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Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain

Abstract

Microbial transcriptomics are providing new insights into the functional processes of microbial communities. However,
analysis of each sample is still expensive and time consuming. A rapid and low cost method that would allow the
identification of the most interesting samples for posterior in-depth metatranscriptomics analysis would be extremely
useful. Here we present Transcriptome Fingerprinting Analysis (TFA) as an approach to fulfill this objective in microbial
ecology studies. We have adapted the differential display technique for mRNA fingerprinting based on the PCR
amplification of expressed transcripts to interrogate natural microbial eukaryotic communities. Unlike other techniques, TFA
does not require prior knowledge of the mRNA sequences to be detected. We have used a set of arbitrary primers coupled
with a fluorescence labeled primer targeting the poly(A) tail of the eukaryotic mRNA, with further detection of the resulting
labeled cDNA products in an automated genetic analyzer. The output represented by electropherogram peak patterns
allowed the comparison of a set of genes expressed at the time of sampling. TFA has been optimized by testing the
sensitivity of the method for different initial RNA amounts, and the repeatability of the gene expression patterns with
increasing time after sampling both with cultures and environmental samples. Results show that TFA is a promising
approach to explore the dynamics of gene expression patterns in microbial communities.
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Introduction

Information about dynamics of the genes expressed by

microbial communities is being explored by several approaches.

Expression of specific genes can be successfully determined

through quantitative RT-PCR, and microarrays are helpful tools

to detect the expression level of a set of known genes. In addition,

the 454 pyrosequencing technology has been recently applied

to analyze marine microbial metatranscriptomes [1–6]. These

metatranscriptomics studies of marine microbial communities are

very powerful at uncovering active metabolisms and functional

processes. However, this technology is still very costly and cannot

be applied to a large set of samples. Thus, for example, Hewson

et al. [7] analyzed the metatranscriptome of only eight samples:

one from station Aloha, four from the Atlantic and three from the

Pacific Ocean. These are only eight isolated stations from two

huge oceans. If a fingerprinting method had been available, it

would have been possible to determine how representative these

samples were of the different water masses studied. Therefore

alternative high-throughput approaches are needed to systemat-

ically compare and detect gene expression profiles with reasonable

time and money costs.

Fingerprinting DNA techniques such DGGE [8,9], RFLP [10],

t-RFLP [11] or ARISA [12,13] are widely used to compare

microbial community composition among different samples.

These techniques target the predominant taxa and allow the

comparison of an extensive number of samples at a relatively low

cost. Thus, studies of the seasonal and spatial distribution of both

eukaryotes and prokaryotes have been successfully conducted and

a fairly robust view of microbial distribution in the oceans has been

obtained [9,14–20]. The next step would be to explore how the

activity patterns of such communities change and whether they do

so in correlation with taxonomic composition or not. A technique

equivalent to DNA fingerprinting, however, is not currently

available for patterns of gene expression in microbial communities.

We developed an approach that has the advantages of finger-

printing, namely it is relatively cheap and allows processing of a

large number of samples.

Here we present an approach to detect gene expression patterns

in picoeukaryotic marine microbial communities. Transcriptome

Fingerprinting Analysis (TFA) is based on the well-known

differential display approach [21,22], but with some modifications

to adapt it to marine microbial ecology studies (Figure 1). In this

procedure, nucleic acids are extracted from the natural sample

and treated with DNAase to leave only RNA. Then, reverse

transcription is carried out with anchor primers. In our case, these

primers target the poly(A) tail of eukaryotic mRNAs, insuring that

rRNA will not be reverse-transcribed. Next, PCR is carried out
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with the same anchor primers plus a set of random primers. We

used fluorochrome labeled anchor primers for this amplification so

that the amplicons could be separated in a conventional gene

analyzer. In the end, for each sample we had a profile in which

every peak corresponded to an expressed gene. The differences

between the expression profiles in two different environments

could then be easily explored. Allegedly, each sample should show

peaks that were unique to that environment and peaks that were

common for a specific set of conditions. The differences are

presumably the result of different parameters associated with the

specific environment. We determined the sensitivity and repeat-

ability of the method using both cultures of the prasinophyte

Micromonas pusilla, and natural marine picoeukaryotic communities

from the Mediterranean Sea.

Materials and Methods

Sampling and collection of biomass
Sea surface samples were obtained from the tip of the Gas pier

in the Barceloneta beach (Barcelona) in 8 liter carboys. In

experiment 1 (see Table 1), carried out on October 3, 2007,

samples were kept on ice and in experiment 2 (Table 1), carried

out on September 25, 2008, samples were either kept on ice (ICE

samples) or at room temperature (RT samples) until the end of the

filtration process. Water was prefiltered through a 200-mm mesh

net. Additional water samples were collected during the MOD-

IVUS cruise (17–27 September 2007) on board R/V Garcı́a del Cid

at three stations from coastal to open sea. Seawater (8 liters) was

collected using Niskin bottles and was also prefiltered through 200-

mm mesh net. A piece of 20-mm Nylon mesh was attached to the

entrance tube cap of the filtration system and all environmental

water samples were filtered first through a 3-mm pore-size

polycarbonate filter (Poretics) and then through a 0.2-mm

polycarbonate filter (Poretics) using a peristaltic pump (MasterFlex

7553-89 with cartridges Easy Load II 77200-62, Cole-Parmer

Instrument Company) to collect the bacteria and picoeukaryotes.

Filters were flash-frozen in liquid nitrogen and then stored at

280uC until processed. Total RNA was extracted from the 0.2-mm

polycarbonate filters.

Micromonas experiments
Axenic cultures of the prasinophyte Micromonas pusilla CCMP

1545 obtained from the Provasoli–Guillard National Center for

Culture of Marine Phytoplankton (CCMP; https://ccmp.bigelow.

org/) were grown in f/2 medium [23] at 19uC under a daily

regime consisting of 12 h of light and 12 h of darkness. Growth of

M. pusilla was followed by flow cytometry (procedure described in

[24]) to be sure that the cultures were in exponential growth phase.

Experiment 3 (Table 1) was initiated when cultures reached

sufficient biomass after 6 days of growth and triplicates of a time

zero control were taken. Half of the bottles were kept at 4uC and

half at 19uC. After temperature equilibration (about five minutes)

all bottles were transferred to the dark. 4uC and 19uC cultures

were sampled in triplicate after 15 min, 30 min, 1 h, 2 h and 4 h

of incubation. At each sampling point 10 ml of culture were

filtered through 0.8-mm-pore-size Durapore Filters and the filters

were flash-frozen in liquid nitrogen and kept at 280u until RNA

extraction. In experiment 4 (Table 1), a M. pusilla culture was

growing at 19uC under a 12 h light/12 h dark cycle also until late

exponential phase. Then, part of the culture was incubated

separately in the dark for 24 hours while the other remained under

the light/dark regime. M. pusilla cultures were sampled in triplicate

under light and dark conditions 24 hours after splitting conditions.

RNA extraction and purification. The procedure was adapted

from [25]. For RNA extraction, filters were transferred to 2 ml

Figure 1. Scheme of the different steps in Transcriptome
Fingerprinting Analysis (TFA). Note that in step 4 there is a mixture
of ribosomal, transfer, and messenger RNAs. By using primers against
the poly(A) tail, step 5 reverse-transcribe mRNAs only.
doi:10.1371/journal.pone.0022950.g001

Table 1. Key to the different experiments showing the
sample used and the variables tested in each case.

Experiment Sample Variables tested

1 Natural sample Primer combinations, time since sampling

2 Natural sample Time since sampling at two temperatures

3 Micromonas Time elapsed at two temperatures

4 Micromonas Light and dark conditions

doi:10.1371/journal.pone.0022950.t001
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screw-cap microcentrifuge tubes containing 200-ml of 0.1-mm-

diameter zirconia-silica beads (BioSpec Products, Inc.) and 100-ml

of 0.5 mm glass beads (BioSpec Products, Inc.) mixed with 450-ml

RLT lysis buffer (provided by the RNeasyH Mini Kit Qiagen, Inc.)

plus b-mercaptoethanol (Fluka). Samples were mechanically

disrupted in a Mini-beadbeater-8TM cell disrupter (BioSpec Pro-

ducts, Inc., Bartlesville, OK) for 10 min. After disruption, samples

were incubated on ice for 5 min and the beads were allowed to

settle out of the lysis mixture. Samples underwent centrifugation

(in an Eppendorf centrifuge at 2100 rcf 1 min). The lysate was

transferred to a new tube. 300 ml of lysis solution was added to the

vials with beads to increase the final yield. The tubes were shaken

vigorously and the supernatant was also recovered. The same

volume of 70% ethanol was added to the lysate and samples were

purified according to the RNeasyH Mini Kit (Qiagen, Inc.). The

isolated total RNA was treated with TurboDNase I (Ambion) to

remove contaminating genomic DNA according to the manufac-

turer’s instructions. RNA was aliquoted and quantified by

absorbance at 260 nm with a NanoDrop 1000 (Thermo Fisher

Scientific Inc., Wilmington, DE).

Reverse transcription and PCR amplification. First-strand

cDNA synthesis was conducted with 20 or 40 ng of total RNA

as starting material. mRNAs were reverse-transcribed to single-

stranded complementary DNA using the SuperScript III reverse

transcriptase (Invitrogen) and three different primers, H-T11G (59-

AAGCTTTTTTTTTTTG-39), H-T11A (59-AAGCTTTTTTT-

TTTTA-39) and H-T11C (59-AAGCTTTTTTTTTTTC-39). To

denature any secondary structure, an aliquot of each of the RNA

extracts plus the oligo(dT) primer were heated for 5 min at 65uC
and immediately placed on ice before mixing with the final

reaction solution (20 ml): 56 First-Strand buffer, 0.1 M DTT,

40 U RNaseOUT, 10 mM dNTPs and 200 U SuperScript III

RT. Reaction mixtures were incubated at 50uC during 50 min,

and inactivated by heating 70uC for 15 min. 2 ml of the RT

reaction product was used in a subsequent PCR. PCR reactions

were carried out using Taq polymerase (Qiagen) in a final reaction

volume of 20 ml. Arbitrary primers coupled with the same primers

used in the RT reaction but labeled with a fluorescence tag (NED)

were used for the amplification of cDNA. Primers targeting the

poly(A) tail and arbitrary primers for PCR were from RNAspectra

Yellow kit 1 of GenHunter Corporation. These primer sequences

are given in Table 2. The PCR cycle was 40 cycles of 94uC for

30 s, annealing at 40uC for 2 min, 72uC for 60 s followed by 1

cycle of 72uC for 5 min in a Techne thermal cycler (Techne, Ltd.,

Cambridge). A negative control was run for each primer com-

bination to assess the background levels (usually very low, below

20 relative fluorescence units -rfu-) and to ensure that there was no

amplification of genomic DNA an aliquot of the RNA extracts was

added directly to the PCR.

Detection and analysis of peaks
1 ml of PCR product from each sample was mixed with 9 ml of

Hi-Di Formamide (Applied Biosystems). 0.5 ml of size standard

(ROX 500, Applied Biosystems) was added to every reaction to

define the standard curve between 25 and 500 bp. The cDNA

peaks obtained ranged in length from 30 to 500 bp, according to

the internal size standard used. The mixtures were run on an ABI

automated sequencer operating as a fragment analyzer (ABI

3130XL). The sequencer electropherograms were then analyzed

using the GeneMarker software, version 1.90 (SoftGenetics, LLC).

Raw data were treated with some filters activated according to

GeneMarker instructions: baseline substraction, spike removal,

auto pull up removal, smooth. The cubic spline algorithm was

used to calculate bp lengths of identified fluorescence peaks. The

following peak detection thresholds were applied: I) An intensity

cutoff of 150 rfu was chosen, although the use of this cutoff may

have reduced the diversity of the communities (some peaks larger

than background were present below that cutoff. II) The stutter

peak filter with a 5% left and right percentage and a peak score

between 5 and 7. In addition, the peaks were visually inspected for

sporadic inconsistencies in the binning, basically for those peaks

with high intensity (larger than 500 rfu) that could make a big

difference in the community pattern. Once the peaks were

selected, peak areas were used as output from GeneMarker soft-

ware and were transferred to Microsoft Excel (Seattle, WA) for

subsequent analysis.

Statistical analysis
The peak area data from GeneMarker were standardized (the

relative peak heights within a profile were calculated by dividing

the height of an individual peak by the total peak height -sum of

the heights of all peaks in a pattern-). TFA was evaluated by

comparing the number and area of peaks (bands) between electro-

pherograms (profiles). The similarity of TFA profiles derived from

different communities was assessed computing Bray-Curtis dis-

tances to construct the similarity matrices. Patterns were explored

using nonmetric multidimensional scaling (NMDS) and clustering

analysis. Primer-E version 6 was used for these analyses [26].

Results

Sensitivity and repeatability of TFA
The amount of total RNA usually obtained from 8 L of

seawater from oligotrophic Blanes Bay was approximately 90 ng.

Experiments showed that around 10–20 ng were optimal for good

quality patterns. Higher RNA concentrations, such as 80 ng,

resulted in lower signal (data not shown). Although TFA was found

Table 2. Primers used in the present study (from a
commercial primer kit: RNAspectra kit of GenHunter).

Primer Sequence (59-39)

RT anchor primers

H-T11G 59-AAGCTTTTTTTTTTTG-39

H-T11A 59-AAGCTTTTTTTTTTTA-39

H-T11C 59-AAGCTTTTTTTTTTTC-39

Fluorescently-labeled PCR anchor primers

NH-T11G 59-AAGCTTTTTTTTTTTG-39

NH-T11A 59-AAGCTTTTTTTTTTTA-39

NH-T11C 59-AAGCTTTTTTTTTTTC-39

Arbitrary primers

H-AP1 59-AAGCTTGATTGCC-39

H-AP2 59-AAGCTTCGACTGT-39

H-AP3 59-AAGCTTTGGTCAG-39

H-AP4 59-AAGCTTCTCAACG-39

H-AP5 59-AAGCTTAGTAGGC-39

H-AP6 59-AAGCTTGCACCAT-39

H-AP7 59-AAGCTTAACGAGG-39

H-AP8 59-AAGCTTTTACCGC-39

One anchor primer was used in the RT reaction, and the same primer but
fluorescently-labeled was combined with one of the arbitrary primers in the
subsequent PCR.
doi:10.1371/journal.pone.0022950.t002
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to be very sensitive, it failed to produce repeatable patterns under

the initially assayed conditions with the RNAspectra Yellow Kit 1

(GeneHunter). This kit is based on the MMLV reverse tran-

scriptase (operating at 37uC). Different reverse transcription

enzymes were tested and the SuperScript-III enzyme (Invitrogen)

produced the desired results. This is an engineered version of the

former enzyme active at 50uC. With this enzyme the repeatability

was very high, as evidenced by the fact that the electropherograms

representing four replicates were identical, both with 20 and 40 ng

of RNA (Figure 2). Finally, different times for the reverse tran-

scription reaction were tested and no differences were found

between 30 and 60 min (data not shown).

Elapsed time between sampling and filtration
Three different experiments were carried out to test the

changes in expression patterns with time elapsed since sampling.

Experiments 1 and 2 were done with seawater samples and

experiment 3 with a culture of Micromonas pusilla. The shortest

feasible time between sampling and filtration in the experiments

with natural seawater was 30 minutes. The volume filtered was

2–4 L of water in 15–30 min for each time point for all the

samples. Water was kept on ice until filtration was completed.

The dendrogram in Figure 3A corresponds to experiment 1,

carried out on 3 October 2007 in which the samples were filtered

30 min, 1 h, 2 h, 4 h, and 8 h after collection. The cDNA was

amplified with three different arbitrary primer combinations (A8,

C7 and A7). The patterns obtained with different primer

combinations differed substantially both in the identity and

quantity of genes retrieved as could be expected (see virtual gel in

Figure 3A). Lines in gray indicate that the differences between

branches were not significantly different at the 5% level. Slight

differences between samples filtered at 30 min and one hour and

the rest of the samples were observed with one of the primer

combinations (C7).

Samples treated with the primer combination A8 were run with

two different initial amounts of RNA (20 and 40 ng). The

similarities among the treatments were explored with a NMDS

diagram (Figure 3B). A gradual change in the patterns from

30 min to 8 h was observed in both sets of samples. The amount of

RNA had a small influence on the resulting pattern. However, all

the samples showed a similarity higher than 90% among them. In

conclusion, keeping the samples on ice was enough to guarantee

that profiles did not differ significantly, even after 8 hours, with

two of the three primer combinations tested.

In experiment 2 the effect of keeping samples either on ice or at

room temperature was tested (Figure 3C). Duplicates were done

for each time point and only one set of primers was used (A8). As

expected, samples kept at room temperature during 20 hours

differed the most from the initial samples. Samples kept on ice

were more similar to the initial ones than their room temperature

counterparts for the same sampling times.

Differences with time were tested again with a culture of

Micromonas pusilla (experiment 3). Triplicates were done for each

sampling point, from 15 min to 4 h, maintaining replicates of M.

pusilla cultures at 4uC or at 19uC. Sampling and filtering were

practically instantaneous, with no time delay. The primer

combination A8 was used to obtain the fingerprints (Figure 4A)

and distances among them were represented in a NMDS diagram

(Figure 4B). No substantial differences were observed from 15 min

to 2 h in samples kept at 4uC (except for one of the triplicates from

2 h that was an outlier). Slightly larger differences were observed

at 19uC, even though all the samples were more than 70% similar

to the t = 0 ones. At 4 h, however, both samples 4uC and at 19uC
were significantly different from t = 0. In addition, the triplicates of

samples kept at 19uC were very different from each other.

We carried out permutational multiple analysis of variance

(PERMANOVA) with the results from experiments 2 and 3. In

both cases, time resulted in the largest differences among samples

(r2 = 0.455 and 0.495 respectively, p = 0.001 in both experiments).

Temperature was also significant in both experiments although it

explained a lower percentage of variability than time (r2 = 0.232

and 0.066 respectively, p = 0.001 and 0.02).

There were too few replicates in experiment 2 to carry out

ANOSIM pairwise tests, but in experiment 3, the R values

gradually increased between 15 min and 2 h for samples in ice,

while they were high already at 15 min at room temperature. In

conclusion, as could be expected, time should be kept as short as

practical, but keeping the samples in ice will decrease the

problem.

Micromonas pusilla gene expression under dark and light
conditions

In experiment 4, a culture of Micromonas pusilla was incubated

both in the dark and in the light. Different TFA patterns were

observed (Figure 5). With the primer combination used, the

number of cDNAs retrieved in dark samples was larger than in

light samples, but the total number of peaks was very small so

that the significance of the differences was low (Figure 5). This

particular example shows how the technique can also be used to

identify genes with differential regulation under the experimental

conditions tested (as is the case in differential display).

Figure 2. Examples of TFA profiles, showing the sensitivity and
repeatability of the technique. All panels are replicates of the same
environmental sample. Panels A and B show replicate fingerprints
obtained from 20 ng of total RNA and panels C and D from 40 ng of
RNA. The horizontal scale goes from 330 to 390 bp from left to right.
doi:10.1371/journal.pone.0022950.g002
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Relationship of TFA patterns with different primer
combinations

To check whether different primer combinations would cluster

samples similarly, samples from three vertical profiles (from

stations CM, MD and D) were selected (see location of samples

in Table 3) and the procedure was run with three different primer

combinations (A8, C6 and G6). The NMDS diagram in Figure 6

presents the ordination of TFAs from all these runs. TFAs

obtained with A8 showed that samples separated along the depth

gradient, the largest distances appearing between intermediate and

deep samples. Near-surface samples obtained with the A8 primer

combination clustered together. With the C6 combination deep

samples were also separated from the rest of the samples but the

distance between all the samples was much less compared to the

separation obtained with the other combinations. The G6 com-

bination also resolved the vertical profile but the intermediate

depths were not as well separated as with the A8 primer combination.

Altogether the surface samples of the horizontal transect

clustered together for each primer set and largest differences were

observed along the depth profile. This was very clear with primer

combinations A8 and G6. In contrast, the C6 primer combination

was not as good at resolving the vertical gradient. The A8 primer

combination was chosen for all our analyses for its resolution and

repeatability.

Discussion

The aim of this study was to develop a fingerprinting method

that could track changes in microbial community gene expression

Figure 3. Comparison of TFA profiles from environmental samples filtered at progressively longer times after collection. The
shortest practical time was 30 minutes. A) and B) experiment carried out on October 3, 2007 with samples kept on ice; and C) timing experiment
carried out on September 25, 2008. A) Cluster analysis from a Bray-Curtis similarity matrix of TFA done with three different primer combinations (A8,
C7, and A7) from the same sample filtered at different times between 30 min and 8 h. Gray lines indicate differences were not significant at the 5%
level. The lane next to each sample corresponds to the peak pattern (in a base pairs scale) of each sample in a virtual gel. B) NMDS diagram
comparing fingerprints obtained using two initial RNA amounts with the A8 primer combination. C) NMDS comparison of samples kept on ice or at
room temperature filtered at different times between 30 min and 20 h. Patterns were obtained with the A8 primer combination. Missing replicates
are due to low quality electropherograms.
doi:10.1371/journal.pone.0022950.g003
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patterns and that was compatible with usual working conditions in

oceanographic cruises. The main challenge in a cruise is to obtain

sufficient mRNA in as short time as possible. First, samples from

several thousand meters deep may take several hours to reach the

lab on board. The ideal solution would be to fix the samples at in

situ depth. However, there is no commercially available sampling

bottle able to do this. Besides, fixing in situ requires large amounts

of fixative making the whole operation impractical and environ-

mentally harmful. And, second, open sea oligotrophic waters have

very low concentration of microorganisms and require more

filtration time. One possibility is to use mRNA amplification

methods. However, these add an additional step that makes the

procedure more expensive and complex. We wanted to test

whether we could find a method that would provide representative

gene expression patterns for a large number of samples despite

these difficulties. We chose differential display and modified this

technique for faster and easier processing. This technique was

developed primarily to identify genes expressed in tumor cells

versus normal cells [27–29]. The technique is simple as it is

based on PCR and conventional sequencers, it is sensitive and

repeatable, and relatively quick and economical. Moreover, TFA

does not require prior knowledge of the mRNA sequences to be

detected. This last characteristic is especially important for the

study of natural communities.

Of course, there are several common difficulties and assump-

tions when differential display is used. First, a band in gel

electrophoresis (or a peak in our case) might be due to several

genes. And, conversely, one gene could be represented by more

than one fragment. This is also the case with DNA fingerprinting

techniques such as DGGE, T-RFLP, or ARISA. Particularly in a

mixed natural community, gene fragments of identical length

could originate from different microorganisms. As long as these

events are repeatable, however, they are of no concern for the

fingerprinting objective.

A second concern is the potential bias of the reverse

transcription. It is well known that the experimental variation in

a RT-PCR process is mainly attributable to the reverse

transcription step [30,31]: although PCR is a cyclic reaction that

accumulates errors, its repeatability is significantly higher than that

of the single-step reverse transcription reaction [30], where there

are several factors that could influence the final product. In order

to improve the repeatability of the assay we optimized the process

by testing several RT enzymes and annealing temperatures. With

Figure 4. Elapsed time between sampling and filtration in a
Micromonas pusilla culture. A) Virtual gel of Micromonas pusilla
fingerprints of triplicate samples filtered at different times between
15 min and 4 h after splitting conditions: 4uC or 19uC samples. Patterns
obtained with the A8 primer combination. The horizontal scale shows
fragment size, from 80 to 570 bp (left to right).. Each time is
represented by three replicates. B) NMDS diagram for the same
experiment showing samples kept at 4uC (numbers, following
increasing times from 15 min to 4 hours) or at 19uC (letters, following
alphabetical order from 15 min to 4 hours). Times correspond to 15,
30 min, 1, 2, or 4 hours.
doi:10.1371/journal.pone.0022950.g004

Figure 5. Micromonas pusilla gene expression under dark and
light conditions. A) Virtual gel of the TFA patterns for experiment 4.
The horizontal scale shows fragment size, from 80 to 570 bp (left to
right). D: dark samples, L: light samples. Numbers are replicates for each
condition. B) Dendrogram showing the clustering of light and dark
samples for the same experiment.
doi:10.1371/journal.pone.0022950.g005
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the thermostable reverse transcriptase chosen we obtained highly

repeatable peaks in repeated reactions, not only for the large

peaks but also for the small ones (Figure 2). The high annealing

temperature during reverse transcription reduced the degree of

mRNA secondary structure, which is substantial in the 39untrans-

lated region (39UTR) we were targeting by using of oligo(dT)

primers. In addition, the RT might preferentially amplify some

mRNAs, thus altering the relative proportions of the genes being

expressed. In particular, shorter mRNAs might be preferentially

used as targets [32]. We did not find any significant differences in

this respect when we tested different reaction times or when we

compared peaks corresponding to different sizes.

And third, the final PCR step is subject to the usual PCR biases,

and some cDNAs might be differentially amplified. As a result of

the two latter caveats, the relative proportions of the expressed

genes in the final fingerprint may not be exactly as they were in the

natural sample. Because of the clearly delimited purpose of the

approach, however, this would not be a problem either as long as

the biases were repeatable.

As shown in the Results section, the expression patterns found

were always highly repeatable under the conditions used.

Moreover, for the approach to be useful as a fingerprint it was

not necessary to be able to identify the genes being expressed, to

determine how many genes were being expressed at a particular

moment, or to quantify the expression of the different genes.

Here, TFA was developed and applied to picoeukaryotic

communities taking advantage of the poly(A) tail of mRNA in

eukaryotes. However, TFA can be easily modified to be used with

prokaryotes by previously removing rRNA and subsequent

polyadenilation of the RNA of the bacterial fraction as described

in [1].

According to the manufacturer of the kit (www.genhunter.com),

the use of three oligo(dT) primers (for the reverse transcription

reaction) plus eighty random primers (for the subsequent PCR) will

retrieve 96% of the genes in any given eukaryotic cell. Since only

one of three oligo(dT)s and only one of eighty random primers

were used in the present work, the fingerprints corresponded to a

very small fraction of all the genes being expressed at any one

time. In effect, when the technique was applied to a pure culture of

M. pusilla the number of peaks was very low in one of the

experiments (Figure 5). This number of peaks would not be

enough for a proper classification of samples. However, when the

same technique was used with natural samples, in which a mixture

of cell populations is present, the number of peaks was sufficient.

Economy of resources and reactions being essential for a

convenient fingerprinting technique, we decided that the use of

one random primer and one anchor primer was the most efficient

alternative.

Since the primer combinations are arbitrary, the transcripts

retrieved with each set should be a random representation of the

genes being expressed at the time of sampling. Therefore, most

primer combinations should result in similar clustering of samples.

However, the resulting clustering will be more robust if there are

more peaks and there is a range of peak heights. Since this will

change at random with the primer sets and the particular

communities being analyzed, optimization requires testing differ-

ent primer combinations for each type of environment studied. In

the case of the Mediterranean waters analyzed the primer

combination A8 was the best at discriminating samples from the

vertical profile (Figure 6) and was, thus, chosen as our preferential

combination for subsequent reactions. Likely, the primer combi-

nation will have to be optimized for each type of sampling. Once

this has been done, the procedure is relatively cheap and quick.

In order to have a positive control, replicate cultures of

Micromonas pusilla were incubated in the light and in the dark. It is

well known that transcripts of algae change dramatically between

day and night [33]. Obviously, if the technique is to work in nature

it should be able to detect differences between light and dark

incubations in a phototrophic protist. The patterns were clearly

different, revealing more transcriptional activity in the dark than

in the light with the primer combination used. This can be

expected since phototrophs tend to concentrate on carrying out

photosynthesis during the light hours, while the dark is used for

biosynthesis of all the different cell components plus all the

regulation involved in nucleus and cell division. As mentioned

earlier, the TFA is proposed here only as a fingerprinting

technique. Despite this, in some cases it may be of interest to

identify some of the genes observed. If a gene turned out to be

relevant, the sample could be run in a polyacrylamide gel and the

corresponding band could be cloned and sequenced.

The main challenge in a cruise is to obtain sufficient mRNA

in as short a time as possible to prevent major changes in the

transcript composition from the fresh sample (this is due to the

labile nature and relatively short half-lives of mRNAs). Unfortu-

nately this is not always possible: as explained, samples from lower

depths take hours to reach the lab on board, and oligotrophic

waters have very little material and require more filtering time.

Therefore, another important concern was to assess to which

extent the time delay between sampling and filtering affected gene

Figure 6. Relationship of TFA patterns with different primer
combinations. NMDS diagram comparing fingerprints obtained with
three different primer combinations from the MODIVUS transect from
the coast to offshore in the NW Mediterranean Sea. Samples are labeled
according to station (CM, MD, and D) and depth (4 to 2000 m). The
number added after the name of the station indicates depth. The
primer combinations used were A8, C6 and G6. Sample MD140
analyzed with the A8 primer combination was very distant from all the
others and has not been represented for clarity.
doi:10.1371/journal.pone.0022950.g006

Table 3. Location and depths of samples analyzed in Figure 6.

Station Latitude N Longitude E Depths sampled (m)

CM 41u249 2u489 5/30/44

MD 40u549 2u509 4/140

D 40u399 2u519 5/65/500/2000

doi:10.1371/journal.pone.0022950.t003
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expression. The two timing experiments with natural marine

communities supported the idea that time did not significantly

alter the patterns of gene expression as long as samples were kept

on ice, for the picoeukaryotic transcripts retrieved at least up to

two hours after sampling with several specific primer combina-

tions.

In summary, TFA is a compromise among the different require-

ments that provides a repeatable gene expression pattern in a

relatively simple and inexpensive way and that will be practical to

use in oceanographic cruises. Results suggest that TFA is a useful

technique when a large number of conditions or treatments have

to be compared side by side, by assessing a portion of the genes

expressed by such communities. TFA is an indicator of the extent

of changes caused by different environmental conditions. This

previous analysis would then help in deciding which samples to use

for more powerful, but time-intensive (and costly) methods for

estimating gene expression patterns.
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Picoplankton Assemblages across Hydrographic Fronts in the Southern Ocean,

Studied by Denaturing Gradient Gel Electrophoresis. Limnol Oceanogr 49:
1022–1034.

19. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, et al. (2006)

Annually reoccurring bacterial communities are predictable from ocean
conditions. Proc Natl Acad Sci U S A 103: 13104–13109.

20. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, et al. (2008) A
latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad

Sci U S A 105: 7774–7778.

21. Liang P, Averboukh L, Pardee AB (1993) Distribution and cloning of eukaryotic
mRNAs by means of differential display: refinements and optimization. Nucleic

Acids Res 21: 3269–3275.
22. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by

means of the polymerase chain reaction. Science 257: 967–971.
23. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates.

In: Smith WL, Chanley MH, eds. Culture of marine invertebrate animals. New

York, NY: Plenum Press. pp 29–66.
24. Olson RJ, Zettler ER, DuRand MD (1993) Phytoplankton analysis using flow

cytometry. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ, eds. Handbook of
Methods in Aquatic Microbial Ecology. Boca Raton, FL: Lewis Publishers. pp

175–186.

25. Poretsky RS, Gifford S, Rinta-Kanto J, Vila-Costa M, Moran MA (2009)
Analyzing gene expression from marine microbial communities using environ-

mental transcriptomics. J Vis Exp 24: doi: 10.3791/1086. http://www.jove.
com/details.stp?id = 1086.

26. Clarke KR (1993) A method of linking multivariate community structure to
environmental variables. Marine ecology progress series 92: 205.

27. Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, et al. (2000) A

ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint
for DNA damage. Nature 404: 42–49.

28. Lo P-K, Chen J-Y, Lo W-C, Chen B-F, Hsin J-P, et al. (1999) Identification of a
novel mouse p53 target gene DDA3. Oncogene 18: 7765–7774.

29. Okamoto K, Beach D (1994) Cyclin G is a transcriptional target of the p53

tumor suppressor protein. EMBO J 13: 4816–4822.
30. Stahlberg A, Hakansson J, Xian X, Semb H, Kubista M (2004) Properties of the

reverse transcription reaction in mRNA quantification. Clin Chem 50: 509–515.
31. Brooks EM, Sheflin LG, Spaulding SW (1995) Secondary structure in the 39

UTR of EGF and the choice of reverse transcriptases affect the detection of
message diversity by RT-PCR. Biotechniques 19: 806–812, 814–805.

32. Tan SS, Weis JH (1992) Development of a Sensitive Reverse Transcriptase PCR

Assay, RT-RPCR, Utilizing Rapid Cycle Times. Genome Res 2: 137–143.
33. Monnier A, Liverani S, Bouvet R, Jesson B, Smith J, et al. (2010) Orchestrated

transcription of biological processes in the marine picoeukaryote Ostreococcus
exposed to light/dark cycles. BMC Genomics 11: 192.

Transcriptome Fingerprinting in Marine Communities

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e22950


