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Abstract
In this paper, we describe a new method to generate a smooth algebraic spline (AS) approximation
of the molecular surface (MS) based on an initial coarse triangulation derived from the atomic
coordinate information of the biomolecule, resident in the PDB (Protein data bank). Our method
first constructs a triangular prism scaffold covering the PDB structure, and then generates a
piecewise polynomial F on the Bernstein-Bezier (BB) basis within the scaffold. An ASMS model
of the molecular surface is extracted as the zero contours of F which is nearly C1 and has dual
implicit and parametric representations. The dual representations allow us easily do the point
sampling on the ASMS model and apply it to the accurate estimation of the integrals involved in
the electrostatic solvation energy computations. Meanwhile comparing with the trivial piecewise
linear surface model, fewer number of sampling points are needed for the ASMS, which
effectively reduces the complexity of the energy estimation.

Index Terms
Polynomial splines; molecular surfaces; prismatic scaffolds; Bernstein-Bezier basis; solvation
energetics; error bounds; rate of convergence

I. Introduction
The computation of electrostatic solvation energy (also known as polarization energy) for
biomolecules plays an important role in the molecular dynamics simulation [1], the analysis
of stability in protein structure prediction [2], and the protein-ligand binding energy
calculation [3]. The explicit model of the solvent provides the most rigorous solvation
energy calculation [4]. However, due to the large amount of solvent molecules, most of the
computation time is spent on the trajectories of the solvent molecules, which severely
increases the computation cost of this method [5]. An alternative method is to represent the
solvent implicitly as a dielectric continuum [6], then the electrostatic potential is known by
solving the Poisson-Boltzmann (PB) equations [7] [8]. A more efficient method is to
approximate the PB electrostatic solvation energy by the generalized Born (GB) model [9]
[10] [11], which computes the electrostatic solvation energy ΔGelec as
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(1)

where , εp is the solute (low) dielectric constant, εw is the solvent (high) dielectric
constant, qi is the atomic charge of atom i, rij is the distance between atom i and j, F is an
empirical factor (could be 4 [9] or 8 [11]), and Ri is the effective Born radius of atom i. The
effective Born radius reflects how deep an atom is buried in the molecule and consequently
determines the importance to the polarization. The formulation of the effective Born radii is
derived in [12]:

(2)

where Γ is the molecular surface of the solute, xi is the center of atom i, and n(r) is the unit
normal of the surface at r. The details of the derivation of (2) and a fast evaluation algorithm
based on the fast Fourier transform (FFT) for (2) is discussed in [13]. Since the numerical
integrations are done on the molecular surface Γ, an accurate and analytic representation of
Γ is needed.

Three well-known molecular surfaces are shown in Figure 1 in 2D. The van der Waals
surface (VWS) is the union of a set of spheres with atomic van der Waals radii. The solvent
accessible surface (SAS) is the union of augmented van der Waals spheres with each radius
enlarged by the solvent probe radius (normally taken as 1.4 Å) [14]. The solvent excluded
surface (SES, also called molecular surface or Connolly surface) is the boundary of the
union of all possible solvent probes that do not intersect with the interior of the VWS [15]
[16]. As described in [15], the SES consists of the convex spherical patches which are parts
of the VWS as well, the toroidal patches and the concave spherical patches, which are
generated by the probes rolling along the intersections of neighboring atoms. The VWS
causes an overestimation of the electrostatic solvation energy, while the SAS leads to an
underestimation [11]. The SES is the most accurate when it is applied in the energetic
calculation and therefore it is most often used to model the molecular surface. However the
SES still has one significant drawback: it contains cusps when the rolling probe self-
intersects, which may cause singularity in the Born radii and the force calculations.

In the energetic computation, knowing the patch complexes of the molecular surface is not
enough. For convenience, an analytical representation of the molecular surface is needed
and the singularity should also be avoided. One way to generate such a model is to define an
analytical volumetric density function, for example, the summation of Gaussian functions
[17], Fermi-Dirac switching function [18], or piecewise polynomials [11], and approximate
the SES by an iso-contour of the density function. Techniques of fast extracting an iso-
contour of smooth kernel functions are developed in [19] [20]. However the error of the
generated isosurface could be large and result in inaccurate energy computation. A NURBS
representation for the SES is presented in [21]. Although it provides a parametric
approximation to the SES, it does not solve the singularity problem. Edelsbrunner [22]
defines another paradigm of a smooth surface referred to as skin which is based on the
Voronoi, Delaunay, and Alpha complexes of a finite set of weighed points. The skin model
has good geometric properties such as it is free of singularity and it can be decomposed into
a collection of quadratic patches. Triangulation schemes based on the skin model are
provided in [23] [24]. However when applied to the energetic computation, the skin
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triangulation which in fact is a linear approximation to the SES has to be very dense to gain
accuracy, which causes oversampling on the surface and hence makes the computation very
slow. Therefore it still remains a challenge to generate a model for the molecular surface
which is accurate, smooth, and computable.

The main contribution of this paper is to provide a method to model the SES as piecewise
algebraic spline patches with certain continuity at the boundary of the patches. Each patch
has dual implicit and parametric representations. Hence high order implicit surfaces can be
parameterized onto a planer domain and therefore higher order quadrature rules of 2D such
as the Gaussian quadrature rules can be easily applied to the energetic computation.
Moreover, because higher order spline patches are used to approximate the SES, fewer
number of triangles are needed to obtain the same accuracy in the energetic computation as
the linear model. The algebraic spline patches are generated based on the prism scaffold
built surrounding the original triangular mesh of the SES and are defined implicitly by
simple BB spline functions. Previous work on constructing piecewise spline patches within a
simplical hull over a triangular mesh includes generating quadric patches [25], cubic patches
[26] [27], and nonsingular and single sheeted cubic patches [28] in a tetrahedra scaffold. In
this paper, we also show that the so generated algebraic spline patches are error bounded and
free of singularity under certain conditions.

The paper is organized as follows: Section II describes the details of the algebraic spline
molecular surface (ASMS) generation; Section III discusses the error of ASMS and Section
IV discusses the application to the energetic computation and provides some examples.

II. Algebraic spline model
A. Algorithm Sketch

There are four main steps in our ASMS construction algorithm: (1) construct an initial
triangular mesh of the SES; (2) build a prism scaffold surrounding the triangulation; (3)
define a piecewise polynomial with certain continuity; (4) extract the 0-contour of the
piecewise polynomial. We are going the explain each step in detail in the following and
discuss how to make use the parametrization of the ASMS in the numerical integration.

B. Initial triangulation of the MS
So far a lot of work has been done on the triangulation of the SES or its approximation [24]
[29] [30] [31] [32]. The ASMS generation could be applied to any of these triangulations. In
our current research we use the triangulation generated by a program in the software
TexMol [32] [33] as the initial. In this program the SES is described as an iso-contour of a
sign distance function (SDF) with the isovalue equal to the radius of the water probe. The
SDF measures the distance of any point in ℝ3 to the SAS where the sign indicates which
side the point locates of the SAS. Here we define the SDF to be positive if the point is inside
the SAS and negative if it is outside the SAS. A dual contour method is used to extract the
iso-contour. The cusps created by the self-intersecting patches are detected and removed.
Features of the molecular surface are well preserved in this triangulation. We then decimate
the mesh by removing some of vertices from the triangulation. These vertices have the
smallest normal variation, so the detailed features of the surface can still be captured after
the vertices are removed [34].

C. Implicit/parametric patches generation
Given the triangulation mesh , let [vivjvk] be one of the triangles where vi, vj, vk are the
vertices of the triangle. Suppose the unit normals of the surface at the vertices are also
known, denoted as nl, (l = i, j, k). Let vl(λ) = vl + λnl. First we define a prism (Figure 2)
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Dijk:= {p: p = b1vi(λ) + b2vj(λ) + b3vk(λ), λ ∈ Iijk}, where (b1, b2, b3) are the barycentric
coordinates of points in [vivjvk], and Iijk is a maximal open interval containing 0 and for any
λ ∈ Iijk, vi(λ), vj(λ), vk(λ) are not collinear and ni, nj, nk point to the same side of the plane
Pijk(λ):= {p: p = b1vi(λ) + b2vj(λ) + b3vk(λ)}. Next we define a function in the Bernstein-
Bezier (BB) basis over the prism Dijk:

(3)

where  is the Bezier basis

We approximate the molecular surface by the zero contour of F, denoted as S. In order to
make S smooth, the degree of the Bezier basis n should be no less than 3. For simplicity,
here we consider the case of n = 3. The control coefficients bijk(λ) should be properly
defined such that S is continuous. In Figure 3 we show the relationship of the control
coefficients and the points of the triangle when n = 3. Next we are going to discuss these
coefficients are defined.

Since S passes through the vertices vi, vj, vk, we define

(4)

Next we are going to define the coefficients on the edges of the triangle in Figure 3. To
obtain C1 continuity at vi, we require that the directional derivatives of F at vi in the
direction of b2 and b3 are equal to ∇F · (vj − vi) and ∇F · (vk − vi), respectively. Noticing
that F has the form of (3) and (b1, b2, b3) = (1, 0, 0) at vi, one can derive that

, where ∇F(vi) = ni. Therefore

(5)

b120, b201, b102, b021, b012 are defined similarly.

To obtain the C1 continuity at the midpoints of the edges of , we define b111 by using the
side-vertex scheme [35]:

(6)

where
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Next we are going to define  and . In Appendix V-A we prove that our scheme
of defining this three coefficients can guarantee the C1 continuity at the midpoints of the
edges vjvk, vivk and vivj. Consider the edge vivj. Recall that any point p = (x, y, z) in Dijk can
be represented by

(7)

Therefore differentiating both sides of (7) with respect to x, y and z, respectively, yields

(8)

where I3 is a 3 × 3 unit matrix. Denote

(9)

and let A = vi(λ) − vk(λ), B = vj(λ) − vk(λ) and C = b1ni +b2nj +b3nk, then M = (A B C)T.
From (8) we have

(10)

According to (3), at the midpoint of vivj, , we have

By (6), at  we have . Therefore the gradient at ( , 0) is
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(11)

Define vectors

(12)

Let

(13)

(14)

Let . In order to have C1 continuity at ( , 0), we should have ∇F · d3(λ) =
0. Therefore, by (11) and (14), we have

(15)

Similarly, we may define  and .

Now the function F(b1, b2, b3, λ) is well defined. The next step is to extract the zero level set
S. Given the barycentric coordinates (b1, b2, b3) of a point in the triangle [vivjvk], we find
the corresponding λ by solving the equation F(b1, b2, b3, λ) = 0 for λ and this could be done
by the Newton’s method. Then we may get the corresponding point on S as

(16)

D. Smoothness
Theorem 2.1—The ASMS S is C1 at the vertices of  and the midpoints of the edges of

.

Theorem 2.2—S is C1 everywhere if every edge vivj of  satisfies ni·(vi − vj) = nj·(vj −
vi).

Theorem 2.3—S is C1 everywhere if the unit normals at the vertices of  are the same.
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Proofs of the theorems are shown in the Appendix.

E. Parametrization and quadrature
In this section, we would like to show how the ASMS is applied to the computation of (2).

Since we use the ASMS to represent the molecular surface, now Γ = S. Let . We
decompose the entire surface S into patches {Sj} with Sj being the AMSM generated over
triangle j, then we have

(17)

For any point x = (x, y, z) on Sj, by the inverse map of (16), one can uniquely map x to a
point in triangle j and get its baricentric coordinates (b1, b2, b3) with b3 = 1 − b1 − b2.
Therefore, x, y, z can be represented in terms of (b1, b2):

Replacing (x, y, z) with (b1, b1, b3) in (17) and letting

we get

(18)

where

We then apply the Gaussian quadrature to (18):

(19)

where ( ) and Wk are the Gaussian integration nodes and weights on the triangles.

III. Error of the ASMS model
In order to show the error of S to the true surface S0, we do a test on some typical surfaces
(Table I) S0:= {(x, y, z): z = f(x, y), (x, y) ∈ [0, 1]2} which are considered as the true surfaces.
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We generate a triangulation mesh over the true surface with the maximum edge length h
being 0.1. Based on the mesh, we construct the ASMS model S. The error of S to S0 is

defined as , where p ∈ S, q ∈ S0, and p and q have the same (b1, b2, b3) coordinates
but different λ. We sample (p, q) on the surfaces and compute the maximum relative error.
For the point pair p(b1, b2, b3, λp) and q(b1, b2, b3, λq) defined above, we prove that their
Euclidean distance is bounded by the difference of their λ coordinates.

Lemma 3.1
The error of the approximation point p to the true point q is bounded by |λp − λq|.

Proof

To study the rate of converges of S to S0, we gradually refine the initial mesh. Since the
error is bounded by |λp − λq|, we compute the ratio of the maximum difference of λp and λq
to h, h2, h3, and so forth. As h decreases, we check if the ratio converges or not, which
allows us to know the highest rate of convergence of S to S0. For most of the test functions
in Table I, we observe that S converges to S0 as fast as O(h3). We also observe that for the

case , the rate of convergence reaches O(h4). We show the limit of the ratio

 as h ↓ 0, denoted as C, in Table I. Hence we draw the following claim:

Claim: Let h be the maximum side length of triangulation mesh , p be the point on the
ASMS, q be the corresponding point on the true surface, then p converges to q at the rate of
O(h3). i.e. There exists a constant C such that ||p − q|| ≤ Ch3.

We generated the ASMS for the real proteins based on different size of meshes (Figure 4)
and show the error of the ASMS to the SES of three proteins: 1GCQ (843 atoms), 1ML0
(1051 atoms), and 1KKL (1276 atoms) in Table II. Here the SES is modeled as a level set of
the summation of fast decaying Gaussian functions. The ASMS is generated from the
triangulation of the SES at different resolution. The number of triangles of the initial meshes
are listed in Table II. The error εmax is defined as the one-way Hausdorff distance from the

ASMS to the SES: . As we see in the table, the errors are small and
decrease rapidly as the initial triangulation becomes dense.

IV. Application to the biomolecular energetic computation
We apply the ASMS model to the GB electrostatic solvation energy computations of the
example proteins 1PPE (436 atoms), 1HIA (693 atoms), 1CGI (852 atoms), 7CEI (1912
atoms), 1F15 (7704 atoms), and 1KXP (11859 atoms). The ASMS models S for the proteins
are generated based on the initial mesh with different number of triangles (Table III). We
show the ASMS of the example molecules generated from the decimated triangulations in
Figure 5 and Figure 6. As a comparison, we compute the polarization energy Gpol for both
the ASMS and the piecewise linear (PL) surfaces and show the energy results and the timing
in Table III. For all the computations, a 4-point Gaussian quadrature rule over a triangle [36]
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is used for the numerical integration in (19) when computing the Born radii. The running
time contains the time cost of computing the integration nodes over the surfaces, computing
the Born radii, and evaluating Gpol. If we consider the energy computed from the dense
mesh as accurate, as we see from the table, the Gpol computed from the coarse PL model has
a large error, however for the coarse ASMS model, it is very close to the dense mesh result
but with less time. On the other hand, to get a energy result of the same accuracy, fewer
number of triangles are needed for the ASMS model than the PL model. For example, for
the protein 1CGI, the Gpol computed from the ASMS with 3674 triangles is −1394.227 kcal/
mol. However to get a similar result, 8712 triangles are needed for the piecewise linear
model. Therefore the ASMS model is much more efficient in the energetic computation than
trivial piecewise linear models.

V. Conclusions
We have introduced a method to generate a model for the molecular surface. Like the other
molecular surface models, this ASMS model is smooth and close to the SES as long as the
initial triangulation is based on the SES. In addition, it has dual implicit and parametric
representations. The implicit representation enables us to flexibly vary the surface by
selecting different level sets, while the parametric representation allows us easily apply the
ASMS to the numerical computations, such as the numerical integrations involved in the
finite element method or the boundary element method. Moreover, unlike the other
piecewise linear models, the ASMS surface is of higher degree, therefore, to get the same
accuracy, fewer number of triangles (roughly one-third of the PL model) are needed for the
ASMS when it is applied to the numerical integrations. For many large system problems, for
example the atomistic molecular dynamics simulations, efficient computation is the most
concerning issue, hence he ASMS is very suitable to be used in this kind of problems. We
should mention that, while not detailed in this paper, the algorithm of Section II-C can, by
repeated evocation, yield a hierarchical multiresolution spline model of the molecular
surface. In the future research we could extend this algebraic patch model to the electrostatic
solvation forces calculation which is crucial in the molecular dynamics simulations. Fast and
accurate numerical integration is also one of the main tasks of the force calculation and is
more challenging because the integration domain contains not only the surface but also a
skin layer over each atom.
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Appendix

A. Proof of Theorem 2.1
Proof

It is obvious that S is C1 at the vertices. For the continuity at the midpoints of edges, let us
consider the edge vivj in triangle [vivjvk]. On the edge vivj, b3 = 0. So we may let b2 = t and
b1 = 1 − t. Then matrix M can be written as

and

where A = vi(λ) − vk(λ), B = vj(λ) − vk(λ) and C(t) = ni + t(nj − ni). Therefore on the edge
vivj,

The gradient of F on the edge vivj can be written as
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(20)

When , therefore

Consider the function inside the square bracket of (20) and denote it as F1. Then

(21)

Since on the edge vivj, , substituting (15) into (21), we get F1 is 0. Therefore, at the
midpoint

(22)

So S is C1 continuous at the midpoints of the edges.

B. Proof of Theorem 2.2
Proof

It is obvious that S is C1 within the triangles. By Theorem 2.1 we have already known that S
is C1 at the vertices and the midpoints of the edges. Here we only need to show S is C1 at
any points of the edges, let us consider the the edge vivj in the triangle [vivjvk].

Under the condition ni · (vi − vj) = nj · (vj − vi), we have b120 = b210, so (20) is written as

(23)

Similar as (12), we define

(24)

By (15) together with the facts that b120 = b210 and  on edge vivj, we have
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(25)

where d3(λ) is defined in (14). Plug (24) and (25) in (23), we get

(26)

Consider the function inside the square bracket of (26) and denote it as F2. Our goal is to
show that F2 = 0. Since we have already known that when , F2 = 0, this prompts us to
compute the derivative of F2 with respect to t and see if the derivative is 0. We observe that
both the numerator of the denominator of F2 are linear in terms of t, so F2 is of the form 
with

In order to show , which is equivalent to show N:= ad − bc = 0, we compute

(27)

Under the condition ni · (vi − vj) = nj · (vj − vi), we have (B − A)Tc = (vj(λ) − vi(λ))Tc = 0,
where . Therefore

(28)

and

(29)

Plug (28) and (29) into (27) and divide both sides by ||vj(λ) − vi(λ)||2, we get
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(30)

If ni = nj, (30) is 0. Now let us assume ni ≠ nj. Recall that . we define another
vector  and let D = B − A. Then c is orthogonal to e and D:

(31)

Furthermore

(32)

By the definition of c and e,

(33)

Substitute (33) into (30) and replace A × B with A × D, we get

(34)

If e and D are linearly dependent, then e × D = 0, moreover e(A × D) = 0, which yields F3 =
0. Otherwise, we introduce a new matrix

Since c, e, and D are linearly independent, M is nonsingular. So F3 (a vector) is equal to
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By the Lagrange’s formula:

(35)

and (32), (35) is zero and thus F3 = 0. So far we have proved that F2 is independent of t.
Meanwhile in the proof of Theorem 2.1, we know that F2 = 0 at . Hence F2 = 0 for all t
and therefore on the edge vivj, ∇F is

So S is C1 on the edges.

C. Proof of Theorem 2.3
Proof

As same as the proof of Theorem 2.2, we only need to show that S is C1 on the edge vivj. In
the proof of Theorem 2.1, we have already derived the gradient function on the edge vivj
(20):

Let

(36)

Following the same idea of the proof the Theorem 2.2, we compute . The numerator of 
is
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(37)

Since

(37) is 0 when ni = nj. So F4 is independent of t. By the proof of Theorem 2.1, F4 = 0 at .
So F4 = 0 for all t. So S is C1 continuous.
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Fig. 1.
Three molecular surfaces are shown for two atoms in two dimension. The boundary of the
union of balls (dotted red line) with the van der Waals radii is the VWS. The SAS (solid thin
line in purple) is the union of augmented van der Waals spheres with each radius enlarged
by the radius of a solvent probe (light blue sphere). The SES (the solid thick line in blue) is
boundary of all possible solvent probes that do not intersect with the interior of the VWS.
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Fig. 2.
A prism Dijk constructed based on the triangle [vivjvk].
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Fig. 3.
The control coefficients of the cubic Bezier basis of function F.
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Fig. 4.
The top row is the triangulation of the SES of protein 1ML0 with different number of
triangles. The bottom row is the ASMS generated from the above corresponding
triangulation.
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Fig. 5.
Molecular models of a protein(1HIA). (a) is The atomic model. (b) is the initial dense mesh
of the SES (27480 triangles). (c) is the decimated mesh of the SES model (7770 triangles).
(d) is the ASMS (7770 patches) generated from (c).
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Fig. 6.
The top row are the models of 1CGI and the bottom row are the models of 1PPE. (a) and (d)
are the atomic structures of the proteins. (b) and (e) are the decimated triangular meshes of
the proteins with 8712 triangles and 6004 triangles, respectively. (c) and (f) are the ASMS
models generated from (b) and (e), respectively.
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TABLE I

Relative error and Convergence

Function (x, y) ∈ [0, 1]2 C

z = 0 0 0

z = x2 + y2 2.450030e-05 1.010636e-2

z = x3 + y3 1.063699e-04 2.610113e-2

5.286856e-07 6.288604e-5

2.555683e-04 4.58608e-2

z = tanh(9y − 9x) 1.196519e-02 1.896754e-1

8.614969e-05 1.744051e-1 (h4)

1.418242e-05 1.748754e-02
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