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Abstract: Calpain is an intracellular Ca2D-dependent cysteine protease (EC 3.4.22.17; Clan
CA, family C02) discovered in 1964. It was also called CANP (Ca2D-activated neutral protease) as
well as CASF, CDP, KAF, etc. until 1990. Calpains are found in almost all eukaryotes and a few
bacteria, but not in archaebacteria. Calpains have a limited proteolytic activity, and function to
transform or modulate their substrates’ structures and activities; they are therefore called,
“modulator proteases.” In the human genome, 15 genes—CAPN1, CAPN2, etc.—encode a calpain-
like protease domain. Their products are calpain homologs with divergent structures and various
combinations of functional domains, including Ca2D-binding and microtubule-interaction domains.
Genetic studies have linked calpain deficiencies to a variety of defects in many different organisms,
including lethality, muscular dystrophies, gastropathy, and diabetes. This review of the study of
calpains focuses especially on recent findings about their structure–function relationships. These
discoveries have been greatly aided by the development of 3D structural studies and genetic models.
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Introduction

An enzyme corresponding to calpain was first
described in 1964 by Gordon Guroff (1933–1999).1),2)

Over the next several years, calpain was reported
with various names and in various contexts by other
researchers, including Edmond H. Fischer (1920–),
Edwin G. Krebs (1918–2009),3),4) Darrel E. Goll
(1936–2008),5) and Yasutomi Nishizuka (1932–
2004).6) In 1978, Kazutomo Imahori (1920–) and his
colleagues purified chicken calpain to homogeneity
and named it CANP (calcium-activated neutral
protease).7) This marked the beginning of serious,
focused studies of calpain, and this protease was
soon established as one of the most important and
intriguing enzymes in the cell.8)–10) That same year,
an endogenous calpain-specific inhibitor protein was
reported by Takashi Murachi (1926–1990) and his
colleagues.11) They proposed the names calpain in
place of CANP and calpastatin for its inhibitor
protein in 1981.12) In 1984, Koichi Suzuki (1939–
2010) and his colleagues revealed the complete
primary structure of the calpain catalytic subunit,13)

and calpain studies turned toward structure–function
analyses. For more than ten years, both CANP and
calpain were used in the literature. This complication
was resolved by Suzuki in accordance with Imahori
in 1990. He proposed the usage of calpain as an
authorized name at the 8th International Conference
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on Proteolysis and Protein Turnover.14) Since
Suzuki’s 1984 paper,13) cDNA and genomic cloning
studies have exploded, and thousands of calpains and
related molecules were identified—among them 15
human calpain genes, which are now called CAPNn
(n F 1, 2, 3, and 5–16), which is short for calpain.15)

There are two genes for small regulatory subunits,
CAPNS1 and CAPNS2, short for calpain small
subunit, and one for calpastatin, CAST.

Calpains (EC 3.4.22.17; Clan CA, family C02)
constitute a distinct group of intracellular cysteine
proteases found in almost all eukaryotes and a few
bacteria (Fig. 1; for other reviews, see the two
landmark reviews in 199116) and 200317) and later
reviews18)–49)). Calpains are first defined as cytosolic

proteases exhibiting Ca2D-dependent proteolytic ac-
tivity at a neutral pH. Most calpains are intracellular,
and their activity is strictly regulated, as is the case
with other intracellular proteolytic systems, such as
the ubiquitin–proteasome system,50) the autophagy–
lysosome system,51) and caspases52) (Fig. 2). Cas-
pases proteolyze substrates sequence-specifically,
mostly for apoptosis, and they are activated by
signal-dependent oligomerization. The former two
systems act as “erasers” that degrade and eliminate
substrate proteins. In contrast, calpains act in
proteolytic processing, rather than degradation, i.e.,
calpains proteolyze their substrates at a limited
number of sites to transform or modulate their
substrates’ structures and activities. Therefore,
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Fig. 1. Schematic structures of calpain superfamily members.
Calpain homologs have been identified in almost all eukaryotes and in some bacteria. Historically, there are several nomenclatures for
domains. To avoid confusion in this review, the domains are called by the abbreviation corresponding to the structure, i.e., PC1
(protease core domain 1), PC2 (protease core domain 2), C2L (C2 domain-like), PEF (penta-EF-hand) etc. Symbols: N, N-terminal
region; PEF(L) and PEF(S), PEF domains of large catalytic and small regulatory subunits, respectively; GR, glycine-rich
hydrophobic domain; AS, alternative splicing products; NS/IS1/IS2, CAPN3-characteristic sequences; C2, C2 domain; MIT,
microtubule-interacting-and-transport motif; Zn, Zn-finger-containing domain; SOH, SOL-homology domain; DIS, CALPA-specific
insertion sequence; TM, transmembrane domain; CSTN, calpastatin-like domain; IQ, a motif interactive with calmodulin.
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calpain is referred to as an intracellular “modulator”
protease.53),54) Ubiquitin and autophagy systems are
regulated in various steps mediated by many
proteins, but calpain is distinctive in that a func-
tional entity rests on a single molecule or two.

The importance of the calpains’ physiological
roles is reflected in the variety of defects caused by
compromised calpain function in different tissues and
organisms, including embryonic lethality (disruption
of mouse Capn2),55) muscular dystrophies (mutations
in human CAPN3),56) gastropathy (mutated
Capn8),57) lissencephaly58) and tumorigenesis59) (in-
direct defects in calpain functions), impaired neuro-
genesis in flies,60) deficient sex determination in
nematodes,61) defects in aleurone cell development
in maize,62) and alkaline stress susceptibility in

fungi63) and yeasts.64),65) These effects will be de-
scribed in more detail in the following sections.

Mammalian gene products can be written as
non-italic upper-case letters of their gene name,
according to the international nomenclature system
for a gene product; for example, mouse Capn1 and
Capn2 produce CAPN1 and CAPN2, respectively.
Although recently mammalian calpain gene products
are often written as calpain-1, calpain-2, etc., this
nomenclature is misleading as described below
(“calpain” is also used for enzyme names), so we
will use the above formal nomenclature (CAPN1,
CAPN2, etc.) throughout this review. Some calpains
were previously called by independent names, such as
7CL and p94. In this review, to clarify old and new
mammalian calpain nomenclatures, we will note the
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Fig. 2. Major intracellular proteolytic systems.
The ubiquitin–proteasome system degrades and eliminates specific substrate proteins in an ubiquitin-tagging system consisting of
more than 1,000 ubiquitin ligases. The autophagy–lysosome system primarily degrades non-specific cell components, including
proteins and micro-organisms, by compartmentalization by isolation membranes. The caspase system functions mainly for apoptosis.
In contrast, calpains primarily use proteolytic processing, rather than degradation, to modulate or modify their substrates’ activity,
specificity, longevity, localization, and structure.
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old after the current names: e.g., CAPN1/7CL and
CAPN3/p94.

1. A research history of calpain and its definition

Because of the scope of this review, it is
important to define calpain, and the complexities of
defining calpain are best explained in the context of
its research history.66)–68)

In 1964, Guroff partially purified a Ca2D-depend-
ent neutral protease from rat brain, which afterwards
turned out to be calpain.1) In the same year, Meyer,
Fischer and Krebs described the activation of rabbit
skeletal muscle phosphorylase b kinase by Ca2D and
partially purified the responsible protein, which they
called KAF (kinase activating factor).4) Four years
later, Huston and Krebs,3) and Drummond and
Duncan69) independently reported that this protein
was a Ca2D-dependent protease, although they
concluded that the proteolytic activation of phos-
phorylase b kinase was unlikely to be physiological.
Krebs and Fishers’ main interest then moved to
phosphorylation and its cascade, for which they were
awarded a Nobel Prize in 1992.70),71) Since then,
Krebs has changed his mind about the physiological
importance of proteolytic activation. Indeed, one of
calpain’s most important physiological functions is
to modulate substrate protein functions by limited
proteolysis, and this property must be considered
in the definition—or at least, the classification—of
calpain.

In 1972, Darrel E. Goll and his colleagues
identified a factor that Ca2D-dependently removes
the Z-lines of skeletal muscle, and named it CASF
(Ca2D-activated sarcoplasmic factor), which also
turned out to be calpain.5) This study is the
beginning of research on calpain involved in post-
mortem tenderization of meat.72) In 1977, Yasutomi
Nishizuka and his colleagues identified calpain as
a protein kinase C (PKC) activating factor,6) and
several calpain studies were done in line with
PKC.73)–76) In 1978, Imahori and his colleagues for
the first time in the world purified chicken calpain to
homogeneity and called it CANP. Following this
remarkable study, Imahori’s group established cal-
pain research field by publishing important studies
on enzymology of calpain such as substrate specific-
ity,77) purification from human muscle,78) inhibi-
tors,79),80) autolysis,8),81) and activation.82),83)

Calpain purification studies (ca. 90% purity in
1976,84) and to homogeneity in 19787)) revealed that
functional native calpain is composed of large (ca.
80 kDa) and small (ca. 30 kDa) subunits, which is

another important property of calpain. The chicken
7/m-calpain catalytic subunit cDNA was cloned in
1984,13) and since then many cDNAs and genomic
DNAs corresponding to various calpain species have
been cloned and sequenced. Little is known about
the nature of calpain proteins as enzymes, however,
and most calpains are known only by their sequence.

The most extensively studied calpains are the
major ubiquitous mammalian 7- and m-calpains, and
the major ubiquitous calpain in chicken, 7/m-
calpain.14) These are called “conventional” calpains
in the wake of PKC;85) all others are termed
“unconventional” calpains. The chicken 7/m-calpain
has properties placing itself as an intermediate of
7- and m-calpains.7),77),86) Its catalytic subunit was
shown to be an ortholog of mammalian CAPN11 (see
also 6.3.3).87)

Among the amino acid (aa) sequences available,
there is a group of peptidases that possess a protease
domain that is significantly similar to one another
but distinct from that of other peptidases.88) A search
for “CysPC” in the conserved domain database of
NCBI89) extracts the sequences of almost all the
calpain homologs from various living organisms,
including plants, fungi, yeast, and even bacteria.
Calpains belong to the papain superfamily of cysteine
proteases and have weak similarity to papains and
cysteine cathepsins, although it is clearly less
significant than the similarities between calpains. In
this superfamily, calpain may evolutionarily be the
oldest branch.89)

Considering this situation, it is reasonable to
define calpain mainly by the aa sequence in relation
to the most-characterized mammalian 7- and m-
calpains. Therefore, this review uses the following
simple but clear definition: calpains are defined as
proteins that have aa sequences significantly similar
to the protease domain of the human 7-calpain large
subunit (replacing 7-calpain with m-calpain in this
definition would give the same result). Additional
characteristics reflect calpain classifications: the con-
ventional, classical, non-classical, ubiquitous, and/or
tissue-specific calpains should be discussed separately
when considering their physiological functions. In
other words, sequence similarity does not necessarily
reflect functional similarities between calpain species.

According to this definition, humans have 15
genes that encode calpains (Figs. 3 and 4). In other
species, Schistosoma mansoni (Fig. 5), Caenorhabdi-
tis elegans (Fig. 6), Anopheles gambiae (Fig. 7),
Drosophila melanogaster (Fig. 7), Arabidopsis
thaliana (Fig. 1), Emericella (Aspergillus) nidulans
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Fig. 3. Phylogenetic tree and schematic structures of human calpain-related molecules.
A. Phylogenetic tree of human calpains. Method: The tree was drawn by the neighbor-joining/bootstrap method after aligning all the
sequences using MAFFT v6.240 (at http://align.genome.jp/mafft/, strategy: E-INS-i). Atypical calpains are more divergent than
classical calpains. The PalB subfamily consists of the strict PalB group, the TRA-3 group, and the CAPN10 group. B. Schematic
structures: Black and green letters indicate ubiquitous and tissue/organ-specific calpains, respectively. See also Fig. 4. Symbols: L and
XL, N-terminal and extended N-terminal regions of calpastatin. See Fig. 1 legend for other symbols.
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(Fig. 1), and Saccharomyces cerevisiae (Fig. 1) have
7, 14, 7, 4, 1, 2, and 1 calpain genes, respectively.
There is no calpain gene in Encephalitozoon or

Schizosaccharomyces pombe. In prokaryotes, 53
calpains from 42 bacteria were found among the 914
completely sequenced microbial genomes present in
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the database so far. Each of the bacterial species has
1–4 calpain genes (Fig. 8). However, most genome-
sequenced bacteria, including Escherichia coli or any
of the archeabacteria, do not have calpain genes.

2. Conventional calpain—the basics

2.1. Domain structures of conventional
calpains. The conventional calpains, 7- and m-
calpains, are heterodimers consisting of a common
small regulatory subunit (CAPNS1/30K; ca. 30 kDa)
and a distinct, large (ca. 80 kDa) 7- or m-calpain
catalytic subunit (CAPN1/7CL or CAPN2/mCL,

respectively) (Fig. 3). Calpain-I is an old alternative
name for 7-calpain, named as an enzyme, and it is
not the same as calpain-1, which is the name often
used for a gene product, a subunit of an enzyme.
Instead, calpain-I is a heterodimer of CAPN1/7CL
and CAPNS1/30K. The distinction is similar for
calpain-II and calpain-2.

CAPN1/7CL and CAPN2/mCL have approx-
imately 60% aa identity. Accordingly, they have
almost indistinguishable substrate and inhibitor
specificities, and both are almost ubiquitously ex-
pressed. However, they differ greatly in their in vitro
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Ca2D-requirement (µM versus mM) for proteolytic
activity. Their functions are fundamental and essen-
tial, and are implicated in the regulation of signal
transduction systems,90),91) cell motility,21),92) mem-
brane repair,93),94) and apoptosis,95),96) although their
precise roles in these events remain elusive.

The catalytic and regulatory subunits of conven-
tional calpains can be divided into several domains
(Fig. 3). The N-terminal anchor ,-helix of the
catalytic large subunit (also called anchor region or
domain I) is autolyzed when activated by Ca2D,
resulting in its ability to function at a lower Ca2D

concentration,81),97)–99) with a different substrate
specificity,100) and subunit dissociation in some
cases100)–103) but not others.104)–106) Therefore, autol-
ysis of this anchor helix is one of the important
regulatory mechanisms for calpain activity.

In isolation, m-calpain’s protease (CysPc) do-
main (also called domain II), has Ca2D-dependent
protease activity.107) 3D structural analyses in the
absence of Ca2D showed that the CysPc domain is
further divided into two core domains, PC1 (also
called D-I or subdomain IIa) and PC2 (D-II or IIb)
(Fig. 3). These two core domains fold into a single
functional CysPc domain when bound to Ca2D

(Fig. 9).108)–113) In other words, calpain remains
structurally inactive in the absence of Ca2D. This is
reasonable, because calpain resides in the cytosol in

direct contact with many other proteins, and its
activity must be strictly regulated.

Ca2D also binds to C2 domain-like (C2L) domain
(also called domain III)114) and penta-EF-hand
(PEF) domain (domain IV) of the large catalytic
subunit (PEF(L) domain), and that of the
small regulatory subunit (PEF(S), also called
domain VI).115),116) While C2L and the C2 domains
have no sequence similarity, their 3D-structure is
very similar (O-sandwich structure composed of
eight anti-parallel O-strands). Two PEF domains
(PEF(L) and PEF(S)) each contain five EF-hand
motifs.48),117)–119) The fifth EF-hand motif of each
domain contributes to heterodimer formation.120) It
should be noted that the N-terminal anchor helix is
in contact with the second EF-hand motif (EF-2) of
PEF(S) of CAPNS1/30K, and the interaction is
broken either by Ca2D-binding to the EF-2 or by
autolysis of the N-terminus upon activation.

Gly-rich (GR) domain (also called domain V) in
the N-terminus of CAPNS1/30K contains hydro-
phobic Gly-clusters, most of which are autolyzed
during activation. This domain was invisible in the
3D structure, indicating a very “soft” structure.
In humans, the CAPNS2 gene encodes a regulatory
subunit homolog composed of GR and PEF(S)
domains, whose physiological roles remain un-
clear.121)

Fig. 8. Phylogenetic tree and sequence alignment of bacterial calpains.
A. Phylogenetic tree of bacterial calpains and human CAPN1/7CL. See Fig. 3A for methods. B. Sequence alignment of the bacterial
calpain protease domains and human CAPN1/7CL. Only the sequences of the protease domains are compared, with the start and end
aa residue numbers indicated, as other sequences and lengths are somewhat divergent. Reversed fonts and gray shadow indicate
residues conserved in all sequences or more than half, respectively. Triangles: active site residues. Asterisks: residues involved in
Ca2D-binding of the protease domain of human CAPN1/7CL. Sequences: 0: H. sapiens NP_001185798; 1: Acaryochloris marina
MBIC11017 YP_001520592; 2: Actinomyces odontolyticus ATCC 17982 ZP_02043925; 3: Actinomyces odontolyticus F0309
ZP_06609922; 4: Actinomyces sp. oral taxon 848 str. F0332 ZP_06161744; 5: Actinomyces sp. oral taxon 848 str. F0332 ZP_06161892;
6: Actinomyces sp. oral taxon 848 str. F0332 ZP_06162803; 7: Actinomyces sp. oral taxon 848 str. F0332 ZP_06162809; 8: Anabaena
variabilis ATCC 29413 YP_322403; 9: Bacteroides ovatus ATCC 8483 ZP_02064250; 10: Bacteroides sp. 1_1_14 ZP_06994459; 11:
Bacteroides sp. 1_1_6 ZP_04847694; 12: Bacteroides sp. D2 ZP_05758284; 13: Bacteroides thetaiotaomicron VPI-5482 NP_812871; 14:
Brachybacterium faecium DSM 4810 YP_003153779; 15: Brachybacterium faecium DSM 4810 YP_003155356; 16: Bradyrhizobium sp.
BTAi1 YP_001241302; 17: Bradyrhizobium sp. ORS278 YP_001204811; 18: Brevibacterium mcbrellneri ATCC 49030 ZP_06806606;
19: Cyanothece sp. PCC 7822 YP_003887732; 20: Cyanothece sp. PCC 7822 YP_003887741; 21: Frankia alni ACN14a YP_716900; 22:
Frankia sp. CcI3 YP_483525; 23: Frankia sp. EAN1pec YP_001504490; 24: Frankia sp. EuI1c YP_004014028; 25: Frankia sp. EUN1f
ZP_06411021; 26: Gemmata obscuriglobus UQM 2246 ZP_02733073; 27: Geobacter lovleyi SZ YP_001952615; 28: Gloeobacter
violaceus PCC 7421 NP_927086; 29: Granulibacter bethesdensis CGDNIH1 YP_745367; 30: Herpetosiphon aurantiacus ATCC 23779
YP_001544076; 31: Herpetosiphon aurantiacus ATCC 23779 YP_001545619; 32: Herpetosiphon aurantiacus ATCC 23779
YP_001546212; 33: Legionella longbeachae D-4968 ZP_06188344; 34: Legionella longbeachae NSW150 YP_003455673; 35: Microcystis
aeruginosa NIES-843 YP_001659697; 36: NC10 bacterium ‘Dutch sediment’ CBE68371; 37: Nostoc sp. PCC 7120 NP_484413; 38:
Nostoc sp. PCC 7120 NP_485127; 39: Nostoc sp. PCC 7120 NP_487855; 40: Photorhabdus luminescens subsp. laumondii TTO1
NP_929692; 41: Planctomyces limnophilus DSM 3776 YP_003628665; 42: Porphyromonas gingivalis AAA25652; 43: Porphyromonas
gingivalis W83 NP_905271; 44: Rhodopseudomonas palustris BisA53 YP_780017; 45: Salinispora tropica CNB-440 YP_001157346; 46:
Segniliparus rotundus DSM 44985 YP_003659885; 47: Streptomyces albus J1074 ZP_06592718; 48: Streptomyces viridochromogenes
DSM 40736 ZP_07305717; 49: Synechococcus sp. RS9916 ZP_01472825; 50: Synechococcus sp. RS9916 ZP_01472826; 51:
Synechococcus sp. RS9916 ZP_01472827.
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2.2. Activation and substrates. Ca2D is
required for the activation of conventional calpains,
raising the question of which part of the calpain

molecule contains the Ca2D-binding site that provokes
calpain activation. It was previously believed that
PEF domains were responsible for activating calpain
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Fig. 9. Schematic of the 3D structure of inactive and active m-calpain.
Surface-type schematic 3D structures of inactive (Ca2D free) and active (Ca2D- and calpastatin-bound) forms of m-calpain using PDB
data, 1KFX109) and 3DF0.111) The oligopeptides represented by the yellow ribbon D ball-and-stick indicate portions of calpastatin
bound to active m-calpain. The dotted lines indicate portions that were too mobile for the 3D structure to be determined. The active
protease domain (CysPc) is formed by the fusion of core domains PC1 and PC2 upon the binding of one Ca2D to each of the core
domains. The active site is circled in black. Blue balls represent Ca2D (not all are visible).

V99 V99

D100
G101

G101T103

D106

D106S180W187
E185

E185
Q889

F890

L891

D892

D894

D895

D896

D897

D898

Q893

Q889
D895

D892

D897

A CB

Fig. 10. A comparison of 3D structures of the Ca2D-binding sites of the CAPN1/7CL protease domain IIa and SLO1 (Ca-bowl).
Ca2D-binding sites in (A) the CAPN1/7CL protease domain (2R9F) and (B) the high-conductance voltage- and Ca2D-activated KD

channel (BK or SLO1 channel) (3MT5). (C) The structures were superimposed for comparison.126)

H. SORIMACHI, S. HATA and Y. ONO [Vol. 87,298



in response to Ca2D, as they are the only Ca2D-binding
sites visible in the primary structure.13) However,
the 3D structure of calpain revealed that the PEF
domains are somewhat distant from the protease
domain (Fig. 9). CD spectrum measurements found
no significant changes in calpain’s secondary struc-
ture upon activation by Ca2D binding.122) Biochemical
analysis of recombinant m-calpain protease domains
revealed that they respond directly to Ca2D.107)

Finally, the 3D structures of these domains showed
that Ca2D binds directly to PC1 and PC2, to activate
conventional calpain (Fig. 9).112),113)

A number of substrates have been reported for
calpains, including protein kinases, phosphatases,
phospholipases, cytoskeletal proteins, membrane
proteins, cytokines, transcription factors, lens pro-
teins, and calmodulin-binding proteins, but few of
them have been shown to be physiological. Due to its
complexity and “finesse”, the exact rules governing
calpain substrate specificity remain incomplete,
although bioinformatics approaches revealed
some cleavage-site preferences123),124) (see also
http://calpain.org). Substrate 3D structures also
seem to be important factors for many cases.

2.3. Novelties deduced from the calpain 3D
structure. The classical calpains CAPN1/7CL,
CAPN2/mCL, and CAPN9/nCL-4 have highly
conserved protease domains (59–71% aa identity);
however, the Ca2D-bound 3D structures of these
domains reveal distinguishing features.112),113),125)

First, comparing the m-calpain protease do-
mains in the presence and absence of Ca2D, all the
,-helices and O-strands are conserved, consistent
with previous CD spectrum results.122) Both PC1
structures can be aligned very closely (C, root-mean-
squared deviation (r.m.s.d.) F 1.72Å), whereas those
of PC2 are moderately aligned (r.m.s.d. F 3.78Å). As
predicted from PC2’s Ca2D-unbound 3D structure,
Ca2D binding would cause it to be rotated and
translated by 50° and 6Å, if the alignment of PC2
is fixed. Surprisingly, a Ca2D-induced Ca2D-binding
site (CBS-1 and CBS-2) is generated in each core
domain, and Ca2D binding to these sites causes the
above-described PC2 rotation and translation for
activation. These Ca2D-binding sites have a novel
and unique structure. Only recently, one structure
was shown to have similarity with this site: the 3D
structure of the “Ca2D-bowl” of the high-conductance
voltage- and Ca2D-activated KD (BK or SLO1)
channel has a similar Ca2D-binding geometry to the
7-calpain CBS-1, although they share no similarity
in their primary sequences (Fig. 10).126)

Second, the active-site cleft is deeper and
narrower than that of papain. Due to this constraint,
the substrate must be in a fully extended conforma-
tion with its backbone stretched; this was verified by
the 3D structures of the Ca2D-bound active 7-calpain
protease domain co-crystallized with leupeptin or
E64.127) This finding explains calpain’s preference for
proteolyzing inter-domain unstructured regions.

Third, although the active protease domains of
CAPN1, 2, and 9 are highly similar, a reversible
intrinsic inhibitory/safety mechanism exists only for
CAPN2/mCL. W106, which is adjacent to the active-
site C105 of CAPN2/mCL, positions to interfere with
substrates’ access to the active site; in contrast, this
mechanism does not occur in rat CAPN1/7CL.113)

Moreover, CAPN9/nCL-4 has a novel intrinsic
inhibitory mechanism, i.e., the misalignment of the
catalytic residues.125) These findings together show
that the activation/latency mechanisms of calpains,
regardless of their highly conserved sequences, are
somewhat specialized for each molecule, and are
controlled by inter-domain interactions. In the whole
3D structure of m-calpain,110),111) the above-men-
tionedW106 mechanism113) was not found, indicating
that inter-domain interactions impose extra controls
over molecule-specific mechanisms.

Small-angle X-ray scattering analysis revealed
direct semi-micro images of both active and inactive
whole calpain molecules in the presence of E64,105)

showing the following: in the presence of 100µM Ca2D

and E64, human erythrocyte 7-calpain did not
aggregate and had similar dimensions as in the absence
of Ca2D (maximal diameterF 120!130Å, gyration
radiusF 36!39Å). This was consistent with the
previous CD spectrum results and with the 3D
structure of CAPNS1/30K, whose conformation
changes little in the presence or absence of
Ca2D.117),119) On the other hand, a small but significant
change was observed in the protease domain; it
appeared to compact somewhat and partly detach
from C2L domain.

In other words, upon activation, the protease
domain dynamically changes its conformation with-
out changing its secondary structure. This feature
was finally confirmed when the whole m-calpain 3D
structure was determined by co-crystallization with
calpastatin repeat 1 or 4 (see 2.6) and Ca2D,110),111)

revealing one of the mechanisms used by calpastatin
to inhibit conventional calpain activity. G174/G613
of rat calpastatin repeat 1/4, respectively, which is
near the conserved TIPPXYR (179–185/618–624)
motif in the reactive site of calpastatin, forces a
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kink (G174-IKE-G178/G613-ERD-D617) between
its flanking residues, L173/L612 at the catalytic
S2 site and T179/T618 at S1′, to loop-out not to
interact with the active site of calpain. A172/K611,
L173/L612, T179/T618, I180/I619, and P181/P620
fit into the S3, S2, S1′, S2′, and S3′ pocket of calpain’s
active site, respectively (Fig. 11).110),111) Therefore,
calpastatin interacts tightly with calpain, but no
proteolysis occurs. The importance of this “kink”
in resisting proteolysis by calpain was confirmed
by calpastatin mutagenesis studies. The deletion of
K176, E177, or both, or the insertion of Phe between
L612–G613, allows mutant calpastatins to be pro-
teolyzed by calpain.110),111)

2.4. Genetic studies of conventional calpains.
The first calpain studies using genetically modified

mice were reported in 2000, when Arthur et al. and
Zimmerman et al. independently demonstrated that
disrupting the mouse gene (Capns1) for the conven-
tional calpain regulatory subunit CAPNS1/30K
causes embryonic lethality before E11.5.128),129) These
reports showed that conventional calpains were
necessary for mammalian life, which greatly encour-
aged researchers struggling to understand this
enigmatic enzyme. The disruption of CAPNS1/
30K causes the down-regulation of both the CAPN1/
7CL and CAPN2/mCL proteins, indicating that
CAPNS1/30K is required for the stable presence of
both calpain catalytic subunits in vivo, and probably
functions as an intramolecular chaperone. In vitro,
CAPN2/mCL alone (without CAPNS1/30K) shows
full proteolytic activity after being denatured and
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CalpainCalpain

ProteaseProtease

Core domain 2Core domain 2

(PC2)(PC2)

CalpastatinCalpastatin
C-termC-term

N-termN-term
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/613-617 loop-out
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Fig. 11. Calpastatin region B binds and inhibits calpain.
Enlarged view of the interaction between calpastatin (yellow) and the catalytic cleft in the protease core domain PC1 (pink)–PC2
(red) of m-calpain (the 3D structure is from 3DF0). Calpastatin binds in the substrate orientation indicated by positions P3 to P3′. At
P1, calpastatin distorts from the substrate path and projects residues 174–178 or 613–617, which form a kink between the P2 and P1′
anchor sites.
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then renatured by a long incubation with PEG or
GroE.130) In cells, unfolded calpain large subunits are
probably degraded by other proteases before they
form active conformations.

Disrupting mouse Capn1 or Capn2 leads to
contrasting results: Capn2!/! mice die before the
blastocyst stage, whereas Capn1!/! mice appear
normal and are fertile.55),131) This suggests that
7- and m-calpain differ in their function and/or
expression level, at least at specific developmental
stage(s). Capns1!/! embryonic stem (ES) cell growth
and adhesion were not noticeably different from those
of wild-type ES cells, while Capn2!/! ES cells could
not be obtained even after extensive screening.55)

Cells from Capns1!/! mice served as ideal tools
to unequivocally demonstrate the role of calpain in
specific cellular events: Dourdin et al. showed that
calpain is required for cell migration;132) Mellgren
et al. showed that calpain is required for the rapid,
Ca2D-dependent repair of wounded plasma mem-
brane;133) and Demarchi et al. showed that calpain is
required for macroautophagy.134)

2.5. Expression of conventional calpains.
Although CAPN1 and CAPN2 shows ubiquitous
distribution, their gene expression patterns are
slightly different in that CAPN1 is rather constantly
expressed whereas expression of CAPN2 varies
depending on tissues.135),136) The promoter region of
CAPN2 lacks typical promoter elements such as
TATA and CAAT boxes and has ca. 70% GC
content in the !300 to !20 region with several
potential GC boxes.136) The upstream region contains
at least four tandemly reiterated regulatory se-
quences, each of which negatively regulates CAPN2
expression.136) These features are common to several
house-keeping genes such as adenosine deaminase137)

and hypoxanthine phosphoribosyltransferase,138) and
support that CAPN2 gene is a typical house-keeping
gene that shows ubiquitous and relatively low-level
expression. On the other hand, CAPN2 promoter
region also has potential AP-1 binding site, which is
responsible for phorbol ester-mediated induction of
gene expression.139),140) Indeed, proerythroblastic
K562 cell line cells were reported to show upregula-
tion of CAPN2/mCL expression by phorbol 12-
myristate 13-acetate.141)

Although CAPN1 gene has not been examined
in literature, human genomic sequence showed that
CAPN1 has features similar to those of CAPN2,
i.e., no significant TATA and CAAT boxes with ca.
70% GC content in the !1000 to !1 region and with
potential AP-1 binding site at the !80 position.

Analysis of CAPNS1 gene again revealed similar
features:142) the promoter region has G/C-rich
sequences with several G-C boxes but without TATA
or CAT box. Thus, three genes encoding subunits
of the conventional calpains are all regarded to be
regulated in the same manner as other house-keeping
genes.

2.6. Structure and function of calpastatin.
Calpastatin is the only endogenous inhibitor protein
for the conventional calpains. It is highly effective
and specific, and does not inhibit any other enzymes.
Calpastatin has an inhibitor unit that is repeated
four times (Fig. 3B), and each unit inhibits one
calpain molecule—although their inhibitory efficien-
cies vary.143)–145) Calpastatin inhibits both 7- and
m-calpains with similar efficiencies. Among other
calpain homologs, CAPN8/nCL-2 and CAPN9/
nCL-4, but not CAPN3/p94, are inhibited by
calpastatin in vitro.53),146),147)

Disruption of Cast, the mouse gene for calpas-
tatin, does not produce a significant phenotype under
normal, unstressed conditions.148) This suggests that
conventional calpains are not normally activated
dynamically, and that calpastatin is dispensable as a
safety for calpain regulation. In accordance with
this idea, intra-hippocampal injection of kainic acid
(KA), which causes apoptotic neuronal cell death
by excitotoxicity, resulted in significantly more DNA
fragmentation in Cast!/! mice than in wild-type
mice.148) Moreover, the KA effect was reduced in
transgenic (Tg) mice overexpressing calpastatin in
neuronal cells, whereas Tg mice overexpressing the
baculoviral caspase inhibitor p35 showed no
change.149) These results indicated that kainic acid-
induced apoptotic neuronal cell death is mediated by
the conventional calpains, and that caspases are not
involved in this process.

Spencer and colleagues developed Tg mice that
overexpress calpastatin in muscles.150),151) These mice
appear healthy, without observable body or muscle
mass changes or gross physiological, morphological,
or behavioral defects. These mice were crossed with
mdx mice, which have a nonsense Dmd mutation that
causes mild muscular dystrophic phenotypes due to a
lack of dystrophin; the dystrophic phenotype was
significantly ameliorated in the resulting calpastatin-
overexpressing mdx mice.150) Even in wild-type mice,
calpastatin overexpression slows muscle atrophy
during muscle unloading.151)

Studies using Tgmice also impact on food science,
e.g., the postmortem tenderization of muscles. Both
calpastatin-overexpressing152) and Capn1!/! mice153)
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showed reduced postmortem proteolysis of muscle
proteins. Thus, calpain system has drawn attention to
one of the targets for meat quality control.

3. Classification of calpain superfamily members

3.1. Classical and non-classical calpains.
Calpains have a wide variety of domains in addition
to their protease domain, such as C2L and PEF
domains (Fig. 1). The calpain superfamily is divided
into several subfamilies according to the structures of
these additional domains. Since the human conven-
tional calpain catalytic subunits (CAPN1/7CL and
CAPN2/mCL) are the reference point for calpain
structure, calpains having a similar domain structure
are called “classical” calpains (Fig. 3) in contrast to
“non-classical” ones described below.46),154) Classical
calpains are defined as those having C2L and PEF
domains in addition to the CysPc domain. Accord-
ingly, non-classical calpains are those having not
both of C2L and PEF domains. Among the 15 human
calpains, nine are classical and six are non-classical
(Fig. 3).

Human classical calpains include CAPN1/
7CL, CAPN2/mCL, CAPN3/p94, CAPN8/nCL-2,
CAPN9/nCL-4, and CAPN11–14, most of which are
conserved among vertebrates; fishes have a duplicate
set of most of them.87) In invertebrates, only a few
classical calpains have been identified. The blood
fluke S. mansoni has four (Fig. 5),155) the fruit fly
D. melanogaster has three: CALPA/Dm-calpain,
CALPB, and CALPC,34) and the African malaria
mosquito A. gambiae has five (Fig. 7). No classical
calpain homologs have been found in C. elegans
(Fig. 6), trypanosomes,156) plants, fungi, or S. cer-
evisiae.

Non-classical calpain CysPc domains have aa
identities with each other ranging from <30% to
>75%, and they may have functional domains on the
N- and/or C-terminal sides of CysPc domain (Figs. 1
and 3). These include transmembrane (TM), Zn-
finger, and conserved domains with unknown func-
tions such as SOH (SOL homology) domain. This
cohort also includes several alternatively spliced
products of classical calpain genes, such as Capn8
and CalpA (Fig. 7B). Thus, non-classical calpains
probably function differently from classical calpains,
and not all are Ca2D-dependent. These features,
together with the organization of mammalian calpain
genes,157) strongly suggest that calpain molecules
were generated evolutionarily by combining an
ancestral calpain-type cysteine protease gene with
genes encoding other functions.

3.2. Subfamilies. Non-classical calpains con-
tain several subfamilies grouped according to their
additional domain structures. The PalB subfamily is
the most evolutionarily conserved, and is found in
humans, yeasts, fungi, protists, all insects except
Drosophila, and nematodes, but not plants
(Fig. 12).63),64),158)–161) PalB homologs commonly
contain two C2L domains in tandem, each of which
diverge greatly or moderately from that of conven-
tional calpains, and have a conserved microtubule-
interacting and transport (MIT) motif(s) at the N-
terminus (Fig. 3).

Human CAPN10, the representative product of
CAPN10 from the longest transcript,162) also has
both conserved and diverged C2L domains in
succession at the C-terminus. The CAPN10 homo-
logs are only found in vertebrates, and have no MIT
domain, but they can be included in the PalB
subfamily (Fig. 3).46)

TRA-3 is found in nematodes and vertebrates,
but not in insects or lower organisms (Fig. 13).
Compared with classical calpains, TRA-3 homologs
have a C2 domain at the C-terminus, instead of a
PEF domain (Figs. 3 and 13). Therefore, TRA-3
homologs can also be included in the PalB subfamily,
with its structural consensus of two tandem C2L/C2
domains at the C-terminus. TRA-3 homologs, like
CAPN10 homologs, have no MIT domain.

The evolutionarily conserved SOL subfamily
occurs in almost all animals, including humans,
insects, and nematodes, and also in green algae.
SOL homolog structures are characterized by having
various numbers of Zn-finger motifs in the N-terminal
domain. They also share an SOH domain (Figs. 1
and 3).

Plant calpains, called phytocalpains,163) were
first described in 2002.62) The maize calpain homolog,
DEK1 (defective kernel 1), is involved in aleurone cell
development. DEK1 homologs are found in various
other plants, including rice plants and Arabidop-
sis.164)–166) They have one C2L domain at the C-
terminus and a TM domain at the N-terminus. A
calpain that is highly similar to DEK1 is also found in
Tetrahymena thermophila (Fig. 14A). Some of the
nematode calpains (CLP-3, -4, -6, and -7) have a
domain structure (CysPc-C2L-COOH) similar to
that of DEK1, but they do not have a TM domain
(Fig. 6). These calpains are all grouped as the DEK1
subfamily.

The first member of the calpain bacterial
subfamily was reported in 1992 from Porphyromonas
gingivalis; it is called tpr (thiol protease).167) Sub-

H. SORIMACHI, S. HATA and Y. ONO [Vol. 87,302



sequent bacterial genome projects revealed several
bacterial calpain homologs. These are the most
divergent calpain species, sharing similarity only in
the protease domain (Fig. 8). Although E. coli was
once reported to have a calpain-like protease,168) its
sequence rather belongs instead to the narrowly
defined papain superfamily (clan CA-C1). In sum-
mary, all the calpain subfamily consensus structures
are shown in Fig. 14B.

3.3. Ubiquitous and tissue-specific calpains.
In addition to their structural features, mammalian
calpains are also independently categorized according
to their tissue and organ distribution.169) CAPN1/
7CL, CAPN2/mCL, CAPN5/hTRA-3, CAPN7/

PalBH, CAPN10, CAPN13, and CAPN15/SOLH
are ubiquitously expressed, whereas CAPN3/p94,
CAPN8/nCL-2, CAPN9/nCL-4, CAPN6, CAPN11,
and CAPN12 are expressed in specific tissues or
organs (Figs. 3 and 4). Widely accepted assumption
is that ubiquitous calpains play fundamental roles in
all cells, whereas tissue-specific calpains have tissue-
specific roles. In fact, defects in ubiquitous calpains
may be lethal, as in Capn2!/! mice,55) whereas
defects in tissue-specific calpains may cause tissue-
specific diseases, like the muscular dystrophy caused
by defective CAPN3.56)

At the same time, under various disease/
damaged conditions such as muscular dystrophies,
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cardiomyopathies, traumatic ischemia, and lissence-
phaly, conventional calpains tend to be overacti-
vated—probably because the intracellular Ca2D

homeostasis is compromised by the disease—and
that overactivity often exacerbates the disease.
Conventional calpain inhibitors are currently used
to prevent the progression of such diseases, a
therapeutic technique first applied by Suzuki and
colleagues.58),79),170),171)

3.4. Expression of tissue-specific calpains.
Tissue-specificity of tissue-specific calpains should

be regulated by their promoter regions. Human,
mouse and rat CAPN3/Capn3 upstream regions have
highly conserved structures containing TATA-box
and several E-boxes, which probably are responsible
for muscle-specific expression of CAPN3/Capn3.172)

Intriguingly, CAPN3/Capn3 has an alternative up-
stream promoter, which drives ubiquitous expression
of Up86 etc. starting from an alternative initial exon
with slight abundance in the brain and blood
cells.173)–175) Moreover, rodent Capn3 has additional
alternative promoter and initial exon between exons

Fig. 12. Phylogenetic tree and sequence alignment of PalB calpains.
A. Phylogenetic tree of strict PalB calpains and human CAPN1/7CL. See Fig. 3A for methods. B. Sequence alignment of PalBs and
human CAPN1/7CL (the start and end aa residue numbers are indicated). Triangles: active site residues. Asterisks: residues involved
in Ca2D-binding of the protease domain of CAPN1/7CL. Arrows: domain boundaries. Deletion (!) and multiple (D) residue positions
are indicated. Residue numbers of human CAPN1/7CL are given above the sequences. Residues conserved in all the sequences, all
except human CAPN1/7CL, and in more than half the sequences are indicated by black reversed fonts, gray reversed fonts, and gray
shadow, respectively. Sequences: 0: H. sapiens (human) CAPN1/7CL (NP_005177); 1: H. sapiens CAPN7/PalBH (NP_055111); 2:
X. tropicalis (frog) (NP_998853); 3: D. rerio (zebrafish) (NP_001128580); 4: Ciona intestinalis (sea squirt) (XP_002121253); 5:
Tribolium castaneum (red flour beetle) (XP_967682); 6: Apis mellifera (honey bee) (XP_001121978); 7: Acyrthosiphon pisum (pea
aphid) (XP_001945029); 8: A. gambiae str. PEST (malaria mosquito) (XP_309874); 9: S. mansoni (XP_002579452); 10: C. elegans
(NP_497964); 11: T. brucei TREU927 (XP_828540); 12: L. major (CAJ06528); 13: Coprinopsis cinerea okayama7#130 (common ink
cap) (EAU91907); 14: E. nidulans FGSC-A4 (XP_657860); 15: C. albicans SC5314 (EAL03290); 16: S. cerevisiae (Q03792).
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1 and 2, and these are responsible for lens-specific
expression of alternative splicing products of Capn3
such as Lp82 and Rt88.176),177) However, human
CAPN3 lost lens-specific products by in-frame
termination in exon 1′.178) Capn3 expression is also
noted in testis.173)

The promoter region of Capn8 contains two
TATA boxes with several GATA boxes, which are
probably responsible for stomach expression of
Capn8.157) Some cAMP responsive elements is also
found in this region. Notably, CAPN8 and CAPN2
are close to each other on human chromosome 1q41
(mouse: chromosome 1), and their transcripts have
overlapping complementary sequences, suggesting
possible interaction with each other.157) In addition,
Capn8 has additional exon in the middle, which
generates an alternative splicing product, CAPN8b/
nCL-2′. Its physiological relevance, however, is
elusive.157),179) As for other tissue-specific calpain
genes, their upstream sequences have not been
analyzed in the detail.

4. Unconventional calpain functions
in health and disease

4.1. Skeletal muscle-specific calpain. The
first tissue-specific calpain, CAPN3/p94, was found
in 1989.180) It is expressed predominantly in skeletal
muscle. This classical calpain is approximately
50% identical to CAPN1/7CL and CAPN2/mCL
(Fig. 3). However, it contains three additional
characteristic regions NS, IS1, and IS2, located at
the N-terminus, in PC2 domain, and between C2L
and PEF domains, respectively. These regions give
CAPN3/p94 some unique features.

The most characteristic property of CAPN3/p94
is its extremely rapid autodegradation—its half-
life in vitro is less than 10 minutes—starting with
autolysis in the NS and IS1 regions.181)–183) This
autodegradative activity depends on both IS1 and
IS2, and conventional calpain inhibitors such as
calpastatin and E64 have little effect on it.181)

Surprisingly, this autodegradation occurs NaD-de-
pendently in the absence of Ca2D, establishing

CAPN3/p94 as the first example of an intracellular
NaD-dependent enzyme.54) The physiological rele-
vance of CAPN3/p94’s NaD-dependency is still
unclear, but its substrate specificities differ when it
is activated by Ca2D versus NaD. For example, LIM
domain-binding protein 3, tropomyosin ,-1 chain,
and ,-actinin-3 are candidate in vivo substrates for
NaD-activated CAPN3/p94, whereas troponins T
and I and Ras-specific guanine nucleotide-releasing
factor 2 are for Ca2D activation.54) Furthermore,
CAPN3/p94 possesses a nuclear localization-signal-
like sequence in the IS2 region, and is sometimes
found in the nucleus as well as the cytosol.181)

CAPN3/p94 binds specifically to the N2A and M-
line regions of the gigantic filamentous muscle
protein connectin/titin (Mr > 3,000 kDa), and the
binding site for N2A connectin/titin is the N-
terminal vicinity of the IS2 region.184) Its autode-
gradative activity is almost completely suppressed
in vivo, most probably by binding to N2A connectin/
titin. This region also aligns important subcellular
structures of muscle, such as the sarcoplasmic
reticulum and T-tubules, and therefore represent
the potential space for CAPN3/p94 to function.183)

In 1995, CAPN3 mutations were shown to be
responsible for limb-girdle muscular dystrophy type
2A (LGMD2A), also called calpainopathy, by an
analysis of families of La Réunion Island and by
positional cloning.56),185) Capn3!/! mice recapitulate
a human calpainopathy-like phenotype,186),187)

although milder, indicating that calpainopathy is
indeed caused by CAPN3 defects.186) Calpainopathy
appears to be primarily caused by compromised
CAPN3/p94 protease activity, rather than by dam-
aged structural properties.188) This was confirmed
by CAPN3/p94 knock-in (Capn3CS/CS) mice, which
express a structurally intact but inactive CAPN3/
p94:C129S mutant, and also present a muscular
dystrophy phenotype.189) Intriguingly, however,
Capn3CS/CS mice have a less severe phenotype than
Capn3!/! mice, indicating that the proteolytically
inactive CAPN3/p94 retains some function, probably
involving its structural properties.189)

Fig. 13. Phylogenetic tree and sequence alignment of TRA-3 calpains.
A. Phylogenetic tree of TRA-3 calpains and human CAPN1/7CL. See Fig. 3A for methods. B. Sequence alignment of TRA-3 and
human CAPN1/7CL (the start and end aa residue numbers are indicated). Sequences: 0: H. sapiens CAPN1/7CL NP005177; 1:
H. sapiens CAPN5 NP004046; 2: M. domestica CAPN5 XP001377962; 3: G. gallus CAPN5 XP417278; 4: X. tropicalis CAPN5
NP001006736; 5: D. rerio CAPN5 NP001073476; 6: D. rerio CAPN5-2 XP001345114; 7: H. sapiens CAPN6 NP055104; 8:
M. domestica CAPN6 XP001366895; 9: G. gallus CAPN6 XP420313; 10: X. tropicalis CAPN6 XP002938834; 11: X. tropicalis TRA-
3 XP002941290; 12: D. rerio TRA-3 XP001339053; 13: Strongylocentrotus purpuratus CAPN5 XP001178522; 14: S. mansoni
XP002578116; 15: C. elegans TRA-3/CLP-5 NP502751. For other explanation, see Fig. 12B.
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Many subsequent family analyses have been
reported, identifying substantial numbers of both
pathogenic and polymorphic mutations in
CAPN3.190),191) However, no mutational hot spot
has been found, so a genetic diagnosis of calpainop-
athy is not easy. A total of 2,530 mutations, including
456 unique ones, have been reported in the CAPN3
gene so far (available at the Leiden Muscular
Dystrophy Pages http://www.dmd.nl/). Among the
80 gene entries with mutations responsible for
muscular dystrophy, CAPN3 has the third most,
coming only after dystrophin and lamin A/C. One
characteristic of CAPN3 gene mutations is that more
than half (62.7%) of them are nucleotide substitu-
tions, of which missense mutations are dominant
(60.3% among all substitutions, and 37.8% among all
pathogenic mutations) (Fig. 15A).

Although some missense mutations found in
LGMD2A patients are reported relatively frequently,
such as R490Q/W, R769Q, and A236T, most of them
are distributed all over the protein, between the N-
terminus and C-terminus, including 215 unique
mutations at 176 independent loci (21.4%) among
the 821 aa residues (Fig. 15B). A comparison of
vertebrate CAPN3/p94s (including the two gene
products from fishes) revealed 241 residues that are
conserved in all species (Fig. 16), including 83 of the
above 176 missense loci, indicating that conserved aa
residues are important for CAPN3/p94 functions.
Conservation in the CAPN3/p94-characterizing re-
gions NS, IS1, and IS2 is relatively low; however, it
should be noted that some missense mutations, such
as R49C/H, P319L, and S606L, which are in the NS,
IS1, and IS2 regions respectively, occur relatively
frequently. These observations suggest that sequence
conservation of the CAPN3/p94-characterizing re-
gion is not necessarily required, but its length and a
few important aa, usually near the borders of these
regions, must be conserved for proper function.

LGMD2A and CAPN3 mutations are the first—
and so far, only—example of a clear cause–effect
relationship between human disease and calpain gene
mutations.

4.2. Gastrointestinal tract-specific calpains.
CAPN8/nCL-2 and CAPN9/nCL-4 are predomi-
nantly expressed in surface mucus cells, called pit
cells, in the stomach. Smaller amounts are expressed
in the goblet cells in the intestines.179),192),193) Among
mammalian calpains, CAPN8/nCL-2 is most similar
to CAPN2/mCL (62% identical). Unlike m-calpain,
however, E. coli-expressed recombinant CAPN8/
nCL-2 exhibits Ca2D-dependent autolytic and casein-

olytic activity without CAPNS1/30K, and it forms
a homo-di9oligomer via C2L domain in vitro.146)

Xenopus laevis has a CAPN8/nCL-2 ortholog named
xCL-2, which causes severe developmental defects
when disrupted.194)

CAPN9/nCL-4 is another classical calpain
homolog specific for gastrointestinal tracts. It is
equally similar to all other classical calpains at the
aa level, suggesting that CAPN9/nCL-4 is the
molecule closest to the ancestral calpain species.193)

CAPN9/nCL-4 is reported to be involved in tumori-
genesis195) and in lumen formation in breast epithelial
cells induced by an adhesion molecule.196) Recombi-
nant human CAPN9/nCL-4 requires CAPNS1/30K
for its activity in vitro, and such a complex has Ca2D-
dependent activity that is inhibited by calpastatin
and other Cys protease inhibitors, similar to conven-
tional calpains.147)

In contrast, the in vivo characteristics of these
calpains are rather different. Experiments using
Capn8!/! and Capn9!/! mice showed that neither
CAPN8/nCL-2 nor CAPN9/nCL-4 forms a stable
complex with CAPNS1/30K; rather, they form a
hybrid complex with each other, now designated as
gastric calpain (G-calpain).57) As is the case for
Capns1!/!, disruption of either Capn8 or Capn9
caused down-regulation of another molecule, suggest-
ing that each species contributes to the stability and
the functionality of the other. Both Capn8!/! and
Capn9!/! mice seem healthy under normal condi-
tions, but they are significantly more susceptible
to ethanol-induced gastric ulcers.57) CAPN8/nCL-2
knock-in (Capn8CS/CS) mice that express the pro-
tease-inactive CAPN8/nCL-2:C105S mutant instead
of wild-type CAPN8/nCL-2 also show stress-induced
gastropathy. This indicates that CAPN8/nCL-2 and
CAPN9/nCL-4, in the form of G-calpain, mediate
key events for gastric mucosal defense.57)

A single nucleotide polymorphism (SNP) data-
base search revealed that human CAPN8 and
CAPN9 have several aa-substituting SNPs.57) An
in vitro expression study indicated that some of these
SNPs compromised proteolytic activity of G-calpain.
Thus, evaluation of the link between these SNPs and
susceptibility to gastrointestinal disorders is on list of
things to do.

4.3. The PalB subfamily. PalB was first
identified in the ascomycete E. nidulans as a product
of the gene responsible for the fungi’s adaptation
to alkaline conditions.63) Its orthologs were then
widely identified, from S. cerevisiae to humans
(Fig. 12).64),158) The structural consensus for PalB
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subfamily members is (MIT)0–2-CysPc-C2L-C2L/C2
(Fig. 14B). Strict PalB homologs have (MIT)2-
CysPc-C2L-C2L (the upstream C2L was once called
PBH (PalB-homology) because of its highly diver-
gent sequence48)), whereas CAPN10 and TRA-3
homologs have CysPc-C2L-C2L and CysPc-C2L-
C2, respectively.

4.3.1. Strict PalB homologs in fungi. E. nidulans,
like many other microorganisms, grows over a wide
pH range. The gene locus palB was identified from
mutants that mimic the gene expression profiles for
acid environments even under normal/neutral con-
ditions, corresponding to pal genes (pal stands for
“phosphatase mutants: loss in activity at alkaline pH
but normal or increased activity at acidic pH”). PalB
is involved in the proteolytic activation of a key
transcription factor named PacC, which governs the
entire regulation of pH-dependent changes in gene
expression, such as the expression of alkaline
phosphatase under alkaline conditions. This pH
adaptation system is here called the Pal-PacC
pathway (Fig. 17).

Mutations in six genes, palA, palB, palC,
palF, palH and palI, that mimic the effects of
growth at acid pH, and one, pacC, that mimics
those at alkaline pH, were identified.197)–199) These
genes were characterized from 1995, starting with
the identification of the palB gene product as
a novel and divergent calpain homolog.63),200)–203)

Primary structures of these pal gene products
showed that PalB was a calpain homolog, and PalH
and PalI had TM domains. Protein interaction
analyses showed that PalF, a distant homolog of
mammalian arrestin, binds to the large cytosolic
domain of PalH,204) and that PalF’s phosphorylation
and ubiquitylation under alkaline conditions depend
on PalH and PalI. These findings indicate that
PalF–PalH interactions mediate pH signaling,
similar to the arrestin–receptor interactions that
regulate various processes in mammals, such as
photo-signaling.205) These findings strongly imply
the existence of an corresponding mammalian sig-
naling pathway(s) involving arrestin and CAPN7/
PalBH.

PalC

activationPalA

AnPef1 PalB

PalA

Dissociation

Alkaline pH

ESCRT-I~III

response to
alkaline pH

endosomal
membrane

plasma
membrane

PalB
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PacC
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active 
PacC

AnVps20
AnSnf7

Fig. 17. Pal-PacC pathway and corresponding molecules in yeast and human.
Schematics of signaling pathways involving PalB of fungi. In fungi, a membrane protein (PalH) senses ambient pH and transduces the
alkaline signal to PalI. An arrestin homolog, PalF, further transduces the signal to PalA, which forms a complex with AnPef1. At the
endosomal membrane, PalA forms the PalB active complex to proteolyze PacC at the C-terminus, thus activating this key
transcription factor. Activated PacC regulates gene expression under alkaline conditions. This pathway is highly conserved in yeast
and possibly conserved in human; corresponding molecules: PalH (fungi)-Rim21 (yeast)-? (human), PalI-Rim9-?, PalF-Rim8-arrestin,
PalA-Rim20-Alix/AIP1, PalC-Ygr122w-?, AnPef1-Pef1/Ygr058w-ALG-2, AnSnf7-Snf7/Vps32-CHMP4s, PalB-Rim13/Cpl1-
CAPN7/PalBH, and PacC-Rim101-C2H2 Zn-finger proteins? See text for details.
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PacC (674 aa) usually forms an inactive, closed
conformation, which protects it from activation by
intramolecular interactions, and undergoes limited
proteolysis to become active.206),207) First, PacC is
processed between aa 479–502 by a primary process-
ing protease, PalB, in a pH-regulated manner. This
changes PacC to an open form susceptible to proteoly-
sis by the proteasome in a pH-independent constitu-
tive manner, simultaneously creating the processed
active form (252–254 aa).207),208) It is thought that
ubiquitylation is not involved in this process, which
is a rare mode of action for proteasome.209)–212)

4.3.2. Strict PalB homologs in yeasts and mam-
mals. The above-described fungus Pal-PacC path-
way is well conserved in budding yeasts. The
S. cerevisiae PalB ortholog is Rim13/Cpl1. It was
first identified in 1993 as one of the RIM genes, which
reduce the expression of sporulation-specific genes
when mutated.213),214) Among the RIM gene prod-
ucts, Rim101 corresponds to fungus PacC, and plays
a central role in this signaling system, as does PacC.
The proteolytic regulation of Rim101 was first
discovered in 1997,215) and the responsible protease
was identified as Rim13/Cpl1 in 1999.64) Subse-
quently, RIM8, 9, 20, and 21, which correspond to
palF, I, A, and H, were identified.200),201)

Saccharomycetes’ usual environment is rather
acidic, and its alkaline adaptations function in near-
neutral pH conditions. Therefore, this adaptive
system, here called the Rim pathway, has practical
importance for human health. Pathogenic and
saprophytic yeasts like Candida albicans and Yarro-
wia lipolytica also have conserved Rim pathways.
For example, C. albicans uses this pathway when
it infects and invades mammalian skin in neutral
pH environments, and disrupting the Rim
pathway compromises its pathogenicity.216),217)

Y. lipolytica218),219) and Usitlago maydis220) are aslo
reported to use an identical system.

The Pal-PacC and Rim pathways relate to
membrane trafficking, and involve ESCRT (endo-
somal sorting complex required for transport) and
Vps (vacuolar protein sorting) proteins.65),221)–229)

Based on a genomic study that showed Rim and
Vps interactions, it is demonstrated that these two
proteins had a functional relationship in S. cerevisiae
and C. albicans.223),228),230) Screening of suppressor
mutants for rim21 and rim9 revealed functional
relationships between the Rim and Vps proteins.65)

These studies clarified components of the Rim
signaling cascade and the hierarchy: RIM8, 9, and
21 act upstream of RIM13/CPL1 and RIM20, and

Rim13/Cpl1 proteolyzes Rim101 at the endosomal
membranes with the aid of the ESCRT-III subcom-
plex as a scaffold (Fig. 17).

The Pal-PacC and Rim pathways are the first
examples that genetics thoroughly uncovered the
molecular components and mechanisms of calpain-
mediated systems. These pathways also exemplify
that calpains function as modulator proteases,
affecting their substrates’ functions by limited
proteolysis. Theoretical extension of the knowledge
of these pathways is anticipated to provide important
keys for understanding other calpain systems, includ-
ing those that involve CAPN7/PalBH.

There are few published reports on CAPN7/
PalBH, a mammalian ortholog of PalB.158),231)–233)

Many studies have examined other homologous
components; for instance, arrestin and Alix/AIP1,
which correspond to PalA and F, respectively. It
should be noted that interactions among Rim20,
Fef1/Ygr058w, and Snf7/Vps32 are conserved in
mammals as Alix1/AIP1, ALG-2, and CHMP4,
respectively.234)–237) Although multiple interactions
of Alix/AIP1 have been reported,236),238) the physio-
logical roles of these proteins and CAPN7/PalBH
have not been clarified. Another message from these
studies is that it is essential to take ubiquitous
unconventional calpains such as CAPN7/PalBH into
account along with the conventional calpains when
analyzing various biological phenomena, but very few
reports achieve this.239)

4.3.3. TRA-3 homologs in the PalB subfamily.
TRA-3/CLP-5 is classified into the PalB subfamily in
the broad sense, but TRA-3/CLP-5 has a distal C2
instead of C2L domain, and no N-terminal MIT
domain (Fig. 14B). The distal C2 domain was once
called a T domain (T from TRA-3), because its
primary sequence rather diverges from that of other
C2 domains. TRA-3/CLP-5 was first identified by
genetics as the product of the gene, tra-3 (trans-
former: XX animals transformed into males), which
is involved in the sex determination cascade of
C. elegans.61) Its action as an enzyme has not
been characterized; however, its protease activity is
necessary for female development in XX hermaphro-
dites, in the processing of the TRA-2A membrane
protein.240) In contrast, TRA-3/CLP-5 and another
C. elegans calpain, CLP-1, are components of a
neuronal necrotic death cascade, upstream of the
aspartic proteases ASP-3 and ASP-4, which may
correspond to mammalian cathepsins D and E.241)

An SNP in tra-3 is also reported to be involved in
nematode body-size determination.242)
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Mammals have two TRA-3 orthologs, CAPN5/
hTRA-3 and CAPN6; both share more than 30%
aa identity with TRA-3 (Fig. 13).243),244) CAPN5/
hTRA-3 has Ca2D-dependent autolytic activity and is
sensitive to several calpain inhibitors.245) CAPN5/
hTRA-3 is expressed in almost all tissues in varying
amounts. Analysis of Capn5!/! mice showed that
CAPN5/hTRA-3 is expressed in a subset of T cells,
but is dispensable for development.246) SNPs of
human CAPN5 were reported to be associated with
polycystic ovary syndrome, diastolic blood pressure,
and cholesterol levels,247),248) and CAPN5/hTRA-3
and CAPN15/SOLH are upregulated in chronic
intermittent, but not constant, heart hypoxia.249)

On the other hand, CAPN6 in eutherians
(placental mammals) naturally has aa substitutions
in the most important residue in the active site triad
(C!K in humans, see Fig. 13B), strongly suggesting
that eutherian CAPN6 has no proteolytic activity.
Interestingly, CAPN6 in marsupialia (Monodelphis
domestica; gray, short-tailed opossum) and in chicken
(Gallus gallus) have the active-site residues Cys-
His-Asn; moreover, frog (X. tropicalis) and fish
(Danio rerio) have three TRA-3 homologs, which
also have the active-site residues. This is in contrast
to CAPN11, which is a classical calpain expressed
specifically in the testis in eutherians, whereas the
CAPN11 gene is ubiquitously expressed in chicken
but was lost in marsupialia. Mouse CAPN6 is
predominantly expressed in embryonic muscles,
placenta, and in several cultured cells. It is intriguing
to consider the physiological function of eutherian
CAPN6 and CAPN11, which are expressed in the
placenta and testis, respectively. CAPN6 was shown
to be involved in regulating microtubule dynam-
ics,250) and was subsequently shown to regulate cell
motility in cultured cells,251) although the in vivo
physiological functions of CAPN6 and CAPN11 are
still unclear.

4.3.4. CAPN10 homologs in the PalB subfamily.
CAPN10 also belongs to the PalB subfamily in the
broad sense, but CAPN10 differs from PalB in that
it has no N-terminal MIT domain (Fig. 14B).
CAPN10 was identified as a risk factor for non-
insulin-dependent diabetes mellitus (NIDDM, type 2
diabetes) in a large-scale genetic association
study.162) An association was found between G!A
SNP (UCSNP-43, the G allele is the at-risk
genotype) in intron 3 of CAPN10 and susceptibility
to NIDDM in Mexican Americans and in a Northern
European population from the Botnia region of
Finland. There is no molecular explanation why this

SNP causes susceptibility to NIDDM, although G/G
homozygotes in UCSNP-43 were reported to have
reduced CAPN10 mRNA expression in skeletal
muscle.252),253)

The Capn10 gene is also a candidate gene
responsible for a phenotype of the Otsuka Long-
Evans Tokushima Fatty rat, a NIDDM animal
model.254) Quantitative trait locus (QTL) analyses
using Capn10!/! mice and two strains, LG/J and
SM/J, with low and high obesity phenotypes showed
that Capn10 is included in the obesity QTL, Adip1,
indicating involvement of CAPN10 in obesity also in
mice.255)

Studies using Capn10!/! or CAPN10-overex-
pressing Tg mice suggest that CAPN10 is involved
in type 2 ryanodine receptor-mediated apoptosis.256)

Although the phenotypes of these mice have not
been described, they do not have embryonic lethality.
Ubiquitous distribution and dynamic changes in
CAPN10’s cellular localization was shown by a
CAPN10-specific antibody.257) CAPN10 was also
demonstrated to be involved in GLUT4 vesicle
translocation during insulin-stimulated glucose up-
take in adipocytes.258) Arrington et al. showed that
CAPN10, localized to mitochondria, mediates mito-
chondrial dysfunction by cleaving Complex I sub-
units and activating the mitochondrial permeability
transition.259)

4.4. The SOL subfamily. The first genetic
calpain study examined the Drosophila gene small
optic lobes (sol).60) A mutation in sol, such as sol1078,
results in the absence of certain classes of columnar
neurons in the optic lobes, leading to specific
alterations in flight and walking maneuvers. The
longest transcripts from this gene encodes a 1,597-aa
protein belonging to the calpain SOL subfamily.
Drosophila SOL is composed of the N-terminal six-
Zn-finger motif-containing domain and the C-termi-
nal calpain-like protease domain (Fig. 7B). Most
of the protease domain is deleted in the sol1078

mutation, demonstrating that SOL as a protease is
essential for forming proper optic lobes. Unfortu-
nately, there have been no further reports dissecting
the molecular mechanisms of neurodegeneration
involving SOL.34) Mammals have one SOL ortholog,
CAPN15/SOLH,260),261) but its physiological role
is not clear. In parallel with PalB subfamily, this
evolutionarily interesting molecules including their
mammalian homologs beg further study.

4.5. Phytocalpain. A plant calpain, now called
phytocalpain, was first identified in the sugarcane
EST database by Correa et al., and was named SC
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cal1.262) A sequence similarity search using SC cal1 as
bait subsequently identified other phytocalpains:
from the dicotyledons, Vitis vinifera (pinot noir
grape), A. thaliana, and Solanum melongena (egg-
plant); from the monocotyledons, Zea mays (maize),
Oryza sativa (rice plant), and Hordeum vulgare
(barley); and from gymnospermae, Pinus taeda
(loblolly pine).163) A genetic study identified phyto-
calpain as the defective kernel 1 (dek1) gene product,
DEK1, required for aleurone cell development in the
maize endosperm.62) Since then, DEK1 homologs in
A. thaliana and Nicotiana benthamiana (tobacco)
have been found to have similar functions.166),263)

A biochemical study using E. coli-expressed
recombinant maize DEK1 CysPc-C2L domains
showed that its Ca2D-activated caseinolytic activity
depends on the predicted active site Cys residue,
although this activity was much lower than that of
the conventional calpains under the study conditions
used.164) DEK1 is the only calpain homolog in the
Arabidopsis genome,263) and it is important for
regulating growth in this plant. Although the full-
length DEK1 protein localizes to membranes, intra-
molecular autolytic cleavage releases the calpain
domain into the cytoplasm, and this domain is
sufficient to fully complement dek1 mutants.263),264)

As shown in Fig. 14A, from the N-terminus of
maize DEK1, a possible signal peptide is followed by
the first TM region (A), eight-TM region (B1), large
loop region (C), third TM domain with 14–15
spanners (B2), a domain of unknown function with
no homology to other proteins (D), the calpain
protease (CysPc) domain, and C2L domain.62),164)

The number of TM spanners of B2 region is predicted
to be 15 or 14, respectively, by SOSUI or TMHMM
Ver.2.0,265),266) which makes the topology of C region
and calpain domains on the same or opposite sides
of cell membrane. This topology is very important
for DEK1 function, and it should be examined
biochemically.

Among the 15 human calpains, the protease
domain of non-classical CAPN15/SOLH is the most
similar to the DEK1 CysPc domain, with which it
shows almost 40% aa sequence identity. Surprisingly,
DEK1’s C-terminal C2L domain is rather similar
to that of classical mammalian calpains, such as
CAPN1/7CL, CAPN3/p94, and CAPN8/nCL-2
(25–30% identity). Therefore, DEK1 is considered
to consist of three evolutionarily different modules: a
TM domain, a CysPc domain, and a C2L domain. In
addition, it has been suggested that DEK1 homolog
of the protista T. thermophila (Fig. 14A) resulted

from a lateral gene-transfer event from a green alga-
type endosymbiont of ciliates as an explanation for
this inter-kingdom similarity.46)

4.6. Other calpain members. Leishmania and
Trypanosoma have around 20 calpain homologs each,
which are likely to contribute to cell morphogenesis,
drug resistance, and stress-response mechan-
isms.267)–273) Some trypanosome calpains have N-
terminal domains with weak similarity to calpastatin.
As described above, some of the calpain homologs
have substitutions in one or more of the well-
conserved active-site triad residues, Cys-His-Asn.
This non-proteolytic family of calpain homologs
includes eutherian CAPN6 (Fig. 3), some of the
schistosome (Fig. 5) and nematode (Fig. 6) calpains,
insect CALPC (Fig. 7B) and all of the Trypanosoma
homologs.34),241),267) The generation of these calpain
species is interesting from an evolutionary viewpoint,
and elucidating their physiological functions will
reveal additional roles played by the calpain super-
family, e.g., possible non-proteolytic functions.

Concluding remarks

Gordon Guroff, Darrel E. Goll, Kazutomo
Imahori, Koichi Suzuki, and Takashi Murachi
established numerous milestones in the study
of calpains, including its discovery,1) finding its
relationship to skeletal muscle,5) purifying it to
homogeneity,7) labeling calpain and calpastatin,12)

cloning calpain13) and calpastatin cDNA,143)

determining the 3D structure,109) and many more.
Their highly comprehensive and educational re-
views17),48),49),274),275) have been cited many times.
These heroes will always live in the memory of many
calpain researchers. They made great strides in the
study of calpains, but much work remains to
elucidate calpain’s physiological roles. The diver-
gence of its physiological functions and the lack of a
good activation marker are major obstacles. Recent
progress in genetics and structural biology has led
to new and invaluable information about calpains.
Considering calpain’s divergent physiological func-
tions, breakthroughs in the field of calpain studies
will affect an enormously wide range of life science
fields.
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