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Abstract
Background—Invasive ovarian cancer is a significant cause of gynecologic cancer mortality.

Methods—We examined whether this mortality was associated with inherited variation in ~170
candidate genes/regions (993 SNPs) in a multi-stage analysis based initially on 312 Mayo Clinic
cases (172 deaths). Additional analyses used The Cancer Genome Atlas (TCGA; 127 cases, 62
deaths). For the most compelling gene, we immunostained Mayo Clinic tissue micro-arrays
(TMAs, 326 cases) and conducted consortium-based SNP replication analysis (2,560 cases, 1,046
deaths).

Results—The strongest initial mortality association was in HGF (hepatocyte growth factor) at
rs1800793 (HR 1.7, 95% CI 1.3–2.2, p=2.0×10−5) and with overall variation in HGF (gene-level
test, p=3.7×10−4). Analysis of TCGA data revealed consistent associations (e.g., rs5745709
[r2=0.96 with rs1800793]: TCGA 2.4, 1.4–4.1, p=2.2×10−3; Mayo Clinic+TCGA 1.6, 1.3–1.9,
p=7.0×10−5) and suggested genotype correlation with reduced HGF mRNA levels (p=0.01). In
Mayo Clinic TMAs, protein levels of HGF, its receptor MET, and phospho-MET were not
associated with genotype and did not serve as an intermediate phenotype; however, phospho-MET
was associated with reduced mortality (p=0.01) likely due to higher expression in early-stage
disease. In eight additional ovarian cancer case series, HGF rs5745709 was not associated with
mortality (1.0, 0.9–1.1, p=0.87).

Conclusions—We conclude that although HGF signaling is critical to migration, invasion, and
apoptosis, it is unlikely that genetic variation plays a major role in ovarian cancer mortality; any
minor role is not related to genetically-determined expression.

Impact—Our study demonstrates the utility of multiple data types and multiple datasets in
observational studies.

Keywords
gynecologic neoplasms; angiogenesis; single nucleotide polymorphism

INTRODUCTION
In the United States, ovarian cancer is the fifth leading cause of cancer death among women
(1). Despite clinical responses to combination platinum/taxane-based chemotherapy in most
women after surgical debulking, five-year overall survival lingers around 30% and, even
with modern chemotherapy, most cases with advanced disease relapse and die of ovarian
cancer (2, 3). Inherited variation may influence outcome. For example, cases with rare
germline BRCA1 or BRCA2 mutations have improved chemoresponsiveness and survival
(4). Common inherited variants may also be prognostic. Notably, we and others have
reported evidence for a role of inherited variation in angiogenesis and inflammation genes in
ovarian cancer survival (5–7). As initial ovarian cancer genome-wide association studies
have not identified common mortality-associated alleles (8), in-depth analysis of additional
candidate genes in key biological pathways holds promise for the identification of factors
with functional relevance or prognostic utility.

Here, we examined key candidate genes encoding angiogenesis factors (9, 10) mitotic
kinases (11), growth stimulatory mediators and stromal factors (12, 13), as well as genes and
regions suggested by expression studies (14) and genome-wide association studies (15–17).
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We first evaluated the association between mortality and inherited single nucleotide
polymorphism (SNP) variation among invasive epithelial ovarian cancer patients seen at the
Mayo Clinic, and we pursued key findings via analysis of data from The Cancer Genome
Atlas (TCGA). We then conducted expression analysis of tissue micro-arrays (TMAs) made
from tumors of Mayo Clinic cases, and we examined genetic association in cases from eight
additional ovarian cancer case series. In total, a multi-faceted approach integrating tumor
and replication studies aimed to provide observational and functional insight into the role of
SNPs in ovarian cancer mortality.

METHODS
Candidate Gene Analysis

Initial Study Participants—Recruitment of cases from Mayo Clinic’s gynecologic
surgery and medical oncology departments (MAY1) used established protocols approved by
the relevant Institutional Review Board (IRB) (5). All participants gave written informed
consent. Eligible cases were women aged 20 years or older living in MN, IA, WI, IL, ND, or
SD and ascertained within one year of a diagnosis of pathologically-confirmed primary
invasive epithelial ovarian cancer. Between December 1999 and March 2006, 328 cases
were enrolled; median time from diagnosis to recruitment was five days. Data on vital status
through July 31, 2009 was obtained from the National Death Index, computerized medical
records, and the Mayo Clinic Cancer Registry which annually follows cases diagnosed or
receiving initial treatment at Mayo Clinic. Death certificates were available on 95 of 172
deceased cases, and dates of death were 94.7% concordant with dates obtained via registries
(five certificates differed by a median of three days). Of 140 living cases, nine were lost to
follow-up more than two years prior. Data on clinical features of disease including
histology, surgical outcome, and chemotherapy were abstracted by experienced research
nurses with review by gynecologic and medical oncologists. DNA was extracted from 10 to
15 mL fresh peripheral blood using the Gentra AutoPure LS Purgene salting out
methodology (Gentra, Minneapolis, MN) and stored at −80°C; samples were bar-coded to
ensure accurate processing and plated with duplicates and lab standards. We excluded 12
sequence-confirmed BRCA1 and BRCA2 mutation carriers and four cases with predicted
non-European ancestry (Supplemental Figure 1) (18, 19), resulting in 312 analyzed cases
(Supplemental Table 1).

Polymorphisms and Genotyping—Key genes within angiogenesis, mitosis, growth
and stromal factors, as well as expression-based genes, and genes in key chromosomal
regions were identified using published literature (9–17) and the Kyoto Encyclopedia of
Genes and Genomes (Supplemental Table 2) (20). For angiogenesis genes, all SNPs with
minor allele frequency (MAF) ≥ 0.05 were selected; in 8q24 and 9p24, a combination of
region-tagging, gene-tagging, and replication-based SNPs were included (21), and for
remaining genes, we selected tagSNPs within 5 kb with MAF ≥ 0.05 based on European
linkage disequilibrium (LD) in HapMap v. 22 (22, 23) (r2 ≥ 0.8; expression-based genes r2 ≥
0.9). Genotyping of 897 samples (including analyzed cases, borderline cases, population
controls, and 26 duplicates and laboratory standards including CEPH trios) was performed at
the Mayo Clinic using the Illumina GoldenGate BeadArray Assay (24). Of 871 unique
MAY1 participants, only one sample failed (call rate < 90%) which was from a control;
thus, genotype data were available on all cases. We assessed departures from Hardy
Weinberg equilibrium (HWE) using Pearson goodness-of-fit and Fisher exact tests using
data from self-reported European-American controls. Manual review of the plots was
performed in GenomeStudio (Illumina, San Diego CA) to verify optimal SNP clustering,
using both replicate and inheritance information from the CEPH family trio. When data
failed to reveal one to three distinct clusters (representing AA, AB and BB genotypes), a
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SNP was failed. Of 1,152 SNPs attempted (Supplemental Table 3), 25 failed including 15
with call rate < 90%, nine with poor clustering, and one with an unresolved replicate or
Mendelian error. We excluded SNPs with MAF < 0.05 (N=123) or HWE p-value < 0.001
(N=11), leaving 993 SNPs in 168 genes. LD plots were created using Haploview v. 4.2 (25)
(Supplemental Figure 2).

Statistical Methods—We used Cox proportional hazards regression (26) to estimate
hazard ratios (HRs) and 95% confidence intervals (CIs) for association with mortality,
adjusted for clinical covariates. We accounted for left truncation using the start-stop
counting process style of input within the Cox regression framework; thus, cases did not
contribute follow-up time until date of enrollment (27). For each SNP, HRs with 95% CIs
were estimated per-allele (i.e., 0, 1, or 2 copies of minor allele), analogous to the Armitage
test for trend for binary endpoints (28). As our aim was to evaluate the role of SNPs beyond
known prognostic factors, we included as covariates the following clinical variables which
were univariately associated with mortality in a stepwise Cox regression model (p < 0.05):
age at diagnosis, pre-surgical log10(CA125), tumor stage (I, II, III, IV, unknown), tumor
grade (grade 1 or 2, grade 3, grade 4, unknown), volume of residual tumor following
debulking surgery (≤ 1 cm, > 1 cm, unknown), and laterality of tumor (right, left, bilateral,
unknown). Unadjusted HRs with 95% CIs were also estimated (Supplemental Table 4). The
proportional hazards assumption was evaluated using scaled Schoenfeld residuals (29) for
covariates and SNPs with p-values < 0.05. We conducted gene-level analyses by testing
principal components (30) that explained 90% of SNP variance using multiple degree-of-
freedom likelihood ratio tests. Analyses were performed on all MAY1 cases as well as on a
subset of 192 cases with serous histology. Due to the exploratory nature of all analyses, no
correction for multiple testing was performed.

Analysis of Top Hits using Public Data—For SNPs with p < 0.001, we analyzed
publicly-available germline genotype and mortality data on white non-Hispanic invasive
serous ovarian cancer cases (TCGA1, N=127, 62 deaths) from TCGA (31). These cases
were enrolled at seven sites and genotyped with the Illumina 1MDuo panel; Mayo Clinic
TCGA cases were excluded. Call rates ranged from 95.7% to 98.3%. As above, Cox
proportional hazards regression assuming an ordinal model was used to assess risk of death
associated with genotype at each SNP. Analyses were adjusted for study site, age at
diagnosis, stage (II, III, IV, unknown), and grade (grade 2, grade 3 or 4, unknown);
combined analyses of MAY1 and TCGA1 were adjusted for study site, age, stage (I, II, III,
IV), and grade (grade 1 or 2, grade 3 or 4, unknown). Where results were consistent, we
obtained TCGA data on additional SNPs within each gene as well as data on tumor mRNA
levels acquired via the Affymetrix Human Genome U133 GeneChip Array (using the probe
for most the highly-expressed transcript based on prior reports in normal ovarian tissue
(32)). Genotype was correlated with tumor mRNA levels using an ANOVA comparison of
means test in the R software program (33), and tumor mRNA levels were examined in
relation to survival using Cox proportional hazards models adjusted for study site, age at
diagnosis, stage (II, III, IV, unknown), and grade (grade 2, grade 3 or 4, unknown).

HGF Tissue Microarray Expression Analysis
Study Participants and Tissue Blocks—TMAs were created from formalin-fixed
paraffin-embedded tumors of 326 Mayo Clinic cases enrolled through January 2009. All
participants provided written informed consent for an IRB-approved protocol. We used an
automated Beecher Instruments ATA-27 arrayer (Reutlingen, Germany) following
gynecologic pathologist review indicating tumor location. Three 0.6 mm cores were
removed from each case paraffin block and placed in a recipient paraffin block according to
a randomized electronic TMA map. Recipient blocks were sliced into 5 µm sections and
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mounted on charged slides. Characteristics of cases with and without protein expression and
HGF genotype data are shown in Supplemental Table 5.

Antibodies, Immunohistochemistry, and Scoring—TMA slides were
immunostained with primary antibodies recognizing HGF (polyclonal H-145, Santa Cruz;
Santa Cruz, CA), MET (monoclonal clone 3D4 Zymed-Invitrogen; Carlsbad, CA), and
phospho-MET (polyclonal Y1003) Upstate/Millipore; Charlottesville, VA) after optimizing
staining conditions on positive control tissues colorectal cancer and normal liver (34).
Negative controls included a non-specific isotype match (for MET) or rabbit IgG (HGF and
pMet); conditions were appropriate in that no background staining was observed without the
specific primary antibodies. Slides were prepared according to manufacturer’s instructions
(Dako; Carpinteria, CA), and digital images were created as described previously (35).
Imaging instrument: Bacaus Laboratories Inc. Slide Scanner (BLISS) system, utilizing a
Zeiss Axioplan 2 microscope; 20× objective magnification was used during scanning;
however, provided as 10× via Figure 1; Tracer Version 0.91 acquisition software was used
and no additional techniques done; temperature during scanning was approximately 23C; no
oil immersion was used, therefore imaging medium was dry; and no fluorochromes were
use. The viewing software used: WebSlide Enterprise, utilizing ActiveX in conjunction with
the Slide Tray v5.0 program. The saved format for the scanned pictures is SlideScan.ini,
which means that, for these particular core scans, each original image actually is composed
of twelve 752×480 pixel jpg scans. Extent was defined as the percentage of epithelial tumor
cells staining positive for each antigen (negative, 0%–10% of cells expressing; positive,
>10% of cells expressing), and intensity was defined as the strength of antibody staining in
epithelial tumor cells (absent, weak, moderate, strong). Slides were scored by two reviewers,
and discrepancies were resolved by a gynecologic pathologist. Extent and intensity measures
for each core were combined as negative (extent negative), weak (intensity weak; Figure 1),
moderate (intensity moderate), and strong (intensity strong; Figure 1), and the strongest
protein expression value over the multiple cores for each case was used.

Statistical Methods—We assessed associations of HGF genotype with TMA-based
protein expression values using linear regression analyses (genotype as exposure and
expression value as outcome). We examined associations of protein expression values with
mortality using Cox proportional hazards regression analyses, accounting for left truncation
as described above (27). HRs and 95% CIs were calculated for each antibody, modeling
negative or weak protein expression as the referent group, and, as with genotype analyses,
models were fit both unadjusted and adjusted for potential confounding variables. We
evaluated whether protein expression values played a role in the association between
genotype and mortality by fitting five sets of Cox regression models with genotype as
exposure: unadjusted, adjusted for HGF, adjusted for MET, adjusted for phospho-MET, and
adjusted for all three protein expression values. Attenuation of the genotype HR estimate
due to adjustment for protein expression value(s) was considered evidence that genotype
may associate with mortality via expression. All statistical tests were two-sided, and all
analyses were carried out using SAS (SAS Institute, Cary, NC).

HGF Replication Analysis
Study Participants and SNP Genotyping—White non-Hispanic invasive epithelial
ovarian, fallopian tube, and peritoneal cancer cases from additional independent cases
collections (SRO, MAL, BEL, LAX, PVD, BAV, and MAY2) were genotyped at HGF
rs5745709 and rs2074725 (a highly-correlated SNP) using germline DNA obtained from
peripheral blood lymphocytes. As above, protocols were approved by each IRB, and all
participants provided written informed consent. Two studies, BAV and BEL, included
prevalent cases thus absolute survival was relatively high and median survival could not be
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estimated; nonetheless, appropriately accounting for the left-truncated nature of the data
enabled analysis (Supplemental Figure 3). Genotyping used a custom Sequenom iPLEX
MassArray multiplex assay at the Queensland Institute for Medical Research and included at
least eight study duplicates per 384-well plate. Quality control was reviewed for each study
requiring ≥ 98% concordance, ≥ 90% call rate for each 384-well plate, ≥ 95% call rate
overall, and HWE p-value > 0.05. For each questionable quality control metric, cluster plots
were reviewed to ensure appropriate genotype calling; SNPs with appropriate genotype
calling showed one to three distinct clusters. In addition, new genotype data on additional
invasive serous cases enrolled in the TCGA (TCGA2), as described above, became available
and was used. Additional detail on these participants (2,560 cases, 1,046 deaths) is provided
in Supplemental Table 1 and Supplemental Table 6.

Statistical Methods—Associations of genotypes with mortality were examined using
Cox proportional hazards regression as above, accounting for left-truncation (27) using an
ordinal (log-additive) genotypic effect. Analyses were conducted adjusted for study site, age
at diagnosis, grade, and stage, as well as for study site and age only. Replication data were
analyzed separately as well as combined with initial data (MAY1, TCGA1). We examined
heterogeneity in genetic associations across study site by fitting and testing genotype*site
interaction terms. As above, all analyses were carried out for all cases, and then subset to
high-grade serous cases; all statistical tests were two-sided, and all analyses were carried out
using SAS (SAS Institute, Cary, NC).

RESULTS
Characteristics of 312 Mayo Clinic invasive epithelial ovarian cancer cases genotyped in a
large-scale candidate gene screen (MAY1) are shown in Supplemental Table 1; 172 cases
(55%) died during the study period, including 129 cases with serous subtype. Examination
of associations between SNP genotypes and mortality among these cases revealed minor
alleles at 29 SNPs in ten genes with p < 0.01 among either case group (all cases or serous
subtype only) including 21 SNPs with r2 < 0.9 (Table 1). Gene-level analyses for four genes
yielded p < 0.01. There was no violation of the Cox proportional hazards assumption for
covariates or SNPs. At HGF (encoding hepatocyte growth factor) rs1800793, the minor
allele was associated with increased risk of death (all cases: HR 1.69, 95% CI 1.33–2.16,
p=2.0 × 10−5), representing the most statistically-significant single SNP result. Additional
correlated SNPs (r2 > 0.9, Supplemental Figure 2) showed this association, as did the less-
correlated rs2214825 (r2=0.76; all cases: HR 1.44, 95% CI 1.13–1.84, p=3.3 × 10−3). Gene-
level analyses using principal components also detected an association of HGF with
mortality (all cases, p=3.7 × 10−4) representing the most statistically-significant gene-level
test. Analysis of 12 common HGF haplotypes suggested that the individual SNP results
were not a reflection of specific haplotypes (data not shown).

Three other genes had SNP p-values < 0.001 including PRKACB (encoding protein kinase,
cAMP-dependent, catalytic, beta) with rs1402694 (all cases HR 1.51, 95% CI 1.20–1.92,
p=5.6 × 10−4; serous subtype HR 1.67, 95% CI 1.26–2.21, 3.2 × 10−4). Genotypes at
DCTN5 (dynactin 5 (p25)) rs12447304 were associated with mortality among all cases (HR
1.83, 95% CI 1.29–2.60, p=7.1 × 10−4), thus we also conducted regional analysis with
neighboring gene PLK1 and found that in combination, DCTN5 and PLK1 SNPs were
associated with differential survival (all cases p=1.6 × 10−3; serous subtype 4.4 × 10−3).
PLG (encoding plasminogen) rs783173 was not associated with survival among all cases,
but an association was observed with serous subtype (HR 1.57, 95% CI 1.21–2.04, p=8.1 ×
10−4) (Table 1). Additional genes with suggestive SNP associations (p < 0.01) are listed in
Table 1, and full gene-level results are provided in Supplemental Table 7.
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Using publicly-available data on 127 genotyped serous invasive cases of the TCGA
(TCGA1, 62 deaths), we analyzed SNPs with p < 0.001 in MAY1 analysis. Results were not
consistent at PRKACB rs1402694 (HR=1.13, 95% CI 0.76–1.67, p=0.54) or at PLG
rs783173 (HR=0.70, 95% CI 0.48–1.00, p=0.05); no genotypes were available at DCTN5
rs12447304. However, at several HGF SNPs with MAY1 p < 0.001, compelling, consistent
associations with mortality were observed including rs5745709 (HR 2.36, 95% CI 1.36–
4.09, p=2.2 × 10−3) and the modestly-correlated rs2214825 (r2=0.72; HR 2.27, 95% CI
1.38–3.72, p=1.2 × 10−3; Table 2). Combining these Mayo Clinic and TCGA data
(MAY1+TCGA1, N=439), the strongest association with mortality was observed for
rs5745709 (HR 1.56, 95% CI 1.25–1.94, p=7.0 × 10−5, Table 2, Figure 2); this SNP is
highly correlated with the initially most-significant SNP in MAY1, rs1800793 (r2=0.96;
Supplemental Figure 2), which was not genotyped in TCGA. Similar results were observed
when analyses were performed only on cases with advanced-stage disease (data not shown).
To evaluate a possible mechanism for this association, we then explored HGF ovarian tumor
mRNA levels in TCGA1 cases. Carriers of minor alleles at HGF SNPs had reduced HGF
mRNA levels (e.g., rs2214825 p=0.03; Supplemental Figure 4). Although sample size was
small and HGF mRNA levels themselves were not directly associated with mortality
(HR=0.39, 95% CI 0.02–3.79, p=0.52), these results suggested further tumor and germline
analysis of HGF in ovarian cancer mortality.

We therefore performed immunohistochemical analysis of HGF, MET, and phospho-MET
on TMAs created from 326 Mayo Clinic cases. We examined these three antigens because
HGF binds to the transmembrane tyrosine kinase receptor MET, which, in turn, results in
conversion of MET to its activated form, phospho-MET. This signaling initiates the
ERK1/2, PI3K/AKT, and p38 mitogen-activated protein kinase (MAPK) cascades resulting
in regulation of cell proliferation, apoptosis, migration, and invasive growth in normal
ovarian surface epithelium and in ovarian cancers (36). Representative immunostained cores
are provided in Figure 1. The distribution of protein expression values is provided in Table
3; as expected, there were no cases with activated phospho-MET in the absence of MET
(data not shown). We assessed whether protein expression values were associated with
mortality and found a suggestion that stronger phospho-MET protein expression correlated
with decreased mortality (p=0.01; moderate v negative/weak HR 0.77, 95% CI 0.39–1.52;
strong v negative/weak HR 0.55, 95% CI 0.27–1.10; Table 3). As known biology predicts
that stronger protein expression of phospho-MET would correlate with increased (rather
than decreased) mortality, we examined additional clinical characteristics and observed
stronger protein expression of phospho-MET among cases with early-stage disease
(p=0.003); inclusion of stage in phospho-MET Cox models attenuated the HR. Thus, the
association between phospho-MET and decreased mortality is likely driven by an inverse
association between phospho-MET and stage. In 255 cases with genotypes (MAY1 or
MAY2), we evaluated whether rs5745709 genotype was associated with HGF, MET, and
phospho-MET protein expression values, and no significant associations were observed (p ≥
0.41 Table 3), although trends were consistent with TCGA1 mRNA data. Results were
similar for other HGF SNPs (data not shown). We then evaluated relationships among HGF
rs5745709 genotype, HGF/MET/phospho-MET protein expression, and mortality; inclusion
of protein expression values, alone or in combination, did not at all attenuate the association
between genotype and mortality (data not shown); results were similar considering time to
recurrence. These results, therefore, suggest that the observed genetic association in the
Mayo Clinic dataset is not a result of modified gene expression.

Finally, we characterized HGF SNP associations with mortality in additional ovarian cancer
cases populations, including six new studies as well as new cases enrolled at the Mayo
Clinic and in the TCGA (Supplemental Table 1, Supplemental Table 6). rs5745709 was
successfully genotyped in each population, and MAFs were similar to that expected (range,
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0.17–0.25); 284 MAY1 cases were genotyped in both laboratories and were 99.6%
concordant (duplicates subsequently excluded). Analyses of the replication set adjusted for
site, age, grade, and stage (as done in MAY1+TCGA1 analysis) revealed no association with
ovarian cancer survival (HR 0.99, 95% CI 0.89–1.10, p=0.87; Table 4). Figure 3 displays
study-specific covariate-adjusted HRs for all cases and reveals the borderline-significant
heterogeneity between initial and replication studies (p=0.06). A large number of sensitivity
analyses were conducted to examine the root of such heterogeneity. Results were similar
when adjusted only for site and age and when restricted to high-grade serous cases; results
were also similar at rs2074725 due to high LD (r2= 0.97). Data on time to recurrence were
available on some studies (MAY1, SRO, MAL, MAY2), and results were similar. When
cases with peritoneal or fallopian tube cancer were excluded and when cases were right-
censored at five years, results were also similar. Although we note that other SNP effects
appear to exhibit themselves only in the context of optimal debulking (37) and that both
Mayo Clinic series included a relatively large proportion of optimally-debulked patients
(78% and 87% in MAY1 and MAY2, respectively), analysis of 1,139 optimally-debulked
replication cases (BAV, BEL, LAX, MAL, MAY2, SRO) also yielded null results (HR 0.95,
95% CI 0.78–1.15, p=0.60). Finally, no compelling common feature of study populations
with risk estimates greater than 1.0 (MAY1, TCGA1, MAL, BAV, and MAY2) could be
identified. Thus, we conclude that the initial Mayo Clinic/TCGA HGF association a due to
the winner’s curse phenomenon or unexplained heterogeneity.

DISCUSSION
Although less productive than hoped for, the study of candidate genes in cancer
epidemiology has yielded a handful of replicated consistent associations (e.g., TERT,
CASP8, and NAT1 in ovarian (38), breast (39), and bladder cancers respectively (40)), even
in the GWAS era. In ovarian cancer, candidate gene survival analyses have suggested
angiogenesis, inflammation, and other pathways as drivers of genetically-determined
variation in outcome (5–7). Here, we examined approximately 170 genes and regions and
found evidence for association between variants in HGF and mortality among cases enrolled
in Mayo Clinic and TCGA studies. With consistency of results and evidence suggesting
expression as a mechanism, we then stained ovarian tumors for the primary signaling
molecules, and we expanded our association analysis. In these important follow-up studies,
we did not observe a clear relationship between SNP genotype, expression of the relevant
proteins, and outcome; we also did not replicate the genetic association in a broader
collection of samples.

In many ways, this work exemplifies the challenges of modern molecular epidemiologic
investigation. A biologically-based hypothesis was comprehensively examined with regard
to both the number of genes and the coverage of inherited variants within them. We
capitalized initially upon a homogeneous patient population with detailed clinical data with
80% power to detect a HR as small as 1.46, assuming MAF=0.20, α= 0.05, and dominance.
Prior to committing additional expenditure, we conducted in silico analysis of the top hits
using publicly-available data including exploration of a possible intermediate phenotype
(41). In addition to the statistical significance of the combined association, the biology of the
most-significant gene was compelling (as is always the case in candidate gene studies).
Here, HGF signaling plays a key role in ovarian cancer cell growth, migration, and invasion
(36), and tumor expression has been shown to associate with outcome (36, 42). Some studies
have reported improved chemoresponsiveness (43–45), consistent with the associations we
observed between minor alleles, reduced expression, and increased mortality.

To follow-up in terms of depth, we created and immunostained TMAs from a large group
Mayo Clinic cases, most of whom had genotype and outcome data, for protein expression of
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HGF, MET, and phospho-MET. Cores were randomized with respect to both genotype and
survival, removing a source of potential bias in TMA analysis. In contrast to the initial
microarray-based TCGA mRNA analyses, no genotype-expression association was seen. We
must note that there are complexities in measuring HGF with immunohistochemistry,
particularly because it is a soluble ligand; positive staining for the protein may reflect HGF
generated at a distant source which bound to the tumor cells only in situ. Random
measurement error of HGF protein levels could have attenuated the HRs. In contrast, with
mRNA expression studies, mRNA is clearly isolated from the relevant tissue source (tumor
or tumor stroma) used in the study. Our inclusion of MET and phospho-MET in some ways
addresses these concerns about cellular specificity and also revealed null results. We also
note that while genetic variation in HGF does not appear to account for dramatic changes in
protein expression, other functional roles for HGF SNPs can not be ruled out as alterations
in binding affinity, efficacy of signal transduction, or turnover rate are most likely not
detectable using this methodology. We also analyzed protein expression among Mayo Clinic
cases restricted to high-grade serous (similar to TCGA eligibility), and results remained null.
In construction of TMAs, preferential sampling of cores from the periphery of ovarian
tumors has been recommended due to loss of expression centrally (46). Because we did not
do this, it is possible that our TMA-based mean protein expression levels (and variance
estimates) are lower than they are in truth, perhaps resulting in some loss of statistical
power. However, our distribution of protein expression values were similar to those reported
in other studies (47, 48).

In terms of breadth, we expanded our initial study of the HGF SNP association with ovarian
cancer mortality via an international consortium. Use of consortia has become standard in
SNP-oriented molecular epidemiology in order to minimize the false discoveries of smaller
sample sizes, to increase precision of true risk allele effect estimates, and to evaluate
generalizability (49, 50). Indeed, the large sample size of our replication set provided 80%
power to detect relatively small effect sizes of 1.21 in the replication set and 1.19 in the
combined set of participants (assuming MAF=0.20, α= 0.05, and dominance), minimizing
the possibility of a false negative result. Genotyping was centrally done and included a
subset of the cases initially studied; the quality of the data appeared good suggesting
laboratory issues were not a concern. Further challenges lie in aligning clinical data across
studies. We used a consistent data dictionary with thorough examination of outlying
observations and differences in eligibility or follow-up across studies; in addition, sensitivity
analyses considering clinical and study design factors yielded consistent results. Factors
such as covariate adjustment, restriction to certain clinical subsets, and consideration of time
to enrollment or follow-up did not explain the discrepancy of results between initial and
replication analyses. Unlike the two Mayo Clinic case collections, results differed between
TCGA datasets; however, no systematic differences in clinical or follow-up features appear
to exist across TCGA sets. We note that if data on all TCGA cases had been available at the
time of our initial investigation, our follow-up strategy would likely have differed. Thus, this
work serves as a cautionary reminder of the fluidity of public data. In addition, because the
majority of cases were treated with standard chemotherapies, the likelihood is low that a true
association exists only in a certain treatment group. Although an unanalyzed factor may
account for differences in association across studies, we observed that the majority of data
are null and thus variation in risk estimates around unity is likely random.

In summary, we report on a comprehensive analysis of ovarian cancer mortality and SNPs in
several genes and regions of interest to cancer biology, and we described a two-pronged
approach to follow-up the most promising result with TMA and collaborative studies.
Although, in Mayo Clinic cases, HGF SNPs appear associated with increased mortality, and
phospho-MET protein expression was associated with early stage disease and reduced
mortality, common genetic variation in HGF is unlikely to account for a significant

Goode et al. Page 9

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



proportion of deaths in ovarian cancer. This body of work is characteristic of the state-of-
the-art in molecular epidemiology and demonstrates the importance of incorporating
multiple data types and study populations in interpretation of promising genetic associations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HGF, MET, and phospho-MET staining in epithelial ovarian cancer TMAs
Immunohistochemical staining of a tissue microarray of epithelial ovarian cancer samples.
Representative images are shown of weak (panels A, C, and E) and strong (B, D, and F)
staining. Panels A and B show cores stained with antibodies recognizing HGF; Panels C and
D represent MET staining, and Panels E and F represent phospho-MET staining.
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Figure 2. Kaplan-Meier ovarian cancer survival curves by HGF rs5745709 genotype, initial
Mayo Clinic and TCGA analysis
Genotype-specific Kaplan-Meier survival curves based on (a) MAY1, (b) TCGA1, and (c)
MAY1+TCGA1. Numbers superimposed on curves represent genotype-specific cumulative
number of deaths/number remaining at risk
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Figure 3. rs5745709 and ovarian cancer mortality, all studies
Hazard ratios and 95% confidence intervals by study site, study phase (initial vs. replication)
and overall, from Cox proportional hazards regression analysis. Site-specific analyses adjust
for age at diagnosis, tumor stage, and tumor grade. Combined initial, replication and overall
analyses adjust additionally for study site.
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Table 3

Immunostaining of Mayo Clinic cases

Antibody

HGF MET Phospho-MET

Protein expression values, N (%) Negative (0) 1 (0.3%) 1 (0.3%) 2 (0.6%)

Weak (1) 52 (16.1%) 6 (1.9%) 13 (4.0%)

Moderate (2) 209 (64.7%) 124 (38.9%) 165 (51.4%)

Strong (3) 61 (18.6%) 188 (58.9%) 141 (43.9%)

Association of protein expression with mortality, HR
(95%CI)

Negative/Weak Ref. Ref. Ref.

Moderate 1.26 (0.83– 1.91) 1.44 (0.45 – 4.56) 0.77 (0.39 – 1.52)

Strong 1.21 (0.73 – 2.01) 1.35 (0.43 – 4.25) 0.55 (0.27 – 1.10)

 p-value 0.48 0.90 0.01

Protein expression value by HGF rs5745709 genotype, mean
(S.D.)

GG 2.01 (0.60) 2.57 (0.53) 2.35 (0.58)

GA 2.01 (0.60) 2.56 (0.55) 2.42 (0.60)

AA 1.92 (0.49) 2.55 (0.52) 2.42 (0.51)

 p-value 0.80 0.89 0.41

Due to core drop-off, data were unavailable for three cases on HGF, seven on MET, and five on phospho-MET.
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