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Abstract

Bombesin receptor subtype 3 (BRS-3), the orphan bombesin receptor, may play a role in the regulation of stress responses
in lung and airway epithelia. Bombesin receptor activated protein (BRAP )is a novel protein we found in our previous study
which interacts with BRS-3. This study was designed to observe the subcellular location and wound repair function of BRAP
in human bronchial epithelial cells (HBECs). BRAP ORF was amplified by RT-PCR and ligated to pEGFP-C1 vector, and then
the recombinant plasmid pEGFP-C1-BRAP was transfected into Hela cells. The location of BRAP protein was observed by
laser confocal microscope, and the expression of it was analyzed by Western-blot. At the same time,we built the
recombinant plasmid pcDNA3.1(+)-BRAP, transfected it into HBECs and observed its impact on cell cycle and wound repair
of HBECs. The results showed that BRAP locates in membrane and cytoplasm and increases significantly in transfected cells.
Flow cytometry results demonstrated that the recombinant plasmid increases S phase plus G2 phase of cell cycle by 25%.
Microscopic video analysis system showed that the repair index of wounded HBECs increases by 20% through stable
expression of BRAP. The present study demonstrated that BRAP locates in the membrane and cytoplasm, suggesting that
this protein is a cytoplasm protein, which promotes cell cycle and wound repair of HBECs.
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Introduction

There is accumulating evidence that BLPs and their receptors

play an important role in pathological conditions of the lung,

including chronic inflammatory lung disease, lung cancer,

bronchopulmonary dysplasia and acute lung injury. Bombesin

receptor subtype-3 (BRS-3, BB3) is a GPCR that has been

resistant to deorphanization. First discovered in 1992 through

homology screening approaches, BRS-3 was assigned to the

bombesin receptor family for its high sequence similarity to two

mammalian bombesin receptors: 47% to Neuromedin B receptor

(NMB-R, BB1) and 51% to Gastrin-releasing peptide receptor

(GRP-R, BB2) [1,2].

Unlike GRP and NMB receptors, which have a widespread

distribution in the central nervous system and peripheral tissues,

the distribution of BRS-3 in the majority of normal tissues is

extremely low, whereas its level in the developing lung and certain

lung carcinomas is high [3–5]. There is very little known about the

biological function of BRS-3 activation. This is in great part

because the natural ligand of BRS-3 has not yet been identified.

However, results from our previous experiments demonstrated

that the expression of BRS-3 mRNA was significantly up-

regulated in an ozone-stressed airway hyperresponsiveness animal

model and resulted in wound repair and Th1-type immune

response [6–7]. Using bacterial two-hybrid technology, we

observed that BRS-3 can interact with a variety of proteins which

are related with cell growth, differentiation, anti-apoptotic,

cytoskeleton assembly, tyrosine kinase activation and so on. We

also found that BRS-3 interacts with a new protein named as

bombesin receptor activated protein( BRAP) in present study.

To further study the structure and function of BRAP, its

subcellular localization and effects on cell proliferation and wound

repair were studied, which will provide theoretical basis for the

interaction of BRAP and BRS-3 in stress response of bronchial

epithelial cells.

Materials and Methods

Cell lines and culture
An immortalized human bronchial epithelial cell line(16-

HBE14o-) and Hela cell line were maintained in a mixture

medium of DMEM:F12(1:1) supplemented with 100 mg/ml

penicillin, 100 mg/ml streptomycin and 10% newborn bovine

serum. Cells were incubated at 37uC in a humidified incubator

with 5% CO2.

Cloning of BRAP from HBECs
Total RNA was isolated from HBECs using TRIzol reagent

(Invitrogen, USA) according to the manufacturer’s protocol.

Superscript RNase H- Reverse Transcriptase (Invitrogen) and an

oligo (dT) primer were used to synthesize the first strand cDNA.

PCR reaction (59-GCCC aga tct GAT TTT ATA TTG GAA

GAC-39 forward and 59-GCCA ctg cag CAG TTC TGA GAA

AGC GC-39 reverse) was performed as follows: 94uC for 5 min,

then 30 cycles of 94uC for 30 s, 47uC for 30 s,72uC for 45 s,

and then a final extension at 72uC for 10 min. Amplification of
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beta-actin (59-AGCGCGAAATCGTGCGTG-39 forward and 59-

CAGGGTACATGGTGGTGCC-39reverse) was used as a control

for sample loading and normalization. The primers used were

listed in Table 1. RT-PCR products were ligated into a pGEM-T-

easy vector. Subsequently, the plasmid was transformed into E.coli

strain DH5. Bacteria were cultured in 800 mL of LB medium for

45 min at 37uC and 225r/min. After incubation, bacteria were

plated onto agar plates containing ampicillin(100 mg/L), X-

gal(20 mg/cm2)and IPTG(12 mg/cm2) and incubated overnight

at 37uC.White colonies were selected and identified by sequencing.

Construction of BRAP expression vectors
pEGFP-C1 and pcDNA3.1 (+) vectors were purchased from

clontech (USA). The transcript BRAP was digested by BglII/PstI

and inserted into pEGFP-C1 and pcDNA3.1(+) plasmids,

respectively. Both constructs were confirmed by sequencing and

digest.

Cell transfection and fluorescence imaging
The expression vectors were transfected into Hela and HBECs

using LipofectamineTM 2000 reagent (Invitrogen) according to

the manufacturer’s protocol. Empty pEGFP-C1 and pcDNA3.1

(+) plasmids were transfected respectively as control. After pEGFP-

C1-BRAP plasmid was transfected into Hela 48 hours later, GFP

expression was recorded using confocal laser scanning microscopy.

pcDNA3.1(+)-BRAP plasmid was transfected into HBECs.

Positive cell clones were obtained by antibiotic selection for 2

weeks with G418 (Gibco,Grand Island,NY) at a concentration of

600 ug/ml. The stable transfectants used in this study were stained

with propidium iodide and analyzed by flow cytometry and

monolayer wound repair assay.

Protein extraction and Western blotting analysis
The level of protein expression was evaluated by Western

blotting analysis using specific antibodies. Hela cells transfected

with pcDNA3.1 (+) and pcDNA3.1 (+)-BRAP were collected from

the plates. The samples were lysed in ice-cold cell lyses buffer (1%

Triton X-100, 150 mM NaCl, 10 mM Tris-HCl (pH 7.4), 2 mM

sodium orthovanadate, 10 mg/ml leupeptin, 50 mM NaF, 5 mM

EDTA, 1 mM EGTA, and 1 mM PMSF) by stirring for 1 h at

4uC. The lysates were obtained after a centrifugation at 13,0006g

for 15 min. An equal volume of Laemmle sample buffer was

added to each cell lysate. Samples were boiled for 10 min, and

then equal amounts of protein were separated by 7.5% SDS-

PAGE before being transferred to nitrocellulose membrane. The

membrane were blocked with 3% BSA in PBS for 2 h and then

incubated with antibodies and appropriate horseradish peroxi-

dase-conjugated secondary antibody. Detection was made using

the enhanced chemiluminescene system.

Measurement of cell cycle by flow cytometry
After being cultured in 6-well plates, cells were harvested at a

density of 16106 Cells/mL, fixed in cold 70% ethanol and stored

at 220uC overnight. The fixed cells were washed twice with

phosphate-buffered Saline, stained in a propidium iodide solution

(50 ug/ml) for 1 hour, and treated with a ribonuclease A solution

(20 ug/ml) for 30 minutes. Flow cytometry was then using to

examine cell cycle. Experiments were repeated 3 times.

Monolayer wound repair assay
This assay was used to demonstrate the effect of BRAP

overexpression on migration and wound repair of epithelial cells.

We have previously published details of this method. Briefly [6],

HBECs transfected with pcDNA3.1 (+)-BRAP were grown until

confluent in 12-well plates with DMEM: F12 (1:1), and a small

wound was made in the confluent monolayer with a rubber stylet.

The edge of wound was recognized and the remaining wound area

was measured serially per 4 hours in 24 h by video microscopy

(Olympus Company, Japan). A linear regression equation of the

remaining wound area to time was obtained. Repair index (RI),

equal to the absolute value of slope, was used to judge the repair

speed of HBECs.

Statistical analyses
The data were analyzed using unpaired Student’s t-test. Values

were expressed by mean6SE. P,0.05 was considered as

statistically significant.

Results

Cloning and sequence analysis of BRAP transcript from
HBECs

The nucleotide sequence of BRAP has been deposited in Gene

Bank with accession number NM-152734. The original ORF of

BRAP is composed of 1065 nt and putatively 354 amino acid

residues(Figure S1A). n present study, the ORF of BRAP was

generated by RT-PCR amplification from mRNA of HBECs

(Figure S1B), subcloned into pGEM-T-easy vector, and identified

by sequencing.

Identification of amplified plasmids
After being digested by endonucleases BgI II and Pst I, the

plasmid pEGFP-C1-BRAP (Figure S2A) showed 2 bands of about

5 Kb and 1 Kb, and restriction enzyme analysis of the plasmid

pcDNA3.1(+)-BRAP with BamHI and XhoI yielded approximate-

ly 5 Kb empty pcDNA3.1(+) and 1 Kb BRAP (Figure S2B).

Subcellular localization of BRAP
A GFP fusion expression construct, pEGFP-C1-BRAP, was

transfected into cultured Hela cells in order to visualize the

subcellular localization of BRAP. Fluorescence was measured at

48 h post-transfection using confocal microscopy. As shown in

Figure S3, GFP-BRAP clearly locates in the membrane and

cytoplasm.

Expression of BRAP protein in transfected HBECs
To investigate the expression of BRAP protein, western blotting

analysis of cell lysates was performed utilizing the specific rabbit

anti-BRAP polyclonal antibody and revealed that pcDNA3.1(+)

Table 1. Primers used in this study.

Primers
name primer sequence(59-39) purpose

FP1 GCCC aga tct GAT TTT ATA TTG GAA GAC RT-PCR

RP1 GCCA ctg cag CAG TTC TGA GAA AGC GC RT-PCR

FP2 GCCC aga tct GAT TTT ATA TTG GAA GAC pEGFP-C1-BRAP

RP2 GCCA ctg cag CAG TTC TGA GAA AGC GC pEGFP-C1-BRAP

FP3 GCCC gga tcc GAT TTT ATA TTG GAA GAC pcDNA3.1(+)-BRAP

RP3 GCCA ctc gag CAG TTC TGA GAA AGC GC pcDNA3.1(+)-BRAP

FP—actin AGCGCGAAATCGTGCGTG beta-actin

RP—actin CAGGGTACATGGTGGTGCC beta-actin

doi:10.1371/journal.pone.0023072.t001
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-BRAP transfected cells possesses much higher expression of

BRAP compared with mock plasmid-transfected cells and

untransfected cells (Figure S4) .

Cell cycle measurement by flow cytometry
The ratio of S-phase in cells transfected with pcDNA3.1 (+)-

BRAP was significantly higher than in cells transfected with

pcDNA3.1 (+) and untransfected cells (Figure S5A). The ratio of S-

phase was shown by columns (*p,0.05, Figure S5 B)

Effects of BRAP overexpression on wound repair
PCDNA3.1 (+) - BRAP and PCDNA3.1 (+) transfected HBECs

were cultured in 24 well plates to 90% confluence, and then

changed into serum-free culture medium for 24 h. The cell layer

was caused a minor mechanical wound by scratching and

monitored for 24 h by the use of BI-2000 image immunohisto-

chemical analysis system, outlining the edge of wound area (Figure

S6 A). Compared with pcDNA3.1(+) transfected cells, the repair of

HBECs was accelerated significantly after BRAP overexpression.

(Figure S6 B).

Discussion

BRS-3 is one of G protein-coupled receptors which are the

largest family of cell surface molecules involving in signal

transduction and represent about 3% of the human genome. By

use of bacterial two-hybrid technology, we found a new protein

interaction with BRS-3. Bioinformatics analysis showed that full-

length cDNA of the new protein is 6751 bp and locates at 6p21.2

(access number: NM_152734), with ORF length 1065 bp

encoding a 354 amino acid protein. Northern Blot analysis

showed that BRAP is expressed in HBECs, embryonic tissues and

tumor tissues.

Subcellular localization of proteins is an important aspect of

protein function study. Protein synthesis in the ribosome, and then

the boot to specific organelles, involved in a variety of cell life

activities, such as cell cycle regulation, cell signal transduction and

transcriptional regulation. In case of deviation, it will be of

significant impact on the entire cell function [8,9]. To study the

subcellular localization of BRAP, we constructed a plasmid

PEGFP-BRAP by fusion to green fluorescent protein (GFP).

Using laser scanning confocal microscope, we observed BRAP

locates in membrane and cytoplasm. Western blot results showed

that the protein is highly expressed in transfected cells.

The signal transduction of BRS-3 in different cells or under

different stimuli can lead to different cell responses depending on

whether the intracellular signaling molecules assemblies with

different upstream and downstream molecules, i.e. assemblies of

different signaling molecules determine the different responses.

Stress responses of HBECs, include cell proliferation and repair,

expression of adhesion molecules and adhesion with inflammatory

cells to transmit stress signals, intake and presenting antigen to

activate lymphocytes and so on [10–13]. In the mechanism of

stress signaling transmission in HBECs to produce airway

hyperresponsiveness, BRAP may be involved in assembling with

specific signal molecules.

BRAP was cloned into pcDNA3.1 (+) multiple cloning sites and

the effects on stable over-expression of BRAP in HBECs on cell

cycle were observed. The cell cycle consists of four distinct phases:

G1 phase, S phase (synthesis), G2 phase (collectively known as

interphase) and M phase (mitosis). Activation of each phase is

dependent on the proper progression and completion of the

previous one. Cells that have temporarily or reversibly stopped

dividing are said to have entered a state of quiescence called G0

phase. Our results showed that, BRAP promotes transformation

from G1 to S phase, accelerates cell into DNA synthesis phase,

thereby promoting DNA synthesis and cell proliferation.

To further determine the effects of BPAP activation in AHR,

we tried to observe the effects of BPAP on wound repair of

BECs. Bronchial epithelial cells are the first line of defense

against external stimuli, which are not only the mechanical

barrier, but play an important role in the homeostasis of local

microenvironment of the lungs. Injury or dysfunction of

bronchial epithelial cells leading to imbalance of local micro-

environments may be the initiating link of asthma and other

airway diseases. It is reported that the wound repair mainly

depends on migration and proliferation. In the prophase of

wound repair, the precursor cells around the wound initiate the

migration and dissemination. Then the proliferation takes place

around16–20 h after the damage [14–15]. The results showed

that BRAP promotes the repair and proliferation of BECs.

However, whether the increase of wound repair is associated

with increasing cell adhesion or losing contact inhibition

between cells needs further research.

Supporting Information

Figure S1 A: Depicted are 1065 base pairs of DNA sequence of

the human. The predicted protein sequence is shown below the

nucleotide sequence. B: BRAP mRNA expression in HBECs was

assayed by RT-PCR. 1: represents b- actin; 2: represents BRAP

PCR products; 3: represents DNA mark 2000 plus.

(TIF)

Figure S2 Recombinant plasmids were assayed by restriction

enzyme analysis. A 1: Digestion the plasmid pEGFP-C1-BRAP by

BgI II/Pst I; 2: DNA marker; 3: pEGFP-C1-BRAP. B 1: Digestion

the plasmid pcDNA3.1-BRAP by Bam H1/Xho I; 2: DNA

marker; 3: pcDNA3.1-BRAP.

(TIF)

Figure S3 Subcellular localization of BRAP protein in Hela

cells. A: Normal Hela Cells; B: pEGFP-C1 transfected Hela cells;

C pEGFP-C1-BRAP transfected Hela cells.

(TIF)

Figure S4 Expression of the BRAP-encoded protein in HBECs

after transfection. A 1: cells transfected with pcDNA3.1(+)-BRAP

plasmid; 2: cells transfected with mock plasmid(pcDNA3.1(+))

transfected; 3: parent cells. B Quantification of Western blots

normalized to the level of B-actin.

(TIF)

Figure S5 The influence of BRAP overexpression on cell cycle

of HBECs. A:1, Parent cells; 2, Cells transfected with pcDNA3.1

(+); 3, Cells transfected with pcDNA3.1 (+)-BRAP; B: S-phase cells

expressed were shown by columns. (*p,0.05, n = 3).

(TIF)

Figure S6 The influence of BRAP on wound repair of HBECs.

RI was used to evaluate the speed of wound repair. A: typical

video micrographs of HBECs monolayer wound closure; B:

Closure of monolayer wounds in HBECs after transfection with

pcDNA3.1 (+)-BRAP. (*p,0.05 vs control and PCDNA3.1(+)).

(TIF)
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