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Incomplete Data: What You Don't Know Might Hurt You
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Abstract

Molecular epidemiology studies commonly exhibit missing observations. Methods for extracting
correct and efficient analyses from incomplete data are well known in statistics, but relatively few
such methods have diffused into applications. I review some areas of incomplete-data research that
are relevant to molecular epidemiology, and appeal for greater efforts by statisticians to translate
their methods into practice.

[T]here are known knowns; there are things we know we know. We also know
there are known unknowns; that is to say we know there are some things we do not
know. But there are also unknown unknowns — the ones we don't know we don't
know.

U. S. Secretary of Defense Donald H. Rumsfeld
Department of Defense news briefing, February 12, 2002 (1)

Secretary Rumsfeld was referring to the problems of gathering and synthesizing accurate
intelligence on terrorists and their plans. But the analogy to incomplete data in molecular
epidemiology research is apt. There are the “known knowns” — the observed data that we
analyze as best we can within the limits of sample size and available scientific information.
Then there are the perilous “known unknowns” — the unobserved values of the missing
data. These we can properly impute using the observed data and a few judiciously chosen
assumptions. More dangerous still are the “unknown unknowns” — the data on subjects
who were excluded from the study specifically because they had some missing items.

Desai et al. (2) review the statistical issues surrounding the analysis of incomplete data.
They observe that a large fraction of studies published in this journal exhibit missing
observations and that disclosure of the amount of missing data was inconsistent. Moreover
only a handful of studies employed statistical methods tailored specifically for incomplete
data. This is unfortunate, because the proper treatment of missing data has been a popular
topic in the statistical literature for several decades. One can hardly lay the blame for this
state of affairs at the feet of the scientists who publish in CEBP, however, as the statisticians
who derived these methods have not always done their best to translate their findings into
comprehensible prose and friendly software. Happily, Desai et al. (2) brims with practical
advice for the analysis and reporting of incomplete data. | am hopeful that their work will
have the intended effect. | offer here a few further observations intended to add some depth
to the picture.

Daniel F. Heitjan, Department of Biostatistics & Epidemiology, University of Pennsylvania, 622 Blockley Hall, 423 Guardian Drive,
Philadelphia, PA 19104; voice: 215-573-7328; fax: 215-573-4865; dheitjan@upenn.edu.
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Ignorability conditions

The pattern of missing data, like the observed data set itself, is a realization of a random
process. Thus in principle one has to model and analyze the missing-data indicators just as
one models other binary data. A thrust of missing-data research has been to identify
ignorability conditions, or assumptions about the missing-data distribution that permit us to
avoid modeling it. Ignorability can result in enormous simplification of the data analysis;
rather than have separate models for the notional complete data and the missingness process,
one simply treats the missing values as though there had never been any intention of
collecting them.

Desai et al. (2) provide a concise summary of the standard ignorability conditions formally
defined first in Rubin (3) and given their current form in Little and Rubin (4). The most
restrictive is missing completely at random (MCAR), which we take to mean that the
probability that a potential observation is missing is independent of its own value and of
other data values, known and unknown. Slightly less restrictive is missing at random
(MAR), defined to mean that the probability that a potential observation is missing,
conditional on its value and the value of other data items, depends only on observed items.
The negation of MAR is missing not at random (MNAR), which means that the probability
of an observation being missing depends on the observation itself, even given all the other
potential measured data.

It is well known that MCAR is sufficient to render correct a complete-case analysis — that
is, an analysis that excludes all subjects who have missing items. Commonly we can test the
null hypothesis of MCAR by comparing the distribution of a fully observed variable across
groups defined by the presence or absence of some other variable. A significant test strongly
suggests that the data are not MCAR.

The weaker condition MAR, together with the assumption that there are no a priori ties
between the parameters of the data model and the missing-data model, implies that one can
ignore the missing-data model in performing Bayesian or likelihood-based data analysis.
Standard SAS analysis routines such as Procs Mixed and Glimmix assume MAR. To
evaluate the MAR assumption, one can posit models that include MAR as a special case and
test MAR as a null hypothesis. Unfortunately, such procedures are unreliable because they
are exquisitely sensitive to unverifiable model assumptions. (4)

These oft-quoted results represent the most general versions of missing-data ignorability
conditions, applicable in every situation. They are sufficient conditions, however, not
necessary; thus their violation does not imply that ignorability does not hold. An example
from molecular epidemiology is instructive. Suppose we have an outcome — disease
incidence, survival time or some other phenotype — that is observed on all subjects in our
study. We seek to relate this outcome to a panel of biomarkers via a regression model, where
the biomarkers' effects will be evaluated in terms of functions of the regression coefficients
— i.e., slopes, odds ratios or hazard ratios. The relevant fact is that a complete-case analysis
of such data is perfectly valid for estimation of the regression model as long as the missing-
data probability does not depend on the value of the outcome. That is, MCAR status of the
biomarkers is not necessary for valid data analysis.

Why is MCAR not necessary here? The issue is what you seek to estimate. If you are only
interested in the regression coefficients, then we obtain valid estimates however the subjects
with missing items are chosen, as long as it does not depend on the value of the outcome
itself. Even an NMAR mechanism — i.e., a mechanism where the probability that the
biomarker is missing depends directly on the biomarker value — induces no bias.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2012 August 1.
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The situation would be different if we were attempting to estimate a parameter of the
marginal distribution of the outcome, such as its mean value in the population. If the
outcome is associated with the biomarker, and the value of the biomarker determines the
probability that an observation is missing, then the complete cases are a non-representative
sample of the population, and consequently the mean of the outcome in the complete cases
is biased. Thus for example in a cohort study in which one intends to relate a panel of SNPs
to disease incidence or survival, we need not be concerned with the reasons that some SNP
data are missing, as long as we can be certain that the missingness probability, given the
SNP values and the outcome, does not depend on the outcome.

The need for imputation

This is not to say that the complete-case analysis is preferred, even when valid. In fact,
missing data can have a profound effect on efficiency. To see this, consider a study relating
an outcome to a panel of N biomarkers. If we assume that each biomarker is missing
independently with probability g, then the probability that a subject has complete data is (1-
q)N. Table 1 shows the dependence of this probability on g and N. Note that even with a
small proportion of SNPs missing, the fraction of complete cases in the data set is minute
once the number of SNPs is substantial. For example, if only 2% of SNPs are missing, with
40 SNPs in the panel fewer than half of the subjects will have complete data. Complete
independence gives a worst-case scenario and fortunately is not a realistic model. Under the
more plausible assumption that the missing data will be concentrated within selected
subjects, as would obtain if a fraction of subjects contributed insufficient material for
evaluation of all biomarkers, the situation is less dire. Nevertheless, anyone who has
attempted to conduct a stepwise regression on a data set with many missing predictor values
has surely encountered this problem of the vanishing data.

Thus in this type of study the major concern is not nonignorability bias but loss of power
and precision. Yet even with 10% missing SNPs, which would result in catastrophic data
losses, on average subjects will have 90% of their SNP data, so presumably the fraction of
information available on the SNP-outcome relationship far exceeds the fraction of complete
cases. This is where imputation — the creation of substitute values for the missing
observations — comes in. If we can impute data in a principled and robust way, we can hope
to unlock that information and achieve the greatest possible efficiency.

Multiple imputation

Multiple imputation is the process of taking multiple draws from the predictive distribution
of the missing observations given the complete observations under relevant model
assumptions. (4) The idea is to fill in likely values for the missing data. We generate the
imputations by a process of simulation that reflects our uncertainty about their true values.
We create multiple data sets so as to avoid understating uncertainty about the true values of
the missing items. One then analyzes each filled-in data set as a complete data set, finally
combining the results across the imputations.

Imputation requires a model to describe the notional complete data, a model for the missing-
data probability mechanism (typically assumed MAR), a numerical method for estimating
the model, and a sampling algorithm to create the imputations. Some imputation procedures
rely on implicit models; for example, predictive-mean matching selects imputations from
subjects whose data are complete and that closely match the incomplete observations on a
panel of fully observed predictors. (5) Such procedures can be valuable when the complete-
data model is potentially complex. As a rule, the imputation model should be at least as rich
as the analysis model. (6)
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Extensions of models to coarse data

Desai et al. (2) hint that one can consider censored observations as a kind of partially
missing data. That is, when a subject's survival is censored at, say, 5 years, we know only
that his true survival time is some number larger than 5. Compare this to a completely
missing observation, where all we know is that the survival time is something greater than 0.
One can similarly describe other data types — data left-censored due to detection limits, or
rounded, heaped or interval-censored data — in terms of inequalities on the true, unobserved
data item. The recent statistical literature uses the term coarsened data to describe this more
general form of incompleteness. (7) One can readily extend MAR and MCAR to the coarse-
data model; the relevant generalizations are denoted coarsened at random (CAR) and
coarsened completely at random (CCAR). (8) Contrary to the assertions of Desai et al. (2)
and Little and Rubin (4), censored data should not be considered automatically NMAR;
applying the CAR condition, censoring is nonignorable when the censoring limit and the
true value are correlated. This would occur if subjects who enroll in the early stages of a
clinical trial are more (or less) hardy than those who enroll later, or if subjects are
preferentially lost to follow-up shortly before experiencing the event of interest.

Sensitivity analysis

As indicated above, MAR underlies many commonly used methods for analyzing and
imputing incomplete data. When the missing data mechanism cannot reasonably be assumed
to be MAR, one option is to fit models that explicitly assume dependence of the missingness
probability on missing values. (9) This is both technically challenging and risky, however,
as conclusions can be exquisitely sensitive to aspects of the assumed model that the data
cannot robustly address.

A practical approach that has attracted interest recently is local sensitivity analysis. This
involves assuming a provisional MNAR missing-data model that includes MAR as a special
case, and evaluating the sensitivity of conclusions to small departures from MAR. The
rationale is that if local sensitivity is modest — i.e., estimates of key parameters are
unaffected by mild nonignorability — then we can trust the MAR assumption and avoid
complex nonignorable modeling. Methods and workbench software exist for performing
such an analysis in the generalized linear model with missing outcomes, the linear mixed
model for longitudinal data with dropout, and censored data in observational studies and
clinical trials. (10-13) As one would expect, sensitivity is modest if the fraction of
incomplete data is small. Moreover, estimates of group-comparison parameters (hazard
ratios, odds ratios, and differences in means) are insensitive to departures from MAR even if
the fraction of incomplete data is large, as long as it is the same in the groups being
compared.

Unknown unknowns: Missing data not disclosed

Desai et al. (2) found that 45% of the articles in their review used data availability as an
inclusion criterion. This is in general a bad practice, as excluding data, either from the study
data set or from a data analysis, invites bias in estimation of both summaries of marginal
distributions (means, medians, proportions) and of relationships between outcomes and
predictors (odds or hazard ratios, differences in means). If we know the fraction of subjects
excluded, we can at least conduct a sensitivity analysis to evaluate whether nonignorability
can affect conclusions. The problem with excluding subjects based on data availability is
that the resulting database does not even allow us to count the excluded observations, and
therefore we cannot perform even a rudimentary sensitivity analysis.
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Desai et al. (2) have presented an excellent summary of the current status of analysis with
missing data in molecular epidemiology. They have moreover proposed practical steps that

ca

n mitigate the potential biases and inefficiencies that arise with incomplete data. | applaud

their work, and encourage my fellow biostatisticians to make greater efforts to translate their
methods into this important area of research.
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