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Abstract
Background—Single nucleotide polymorphisms (SNPs) in microRNA-related genes have been
associated with epithelial ovarian cancer (EOC) risk in two reports, yet associated alleles may be
inconsistent across studies.

Methods—We conducted a pooled analysis of previously-identified SNPs by combining
genotype data from 3,973 invasive EOC cases and 3,276 controls from the Ovarian Cancer
Association Consortium. We also conducted imputation to obtain dense coverage of genes and
comparable genotype data for all studies. In total, 226 SNPs within 15 kilobases of 4 miRNA
biogenesis genes (DDX20, DROSHA, GEMIN4, and XPO5) and 23 SNPs located within putative
miRNA binding sites of 6 genes (CAV1, COL18A1, E2F2, IL1R1, KRAS, and UGT2A3) were
genotyped or imputed and analyzed in the entire dataset.

Results—After adjustment for European ancestry, no overall association was observed between
any of the analyzed SNPs and EOC risk.

Conclusions—Common variants in these evaluated genes do not appear to be strongly
associated with EOC risk.

Impact—This analysis suggests earlier associations between EOC risk and SNPs in these genes
may have been chance findings, possibly confounded by population admixture. To more
adequately evaluate the relationship between genetic variants and cancer risk, large sample sizes
are needed, adjustment for population stratification should be performed, and use of imputed SNP
data should be considered.

Keywords
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Introduction
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate translation (1). SNPs in
precursor and mature miRNAs, their processing machinery, or in miRNA binding sites of
target genes have been implicated in cancer risk (2). Liang et al. (3) analyzed 238 SNPs
from 8 miRNA processing genes and 138 genes containing potential miRNA binding sites in
339 EOC cases and 349 controls self-reported to be Caucasian, and identified associations
between EOC risk and 13 SNPs from 4 processing genes (DDX20, DROSHA/RNASEN,
GEMIN4, XPO5) and 7 binding site genes (ATG4A, CAV1, COL18A1, E2F2, IL1R1, KRAS,
and UGT2A3). We (4) genotyped 318 SNPs in 18 miRNA processing genes in 2,172 EOC
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cases and 3,052 controls of European ancestry, and identified 6 SNPs from 4 genes
(DROSHA, FMR1, LIN28, LIN28B) as significantly associated with EOC risk. Here we
conducted a pooled analysis of variants reported as risk-associated by Liang et al (3) in
3,973 cases and 3,276 controls from the international Ovarian Cancer Association
Consortium (OCAC) (5). We imputed SNPs to expand coverage of genes and regions,
totaling 249 SNPs from 10 of the 11 highlighted genes (3).

Material and Methods
Participating OCAC studies were from North America (US-CAN), the United Kingdom
(UK), and Poland (POL). Study characteristics have been reported (4) and are summarized
in Table 1. Briefly, cases had pathologically-confirmed primary invasive EOC. Controls had
at least one ovary intact when interviewed. All studies collected data on disease status, self-
reported ethnicity, and histologic subtype. Subjects with <80% European ancestry were
excluded (4), and the first two principal components (PCs) representing European ancestry
were estimated for all SNPs with call rates >99% using Golden Helix SVS PCA function,
algorithmically equivalent to EigenSTRAT. The protocol was approved by the institutional
review board at each site, and all participants provided written informed consent. Pooled
data included 3,973 cases (51% serous) and 3,276 controls.

SNP genotyping and quality control have been described (4, 6). SNP imputation was carried
out within studies (US-CAN, UK, POL) with MACH version 1.0.16 using CEU phased data
from HapMap release 22 (genome build 36). We imputed data for 186 SNPs that span 15 kb
upstream and downstream of each miRNA processing gene or reside in a putative miRNA
binding site in the 3′ UTR of target genes as predicted by SNPInfo (7) and/or PolymiRTS
(8); the remaining 63 SNPs were directly genotyped.

Study-specific odds ratios (OR) and 95% confidence intervals (CI) were estimated using
unconditional logistic regression. Log-additive genetic models were fit for each SNP,
modeling the number of copies of the minor allele. For imputed SNPs, we used expected
counts of minor alleles obtained from MACH. Study-specific estimates were adjusted for
age at diagnosis/interview (US-CAN, POL), component study sites (US-CAN), and the first
two PCs (US-CAN, UK, POL). Allele frequencies across studies were similar, suggesting
low genetic heterogeneity between populations and appropriateness for combining data.
Pooled estimates were adjusted for a) study (US-CAN, UK, POL) and b) study and the first
two PCs. We used PLINK for statistical analysis (10).

Results
Two hundred twenty-six SNPs were evaluated within or near miRNA processing genes
DDX20 (n=17), DROSHA (n=179), GEMIN4 (n=11), and XPO5 (n=19). Table 2 displays
association results for the 6 processing SNPs (or their tagSNPs) identified by Liang et al.
(3); none were risk-associated. Of all other miRNA processing SNPs evaluated, only 3
DROSHA SNPs were associated with risk (P<0.05) when accounting for study site only, but
none retained statistical significance after further adjustment for ancestry (See Supplemental
Table 1).

There were 23 SNPs predicted to disrupt miRNA binding within 6 of the 7 candidate genes
(3). We did not evaluate SNPs within ATG4A because neither genotype nor imputed data
were available for SNPs within the 3′ UTR. Table 2 shows results from the 6 binding site
SNPs (or their tagSNPs) identified by Liang et al. (3). To minimize redundancy due to
tagSNPs, results from 21 of the 23 binding site SNPs evaluated are displayed in
Supplemental Table 1. Only one previously-identified binding site SNP, CAV1 rs9920 (3),
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and two imputed CAV1 SNPs (rs1049314 and rs8713) were associated with risk in the
pooled, study site-adjusted analysis (Table 2; Supplemental Table 1). However, none of
these CAV1 SNPs were risk-associated after further adjustment for ancestry.

Study-specific estimates were generally similar across studies, and results did not change
appreciably when considering a dominant genetic model or serous-only histology (data not
shown).

Discussion
We did not detect consistent associations between the majority of previously-identified
polymorphisms (3) and EOC risk. Although we did identify associations between EOC risk
and 3 SNPs flanking the 3′UTR of DROSHA and 3 SNPs in miRNA binding sites of CAV1,
none retained statistical significance after controlling for European ancestry. Consistent with
recent large-scale (11) but not smaller studies (3, 12), we did not identify associations
between EOC risk and SNPs in miRNA binding sites of KRAS.

Several explanations exist for not replicating the findings presented by Liang et al. (3). First,
our analysis suggests their results may be confounded by population admixture,
underscoring the importance of estimating population stratification rather than relying on
self-reported ancestry in genetic association studies. Due to their relatively small sample size
(3), chance is an alternate explanation for their findings. Our pooled sample had at least 90%
statistical power to detect a SNP with a minor allele frequency of 0.09 and a log-additive OR
of 1.2. This analysis highlights the importance of having large studies and/or combining
genotype data from multiple studies to increase statistical power to detect true associations,
and demonstrates the utility of population stratification and imputation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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