolated or peripheral

populations. For example, FST values among high-latitude P.

damicornis populations in south-east Australia averaged 0.37 over

700 km [56] compared to 0.06 among Great Barrier Reef

populations over 1200 km [61]. Similarly, FST values among the

southernmost P. damicornis populations around Lord Howe Island

[57] were twice as high as among similarly spaced populations on

the Great Barrier Reef (FST = 0.102 vs. FST = 0.044)[58].

Direct comparisons of population genetic data are possible with

two P. damicornis microsatellite datasets from peripheral popula-

tions in East-African [64] and core populations in the Indonesian

Archipelago [77] since they used the same or similar subsets of the

microsatellite loci used here. Both studies found highly significant

population genetic structure. Levels of genetic differentiation

among the peripheral East-African populations were lower

(FST = 0.02 over 860 km) than among TEP populations

(FST = 0.05 over 400 km). Indonesian populations show the same

degree of genetic differentiation as TEP populations (FST = 0.05)

over a 10-fold wider geographic distance (3000 km vs. 400 km).

We observed a much lower allelic diversity in the TEP (NA/

locus = 7) compared to P. damicornis in Indonesia and East-Africa

(NA/locus = 14.0 & 13.4, respectively). Lower allelic diversities are

expected for peripheral populations and the lower diversity in TEP

populations, compared to the similarly peripheral East-African

populations, is likely due to the extreme isolation of the TEP and

very limited transpacific gene flow [FST = 0.419; 21]. As expected,

inbreeding was found to be highly significant in both peripheral

populations, in the TEP and in Eastern Africa [64]. Comparisons

among P. damicornis allozyme studies confirm all three population

genetic trends in peripheral populations: 1) higher genetic

structure [e.g. 62 vs. 56], 2) decreased allelic diversity [56] and

3) higher inbreeding [56]. These patterns have also been observed

in peripheral populations of other coral species [10,55,85,86].

Our results indicate lower genetic diversity and higher levels of

population structure among broadcast-spawning populations

(TEP) than among larvae brooding populations (Indo-West

Pacific), which may reflect intrinsic differences between the two

reproductive strategies. In Indo-West Pacific populations, parthe-

nogenetic larvae brooding preserves genotypes, which reduces the

rate of genetic drift and allelic loss, while allelic diversity in TEP

populations is likely reduced due to reproductive sweepstakes,

promoted by its broadcast-spawning reproductive strategy

[54,87,88]. Contrary to our results, inter-specific comparisons

mostly indicate that brooding corals have reduced dispersal

potentials compared to broadcast-spawners [42,43,45,89]. This

Table 5. Pocillopora damicornis population genetic survey (sorted by FST).

Locations Scale (km) FST FIS Clones Marker Reference

GBR (One Tree Island) 5 0.04* 0.23 18% Allozymes (7 loci) Ayre & Miller 2004

GBR (One Tree Island) 1 0.05* 0.03- 13% Allozymes (5 loci) Benzie et al. 1995

GBR (One Tree Island) 5 0.06* 0.11* 17% Allozymes (8 loci) Sherman et al. 2006

GBR 1200 0.06* 0.28* 20% Allozymes (7 loci) Ayre et al. 1997

Japan (Okinawa) 650 0.06* 0.18* 39% Allozymes (7 loci) Adjeroud & Tsuchiya ‘99

Northwest Australia 900 0.08* 0.18 85% Allozymes (6 loci) Whitaker 2006

Lord Howe Island 10 0.10* 0.17 28% Allozymes (7 loci) Miller & Ayre 2004

Lord Howe Island to GBR 2500 0.15* N/A N/A Allozymes (7 loci) Ayre & Hughes 2004

Southeast Australia to GBR 1200 0.24* 0.44 49% Allozymes (8 loci) Miller & Ayre 2008b

Southeast Australia 700 0.32* 0.47 42% Allozymes (8 loci) Miller & Ayre 2008b

Southwest Australia 400 0.39* 1N/A 82% Allozymes (4 loci) Stoddart 1984

Hawaii (Kaneohe Bay) 10 N/A N/A 71% Allozymes (4 loci) Stoddart 1986

East Africa 860 0.02* 0.26* 2 13% Microsats (6 loci) Souter et al. 2009

Indonesia 3300 0.05 N/A 2% Microsats (9 loci) Starger et al. 2010

Tropical Eastern Pacific 400 0.05* 0.18* 6% Microsats (5 loci) THIS STUDY

Taiwan (Nanwan Bay) 0.5 N/A N/A 66% Microsats (7 loci) Yeoh & Dai 2010

TEP to Central-West Pacific 8000 0.42* ITS2–5.8S Combosch et al. 2008

1 = consistent heterozygote deficits, reported as differences between He & Ho, i.e. inconvertible; 2 = two different types of P. damicornis;
* = significant; - = not significant.
doi:10.1371/journal.pone.0021200.t005
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indicates that population structure in reef corals is not predom-

inantly driven by reproductive strategies. Other factors are likely

as important, for example effective population sizes and species-

specific larval behaviors [e.g. 51,90].

Fine-scale Population Genetic Structure
The observed fine-scale spatial genetic structure (SGS) and the

high inbreeding coefficients (average FIS = 0.18) indicate that gene

dispersal is limited in Panamanian P. damicornis, not only between

reefs, but within reefs as well. Fine-scale SGS arises from a variety

of historic, demographic, and evolutionary processes [78,91,92].

Over small spatial scales, SGS is most often the result of limited

gene dispersal and can be influenced by a broad array of life-

history and reproductive traits including clonality, selfing,

inbreeding, fertilization, fecundity, larval life history, and recruit-

ment [78,91,93]. Clonality can be an important determinant of

SGS because clonal aggregations increase the average kinship over

short distance intervals [e.g. 46]. We observed fine-scale SGS out

to 10 m in both, the genet-only and the genet-plus-clone dataset,

but since clones were rare (6.2% of samples), clonality had only a

small effect on the observed SGS (Figure 3). Instead, the fine-scale

SGS observed in TEP P. damicornis was predominantly driven by

significant non-random relatedness among individual genets out to

10 meters, which is unusual for free-spawning benthic marine

populations.

The two most likely explanations for the observed SGS among

genets in TEP P. damicornis are cohort recruitment (i.e. SGS among

larval recruits, independent of parents) or proximity recruitment

(i.e. SGS among parents and recruits). In brooding coral species,

proximity recruitment is facilitated by the internal (i.e. stationary)

larval development and the frequent settlement of larvae within

meters of the maternal colony [94,95,96]. Although broadcast-

spawning was never directly observed, several independent studies

provide convincing evidence that TEP P. damicornis do not release

brooded larvae [38,97,98] but instead free-spawn gametes [38]. In

broadcast-spawning corals, like TEP P. damicornis, larval develop-

ment occurs externally and larval settlement after gamete release

takes at least 1–3 days [99]. Although corals generally spawn

during times of minimal water movement [100,101], it is unlikely

that drifting coral larvae would stay so close together (cohort

recruitment) or remain within meters of the maternal colony

(inhibiting proximity recruitment) over several days during their

dispersive phase to create such a fine-scale spatial genetic structure

(10 m).

One potential scenario that could significantly reduce passive

dispersal would be if gametes and/or larvae sink down and escape

the flow of the water column. Although coral gametes typically

float on the sea surface during fertilization and development [102],

gametes of two Pocillopora [P. eydouxi & P. verrucosa, 103] and

several other coral species (e.g. Fungia scutaria, F. fungites, Goniastrea

favulus) are known to be negatively buoyant [40,51,104,105].

Negatively buoyant gametes sink down after spawning and fertilize

close to the substrate. Fertilization at the substrate also favors

mating among nearby colonies, which limits gene dispersal, and

should facilitate SGS. Even if fertilization occurs at the sea surface

but the zygotes sink down promptly, larval dispersal would still be

reduced considerably. A minority of propagules could then remain

in the water column to account for long-distance dispersal.

Whether TEP P. damicornis gametes or larvae are positively or

negatively buoyant is currently unknown, since gamete spawning

has not yet been observed directly.

A second indication for limited gene dispersal within popula-

tions is the significant inbreeding coefficients. Inbreeding is a

consequence of non-random mating among a limited number of

individuals, which limits gene dispersal and promotes SGS [106].

The broadcast-spawning reproductive strategy of TEP P. damicornis

might facilitate inbreeding in several ways. Firstly, the external

fertilization of broadcast-spawners lacks the potential parental

control of internal fertilization in brooders [52,53]. Secondly, the

high fecundity of broadcast-spawners leads to reproductive

sweepstakes, which can promote inbreeding [54,87,88]. However,

heterozygote deficits were as pronounced in larvae-brooding East-

African populations (FIS = 0.26), and significant inbreeding is

common in P. damicornis populations throughout the Indo-Pacific,

regardless of reproductive strategy, local environment, population

history, and analyzed genetic marker (Table 5). Inbreeding, and

potentially SGS, may thus be inherent features of P. damicornis.

While SGS is common in plants [reviews by 78,107,108], it has

only been documented in four other coral species. Underwood et

al. [50] described a similar pattern of SGS in the brooding coral

Seriatopora hystrix, including a significantly elevated kinship among

genets in the smallest distance interval (F1 = 20 m) and a roughly

comparable genetic patch size (80 m). Among broadcast-spawning

corals, Stoddart [46] and Miller and Ayre [51] found no

significant genet SGS in Acropora digitifera and Goniastrea favulus,

respectively. However, Miller and Ayre [51] found significant

genet SGS in the broadcast-spawning Platygyra daedalea, including

significantly positive kinship in the smallest distance interval

(F1 = 5 m) and a Genetic Patch Size of only 17 m. This is the only

other documented broadcast-spawning coral with genet SGS. To

account for this pattern, Miller and Ayre [51] suspected ‘‘an

unknown element of larval behavior or development’’ - e.g. that

larvae might be negatively buoyant.

Small-scale SGS over tens of meters has been documented for at

least eight other sessile marine invertebrates, including two

sponges [109,110], a temperate soft coral [47], a black coral

[48], a red coral [49], a bryozoan [111] and two tunicates

[112,113]. For six out of these eight taxa, SGS seems to be driven

by limited dispersal of brooded, philopatric larvae. Both broadcast

spawners with significant SGS, the Anthipatharian coral Antipathes

fiordensis [48] and the solitary tunicate Styela plicata [113] have

negatively buoyant larvae (A. fiordensis) or eggs (S. plicata).

Clonal structure
Because of its large mono-specific stands and little to no

detectable larvae recruitment [97], TEP P. damicornis reefs were

long thought to be highly clonal, persisting locally through

vegetative asexual fragmentation [34,35]. Our data indicate that

only 6% of corals sampled every 10 m apart were clones, i.e. big

clones (.10 m) were uncommon. In contrast, 94% of samples

consist of unique, sexually-derived genets. This indicates that

sexual recruitment is sufficient to maintain high levels of genet

diversity in TEP P. damicornis. Simulation models by Neigel &

Avise [114] indicate that in populations of the Caribbean coral

Acropora cervicornis, which depends heavily on vegetative fragmen-

tation, 5% sexual recruitment (i.e. 95% asexual) is enough to

generate high genotypic diversities (,60%), independent of initial

genet diversity.

Compared to other P. damicornis studies, levels of clonality in the

TEP (6%) seem low. However, direct comparisons among studies

are biased by different sampling strategies and genetic markers.

Lower levels of clonality tend to be detected with microsatellites

compared to allozyme markers (avg. 22% vs. 43%; Table 5) and

with large sampling intervals compared to exhaustive samplings

[e.g. 80,81 and the present study vs. 37]. Comparisons among

studies using the same marker and similar sampling indicate

higher levels of clonality in peripheral populations (TEP, East

Africa & Lord Howe Island) compared to more central
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populations (Indonesia & Great Barrier Reef)(Table 5). Higher

clonality in peripheral populations has been observed in other

corals [10,115] and terrestrial plants [7,116]. Clonal reproduction

is considered to enable persistence in the commonly adverse

environmental conditions towards range margins, at the expense

of sexual reproduction benefits [117]. One example of reduced

sexual benefits due to asexual reproduction is limited gene flow

among and within populations as described here for the peripheral

TEP P. damicornis populations.

Conclusion
Regional structure and localized SGS detected in Panamanian

Pocillopora damicornis has important consequences for the conserva-

tion management of TEP coral reefs. Recent devastating mass

mortalities, for example due to El Niño, demonstrate the fragility

of TEP coral reefs [118,119,120,121,122]. However, regional

populations reacted very differently to these large scale distur-

bances [76] and are further differently affected by regional

disturbances including Acanthaster predation [123,124], toxic algal

blooms [125] and seasonal upwellings [70]. In combination with

the significant genetic differences among regions, these variations

highlight the importance of environmentally, ecologically and

genetically defined regional management and conservation units

in Panama and possibly throughout the TEP. Limited gene flow

and significant genetic differences between reefs further indicate

that local population dynamics on individual reefs are vital for reef

resilience and adaptation in Panama. For example, although the

limited gene flow potentially hampers population recovery, it also

allows for local and regional adaptation, which should be

preserved and accounted for in conservation management.

Materials and Methods

Collection of coral samples for this project was approved by the

Autoridad Nacional del Ambiente and was conducted under

permit number ANAM SEA7108.

Sampling Sites
Pocillopora damicornis was sampled from nine reefs out of three

regions (Gulf of Chiriqui, Azuero Peninsula, Gulf of Panama)

across a well-documented upwelling gradient [e.g. 73] along

1400 km of coastline in Panama (Figure 1). Four reefs (Uva Island,

Granito de Oro, Canal de Afuera Island and Bahia de Damas on

Coiba Island) were sampled in the Gulf of Chiriqui in the west,

where upwelling is absent and sea surface temperatures rarely

drop below 25uC [73]. Coastal coral reefs are poorly developed in

the Gulf of Chiriqui due to extensive freshwater runoff, but

substantial reef development has occurred around its numerous

islands, including the largest (136 ha), thickest (13 m) and oldest

(5600a) TEP reefs [30,73]. Two reefs (Achotines Bay and Iguana

Island) were sampled in the centrally located Azuero Peninsula

where occasional moderate upwelling occurs [74]. Coastal reefs

are more common in the Azuero Peninsula than in the gulfs, most

likely due to reduced freshwater runoff. Three reefs (Saboga and

Contadora Islands in the Perlas Archipelago and Taboga Island)

were sampled in the eastern Gulf of Panama where strong seasonal

upwelling leads to declines in sea surface temperature to ,15uC
[73]. Coastal reefs are uncommon in the Gulf of Panama and reef

development occurs primarily around near-shore islands and in

the Perlas Archipelago.

Sampling and Genetic analyses
On each reef, 18 to 36 nubbins (2 cm) of P. damicornis were

sampled every ten meters along reef sites composed of dense stands

of P. damicornis to analyze its small-scale spatial genetic structure.

Samples were preserved in Guanidinium-Isothiocyanate (GITC)

DNA buffer for genetic analysis [126]. DNA was extracted using

standard Phenol-Chloroform extraction and ethanol precipitation.

Ten microsatellite loci were amplified using primers developed

by Magalon et al. [127] (Pv2 & Pv6) and Starger et al. [128] (Pd2,

Pd4, Pd5, Pd6, Pd7, Pd8, Pd9 & Pd10). Six of these loci (Pd2, Pd4,

Pd5, Pd6, Pv2 & Pv6) amplified consistently using modified PCR

protocols. PCR amplifications were carried out separately for each

locus, following a nested PCR protocol for labeling, including

forward primers with M13 tails and M13 primers with IR-labels

[129]. Each PCR mix contained 2 pmol forward and 8 pmol of

each reverse and m13 primer in a 10 ml reaction with 1 ml 106
PCR buffer, 0.2 mM dNTPs, 0.25U AmpliTaq DNA polymerase

(Applied Biosystems) and 0.5 ml template DNA. PCR profiles

varied slightly by locus: For Pd2, Pd4, Pd5 and Pd6, the PCR

profile consisted of 30 cycles at 94uC for 45 s, 55uC for 35 s and

72uC for 35 s followed by 8 cycles with a lower annealing

temperature (53uC) for the M13 labeling. For Pv2 and Pv6, the

profile was modified to 30 cycles at 94uC for 45 s, 56uC for 45 s

and 72uC for 30 s followed by 8 labeling cycles with 53uC
annealing temperature. Both protocols included an initial 3 min

denaturing step at 94uC and a final extension step at 72uC for

7 min. The PCR products with incorporated infrared dyes were

then sized and scored on a LICOR 4300 Genetic Analyzer.

Population genetics
Population genetic statistics, including allele frequencies,

clonality, probability of identity, F-statistics and Analyses of

Molecular Variance (AMOVA) were calculated using GenAlEx

6.1 [130]. The program Micro-Checker 2.3 [131] was used to test

for stutter bands, large allele dropout and null alleles. Linkage

disequilibrium among loci was assessed using a Markov chain

method [132] in GENEPOP 4.0.10 [133], followed by sequential

Bonferroni correction to account for multiple comparisons [134].

Clones were identified in GenAlEx and because they introduce

biases into population genetic analyses, only unique genets were

used unless otherwise noted.

Population genetic structure was calculated as FST [135], which

assumes an infinite allele model [136], and RST [137], which is

based on a stepwise mutation model of allele evolution [138].

Hierarchical AMOVA were used to estimate genetic structure

among regions, among populations and among populations within

regions [139]. Statistical significance of RST and FST is based on

999 permutations. RST recovered more genetic structure,

especially among regions, whereas FST had a lower resolution

and higher intra-regional variation (FRT = 15% of FST compared

to RRT = 50% of RST). As a result, we preferentially focus on RST

(e.g. Tables 3 & 4). Principal Coordinate Analyses [140],

implemented in GenAlEx, were used to detect and visualize the

major patterns of pairwise RST population comparisons. Isolation

by distance among populations was tested using a Mantel test,

implemented in GenAlEx 6.1, to test for an association between

pairwise population genetic differences and geographic distances.

The Bayesian clustering method implemented in STRUC-

TURE 2.3 [141] was used to infer the likely number of genetic

clusters (K) in the dataset. STRUCTURE estimates the posterior

probability P (X | K) that the data fit the hypothesis of K clusters

using a Markov chain Monte Carlo approach to optimize

genotypic equilibrium (linkage equilibrium and HWE) within

each cluster. Five independent runs for each K from 2 to 19 were

conducted using the admixture model and independent allele

frequencies with a burn-in period of 105 steps and 106 Markov

chain Monte Carlo replications for data collection (Figure S1).
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STRUCTURE runs were aligned using Clumpp1.1 [142] and the

bar plot was generated with Distruct1.1 [143]. To verify the

optimal value for K, we compared the P (X | K) results with DK,

the second order rate of change in the likelihood of K [144], which

corresponds to the strength of genetic subdivision among clusters

in the data (Figure S1b).

Fine-scale Spatial Genetic Structure (SGS) within populations

was analyzed using the program SPAGeDi 1.2 [145]. To

distinguish between spatial genetic structure (SGS) due to clonal

aggregations and SGS among unique genets, we analyzed and

compared two different dataset: one dataset consisted of all 207

samples including clones (i.e. the ramet dataset) and one dataset

contained only the 194 unique genotypes excluding clones (i.e. the

genet dataset). SGS was estimated for each of the three regions

separately and for all populations combined using the pairwise

kinship coefficient Fij [78,146]. Other kinship coefficients includ-

ing Ritland [147] and Moran’s I [108] produced similar results

(not shown). 95% confidence intervals and standard errors were

estimated by 10,000 permutations of the genetic and the spatial

datasets. Kinship values outside the 95% confidence intervals were

interpreted as significant SGS at the spatial distance. Three

parameters were used to describe and compare SGS among

regions and studies: F(1), genetic patch size and Sp. F(1) is the

average kinship among individuals within the smallest distance

interval (10 m). Its statistical significance (p) was obtained by

comparing the slope b(F) of F(r) on ln(r) to 9999 random

permutations of individuals among locations within populations

using a Mantel test. The genetic patch size is the distance that

corresponds to the first x-intercept of the kinship correlogram [cf.

148]. Within the genetic patch, individuals are more closely

related than the population average, i.e. the association between

genotypes is positive, while individuals outside of the patch are

genetically independent, i.e. their correlation is negative. The Sp

statistic (Vekemans and Hardy [78] is based on F(1) and the

decrease of SGS with distance (b(F)).

Supporting Information

Figure S1 Results of the Bayesian clustering approach
implemented in STRUCTURE 2.3 [141] that were used to
infer the number of genetic clusters (K) in the micro-
satellite dataset. The graph shows the mean log likelihood L(K)

for K = 1–19 (6SD) and DK, the second order rate of change of

L(K) for K = 2–18 [144]. The most likely number of cluster is

K = 5, since it has the highest likelihood value (L(K) = 22059) and

a local maximum for DK.

(EPS)
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