Skip to main content
. 2011 Aug 9;9(8):e1001122. doi: 10.1371/journal.pbio.1001122

Figure 4. Clumps of cells have a growth advantage over an equal number of single cells in low sucrose concentrations.

Figure 4

(A) A 40× confocal image of W303 yeast cells showing the clumpiness phenotype of two different alleles of AMN1. The amn1-W303 (non-clumpy) strain yJHK112 constitutively expressed mCherry driven by the ACT1 promoter and is shown in red. The AMN1-RM11 (clumpy) strain yJHK223 constitutively expressed mCitrine driven by the ACT1 promoter and is shown in green. (B) FACS inoculation. All cells expressed mCitrine driven by the ACT1 promoter. By gating on pulse width and fluorescence, clumps of 15 to 30 cells were differentiated from single cells. The number of cells and the gating for each well was set on the FACS software. After 85 h of growth without shaking at 30°C, plates were read on a fluorescent scanner and growth was scored by manually counting colonies. (C) Comparison of growth between inoculations of clumps of 15–30 cells and 30 individual cells using clumpy, AMN1-RM11 strains yJHK223 (SUC2) and yJHK224 (suc2Δ). Results shown are totals of three experiments; each experiment used one plate for each sugar concentration, which represents 24 wells for each combination of genotype and clumpiness. Error bars refer to 95% binomial confidence interval using adjusted Wald method. The suc2-1cyt (cytoplasmic-invertase only) strain yJHK259 was also tested and did not grow in any well in 2, 4, 8, or 16 mM sucrose media and grew in 100% of the wells in 4 mM glucose+4 mM fructose media (not shown).