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Abstract
Developing ontologies to account for the complexity of biological systems requires the time
intensive collaboration of many participants with expertise in various fields. While each
participant may contribute to construct a list of terms for ontology development, no objective
methods have been developed to evaluate how relevant each of these terms is to the intended
domain. We have developed a computational method based on a hypergeometric enrichment test
to evaluate the relevance of such terms to the intended domain. The proposed method uses the
PubMed literature database to evaluate whether each potential term for ontology development is
overrepresented in the abstracts that discuss the particular domain. This evaluation provides an
objective approach to assess terms and prioritize them for ontology development.

Keywords
Ontology development; hypergeometric test; PubMed; text mining

1 INTRODUCTION
High-quality ontologies such as the Gene Ontology (GO) [1] have been instrumental in
analyzing data generated from microarray experiments [2–13]. However, developing such
high-quality ontologies still poses significant challenges, as wide spectra of literatures and
domain experts need to be involved. To aid ontology development, numerous methods have
been developed to extract terms from literature automatically. Daille proposed combined
techniques to extract terms automatically from corpora by combining linguistic filters and
statistical methods [14]. Frantzi et al developed a C-value/NC-value method to extract
multi-word terms automatically [15]. By taking advantage of semantic relations encoded
between terms, Grabar and Zweigenbaum developed a two-step approach to collect
semantically related terms and to align morphologically linked work forms for term
extraction [16]. A “weirdness metric” was proposed by Ahmad and Rogers to evaluate terms
overrepresented in the domain-specific corpus for ontology development [17]. Savova et al
developed a data-driven approach to extract the “most specific term” for ontology
development using an algorithm combining statistical and linguistic approaches [18].
Another tool developed to extract terms for ontology development was Text2Onto, which
was built upon the Probabilistic Ontology Model [19]. In addition, Smith et al proposed a
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machine learning approach to retrieve definitional content for ontology development [20].
Concept maps have also been used by Castro et al in the ontology development process [21].
Alexopoulou et al developed two additional methods, one based on the relative frequency of
a term in the corpus and the other using the document frequency derived from all phrases
contained in PubMed abstract database, to extract terms for ontology development [22].
While these methods focuses on extracting terms from published literatures, two other
studies also proposed to extract terms from web resources for concept and ontology
development [23, 24]. Despite these efforts, it is still widely recognized that manual curation
is the most reliable method for ontology development [25], and these automatic term
extraction methods are rarely used as a mainstream approach in the current biomedical
ontology development process.

In the manual curation process, curators read as much scientific literature as possible for a
particular biological domain in order to identify corresponding ontology terms and to
classify their relationships to the domain and to other terms within it (such as “is_a” and
“has_a” relationships). One significant challenge during this process is to determine which
term should be used as the basic building block from which to develop an ontology for a
particular domain. This challenge is compounded by the fact that many curators with diverse
backgrounds may be involved in developing the ontology for a given domain; diversity in
their backgrounds can result in the selection of a wide variety of terms to be compiled within
the ontology. This term selection process relies on the expertise of individual curators,
without either a preliminary or confirmatory test using some objective method and measure.
A quantitative approach to evaluate whether terms are appropriate to develop an ontology
for a particular domain would provide this objective method and measure, improve the
utility of the resulting ontology, and reduce the amount of work imposed on curators.

While the above mentioned term extraction algorithms or their underlying metrics have the
potential to be used to evaluate terms assembled by experts during manual curation for
ontology development, several limitations exist for such an application. First, most of these
algorithms are developed to extract terms from a corpus of selected literatures already
identified as relevant to a specific domain. Lacking such a pre-defined corpus, as is the case
for many ontology development projects, these methods’ effectiveness is not clear. Second,
the volume of existing literature databases like PubMed is significantly larger than a corpus
related to a specific domain; this corpus size difference raises questions about the
performance of these algorithms if applied to evaluate terms using PubMed abstracts in the
absence of a domain specific corpus. Furthermore, these methods have not been widely
tested against manually assembled ontology terms. New approaches capable of dealing with
large databases and confirmed through comparison to manually curated ontologies need to
be developed.

One objective criterion to evaluate a term’s suitability for incorporation in an ontology for a
particular concept domain is to quantify the term’s relevance to the domain within published
biomedical literature. If a term occurs at high frequency in PubMed abstracts relevant to the
concept domain, then it should be more suitable for ontology development than other terms
occurring at low frequencies. Because ontology development aims to describe particular
biological domains, we hypothesized that the terms used within an already existing ontology
for a particular domain would be overrepresented in the PubMed abstracts relevant to that
domain (Domain PubMed Abstract, DPA). We further hypothesized that the degree of
overrepresentation could be detected by employing a hypergeometric enrichment test.

Testing based on hypergeometric distribution has been applied in the analysis of GO
overrepresentation on biologically-interesting gene sets (review see [26]). Hypergeometric
testing can measure the association between a term and the domain by calculating the
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probability of observing the term within the DPA as long as both categories are sampled
without replacement from a finite population. Such a probability can be used as a direct
measure of how relevant a term is to the domain: the higher probability we observe a term in
the DPA, the more overrepresented this term is in the DPA, and the more relevant this term
is. The degree of overrepresentation of terms relevant to a domain in the DPA can indicate
the usefulness of the terms for developing this domain’s ontology. Experts from diverse
fields could use the information gleaned through such a hypergeometric evaluation to
narrow candidate terms for a given ontology. The test could significantly reduce the manual
effort involved in ontology development.

In this study, we first used GO [1] as a control to evaluate whether the proposed text-mining
approach could detect the overrepresentation of ontology terms in the corresponding DPA.
We demonstrated that the hypergeometric test could capture the relevant terms in the DPA
and reflect their relative importance by their overrepresentation. We then demonstrated that
this approach could be used to evaluate putative ontology terms generated by different
experts for the development of a Clinical Trial Ontology/Ontology for Clinical Investigation
[27]. Our results indicated that such a computational algorithm can provide an objective
measure for the selection of putative ontology terms to facilitate ontology development.

2 METHODS
2.1 PubMed Database Preparation

Figure 1 illustrates a condensed version of our process. The entire PubMed database (2007)
in XML format was downloaded from NCBI. The database was processed to extract all
abstracts. Necessary formatting, such as capitalizing all the abstracts and removing special
characters, was performed (box ‘preprocessing’). All the software was implemented in C++.
PubMed stopwords were also downloaded from NCBI.

2.2 Collection of GO and other Terms
Terms for evaluation by hypergeometric enrichment test—In order to test whether
terms relevant to a domain were overrepresented in the corresponding DPA, we identified
test sets where each set had a domain term and a list of terms known to be relevant to that
domain. To generate these test sets, we took advantage of the hierarchical structure of GO.
In an ontology such as GO, terms with specific meaning are children of terms that are more
general, thus comprising an “is_a” relationship. We viewed a parent term as a domain and
the child term as a term relevant to that domain. This approach can be extrapolated to multi-
level hierarchies such that an ontology term at a high level of the hierarchy can be viewed as
a domain term, and all of its child terms can be viewed as terms that are relevant to this
domain.

GO was downloaded from the GO Consortium website (http://www.geneontology.org, June,
2007). Two terms were selected from GO as domain terms for our study. The criteria for
selection were: 1) each term had more than 50 child terms under an “is_a” relationship to
yield a significant number of child terms relevant to the domain; 2) the selected domain term
was not a child term of another domain term. Two domain terms, Monosaccharide
Metabolic Process (GO:0005996) and Protein Kinase Activity (GO:0004672), were selected
for this purpose. Monosaccharide Metabolic Process is categorized as a biological process
within GO, and Protein Kinase Activity falls within the molecular function category.
Descendents of these two terms were also collected. Since we focus on the terms that
describe biological systems, common words such as “activity” or “process” were removed
from these descendent terms(henceforth, such terms are shown in brackets). This practice
was limited to the GO terms used for validation purposes and was not applied to the putative
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ontology terms evaluated in subsequent analyses. The number of unique terms after
removing these common words was 56 and 97 for Monosaccharide [Metabolic Process] and
Protein Kinase [Activity], respectively. The degree of overrepresentation of these
descendent terms in the DPA was tested as described below.

We also selected additional GO terms as controls. These terms were randomly chosen from
a pool of GO terms that had no descendant-ancestor relationships with Monosaccharide
[Metabolic Process] or Protein Kinase [Activity]. The control terms identified as
overrepresented in abstracts that also included Monosaccharide [Metabolic Process] or
Protein Kinase [Activity] were counted as false positives in constructing Precision-Recall
curves.

Terms for evaluating putative ontology terms for Clinical Trial Ontology—
Putative ontology terms were downloaded from the wiki for the Ontology for Clinical
Investigations [27]. These 316 terms were assembled by experts with various experience and
backgrounds in areas related to clinical trials. The domain of clinical trials focuses on
clinical trial design, implementation and outcome analysis, while the domain of GO mainly
characterizes gene functions. Therefore, we assumed that the overlap between these two
domains would be small and not significant. This assumption is supported by the fact that
the PubMed abstracts containing the word “protein kinase” comprise only 0.1% of those
containing the keyword “clinical trial”, and the PubMed abstracts that contain the word
“clinical trial” only comprise 0.4% of those with the keyword “protein kinase”. The low
frequency of GO terms appearing in the PubMed abstracts that contain the keyword “clinical
trial” also supports our assumption (data not shown). Therefore, randomly selected GO
terms were used as negative controls: if any of these GO terms were overrepresented in the
PubMed abstracts that discussed clinical trials, they were counted as false positives. The
selected terms were mapped to the PubMed abstracts, and their occurrences in the abstracts
relevant to the clinical trial domain were counted. For the clinical trial domain, we identified
any PubMed abstracts that contained the term “Clinical Trial” or “Clinical-Trial” as
relevant. The final test was run for all 316 putative ontology terms and identified terms that
were overrepresented in the DPA for the clinical trial domain.

2.3 Mapping Terms to PubMed Abstracts
We implemented the efficient Boyer-Moore string search algorithm [28] in C++ to map
terms to PubMed abstracts. The algorithm identifies single or multiword terms between
white space in the abstracts that match query terms. Mapping of terms to PubMed abstracts
was performed on a 76 node computer cluster. Each cluster node had two dual-core Intel
Xeon 3GB processors. The PubMed database was split into 100 files, and mapping was
performed on 100 cluster nodes for the selected GO terms, the putative ontology terms for
Clinical Trial Ontology development, and the domain terms. The numbers of abstracts that
contained individual terms were then summed. The results were assembled and analyzed by
the hypergeometric test.

2.4. Performing the Hypergeometric Test and the Weirdness Metric Test
In this study, we used a one-sided hypergeometric test [26] to compute the
overrepresentation of each ontology term in the corresponding DPA. To assess whether a
putative ontology term is relevant to a domain, the PubMed abstracts can be divided into
four different categories, using the clinical trial domain as an example: 1) PubMed abstracts
that contain both the putative ontology term and the domain term “Clinical Trial” or
“Clinical-Trial” (top left cell in Figure 2A, the number of these abstracts = X); 2) PubMed
abstracts that contain only the putative ontology term but not the domain term (top middle
cell in Figure 2A, the number of these abstracts = K − X); 3) PubMed abstracts that contain
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the domain term but not the putative ontology term (left middle cell in Figure 2A, the
number of these abstracts = M-X); and 4) PubMed abstracts that contain neither the putative
ontology term nor the domain term (middle cell in Figure 2A, the number of these abstracts
= N-(K-X)). Therefore, the total number of PubMed abstracts that contains the domain term
is M, the total number of PubMed abstracts that contains the putative ontology term is K,
and the total number of PubMed abstracts is M+N. For a given putative ontology term, the
probability of getting X number of annotated abstracts among M number of abstracts that
contain the domain term, given that the total number of abstracts containing the putative
ontology term is K , is shown in Figure 2B [29]. Due to the discreteness of the
hypergeometric distribution, mid-P-values [30] were used in the test: pmid = P (X > x ) +
0.5P (X > x) , where P ( X > x) is the probability of observing more than x abstracts
annotated with both the putative ontology and domain terms, and P ( X > x) is the
probability of observing exactly x abstracts. We used the hypergeometric distribution
functions (i.e. dhyper and phyper) implemented in the statistics package of R [31] to
perform the one-sided test (for a discussion about one-sided and two-sided tests, see [26])
and to calculate the mid-p-value. The null and alternative hypotheses for the one-sided test
are Ho : r1 ≤ r2 and H1 : r1 > r2 , respectively; where r1 is the probability of the ontology
term being relevant to the domain, while r2 is the probability of the ontology term being
relevant to other domains. The resulting p-value indicates the degree of overrepresentation
of the term in the PubMed abstracts discussing the domain term “Clinical Trial” or
“Clinical-Trial”. In order to perform this test in a high-throughput manner, we also
implemented analysis software in C++ to perform the test using the functions
(gsl_ran_hypergeometric_pdf and gsl_cdf_hypergeometric_P) in the GNU scientific library
[32].

We tested the overrepresentation of each term under the corresponding chosen domain (i.e.
“Monosaccharide [Metabolic Process]”, “Protein Kinase [Activity]”, and “Clinical Trial”)
against all the abstracts in PubMed. Recall and Precision were calculated for different p-

value cut offs, where  and

. A Precision-Recall curve generated from ROCR [33]
was used to plot each test and to evaluate the text mining method. To evaluate whether child
terms were overrepresented for the domain terms Monosaccharide [Metabolic Process] or
Protein Kinase [Activity], we randomly sampled 100 times the same number of control
terms as the domain terms to evaluate our method. We also applied the hypergeometric test
to assess whether the distribution of Clinical Data Interchange Standards Consortium
(CDISC) [34] terms was overrepresented or not in the DPA containing the domain term
“Clinical Trial” or “Clinical-Trial”.

We then compared our hypergeometric enrichment test-based approach to a similar
approach based on the Weirdness Metric proposed by Ahmad and Rogers [17]. This
approach counts the frequency of a term in the DPA and non-DPA and then takes the ratio
of these two frequencies to generate the Weirdness Metric. We used this approach to test the
overrepresentation of each term under the corresponding chosen domain (i.e.
“Monosaccharide [Metabolic Process]” and “Protein Kinase [Activity]”) against all the
abstracts in PubMed and compared the Precision-Recall curves of this approach with our
hypergeo-metric enrichment test.

3 RESULTS
We examined 8355343 PubMed abstracts, and the number of abstracts that contained
“Monosaccharide [Metabolic Process]” and “Protein Kinase [Activity]” were 4241 and
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86531, respectively. Out of 56 “Monosaccharide [Metabolic Process]” children, 39 could be
mapped to the PubMed abstracts, and 63 out of 97 “Protein Kinase [Activity]” children
could be mapped. In addition, 588 randomly selected GO terms that had no parent-child
relationship to “Monosaccharide [Metabolic Process]” and “Protein Kinase [Activity]” were
used as control. The distribution of the occurrence of these terms in PubMed abstracts is
shown in Figure 3A and 4A for “Monosaccharide [Metabolic Process]” and “Protein Kinase
[Activity],” respectively.

The hypergeometric distribution test showed that a majority of the children of
“Monosaccharide [Metabolic Process]” were overrepresented in the abstracts that contained
the word “Monosaccharide [Metabolic Process]”. This also held true for the children of
“Protein Kinase [Activity]”. The results from the GO analysis are shown in the Precision-
Recall curves (Figure 3B and 4B, solid line). We achieved a Precision of 0.84 at the Recall
level of 0.77 (F-measure=0.8) for Monosaccharide [Metabolic Process] and a Precision of
0.89 at the Recall level of 0.88 (F-measure=0.88) for Protein Kinase [Activity]. The
corresponding Precision and Recall rates for the Weirdness Metric approach [17] were 0.83
and 0.77 (F-measure=0.8) for Monosaccharide Metabolic Process and 0.84, 0.88 (F-
measure=0.86) for Protein Kinase [Activity], respectively, indicating our approach
performed slightly better.

In order to apply the same test to evaluate the appropriateness of putative ontology terms for
the clinical trial domain, we performed two tests. First, we tested whether selected GO terms
could be separated from the putative ontology terms for the clinical trial domain. We picked
300 terms from the putative ontology term list and randomly assigned them into three
groups, with each group having 100 terms. As a control, three groups of control GO terms
with 100 terms each were generated. We used one group of putative ontology terms and one
group of GO terms to test whether these terms were overrepresented in the DPA that
contained the domain term “Clinical Trial” or “Clinical-Trial”. The test was performed for
the other two pairs as well, and the Precision-Recall curve for the analysis is shown in
Figure 5A. The (Precision, Recall, F-measure) for these three tests were (0.74, 0.85, 0.79),
(0.86, 0.86, 0.86) and (0.85, 0.81, 0.83), respectively, indicating that the enrichment test
indeed separated putative ontology terms for the clinical trial domain from control GO
terms. We also selected the p-value 0.0744 that gave the highest F-measure (Figure 5B) as
the threshold to evaluate all putative ontology terms downloaded from the CTO wiki. Note
that this threshold functioned to separate putative ontology terms for clinical trial domain
from GO terms. Using 85881 PubMed abstracts that contained the terms “Clinical Trial” or
“Clinical-Trial,” we classified a term as overrepresented if its p-value from the
hypergeometric test was less than 0.0744. By this standard, twenty two percent of the terms
were not overrepresented while the rest, seventy eight percent, were (Figure 5C). Table 1
lists some selected representative terms and their enrichment p-values.

In order to further assess this evaluation, we took advantage of existing terms known to be
relevant to the clinical trial domain. The CDISC glossary has been adopted by the FDA as
the data standard for clinical trials. Therefore, terms from CDISC were used as positive
controls, testing whether they were overrepresented in the DPA relevant to the clinical trial
domain. We identified 136 terms in CDISC that had exact matches with the putative
ontology terms downloaded from the CTO wiki. Eighty seven percent (n=119) of these 136
terms were classified as overrepresented in the DPA for clinical trial domain, where only
thirteen percent (n=17) out of these 136 terms fall into the not overrepresented category
(Figure 5D, and a set of selected terms are included in Table 1). A one-tailed
hypergeometric test indicated that the probability for such an enrichment level to occur was
0.0003. Therefore, our approach demonstrated that terms’ overrepresentation in the DPA
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indicated relevance to the domain, and the method provided an objective and effective way
to evaluate terms for ontology development.

4 DISCUSSION
Ontology development is typically a community effort involving many expert individuals.
Their backgrounds and experience will and should affect ontology development. Despite
their expertise, however, an initial term list developed by many people will contain many
terms that may not ultimately be deemed relevant to the intended domain for ontology
development. The algorithm we have developed provided an objective assessment of terms
that could help to speed and consolidate term acquisition from a wide variety of sources.
Unlike many other term extraction algorithms, the hypergeometric enrichment test used all
PubMed abstracts and did not require an a priori corpus of literature for a specific domain.
Our method performed slightly better than a similar approach using the Weirdness Metric
[17]. In addition, since the Weirdness Metric is calculated only from the ratio of two
frequencies of word occurrence, our approach provided statistical means to assess terms
based on their overrepresentation as determined by a hypergeometric enrichment test.

One challenge of our approach is that some terms may not map to any PubMed abstract.
While this circumstance may affect the method’s (as well as other methods’) ability to
evaluate every single term important for ontology development, a significant percentage of
terms indeed can be mapped to the PubMed abstracts at high or median frequencies,
consistent with the observation by Verspoor et al [35]. In the relatively rare situation in
which a domain term cannot be mapped to any PubMed abstract, ontology developers
should consider identifying potential synonyms or semantic equivalents. We also noted that
existing ontologies such as GO contain many artifacts in order to define their terms
precisely. These artifacts may prevent the terms from being mapped to PubMed abstracts.
However, compared to developed ontology terms, the putative terms that are hand-selected
by experts contain fewer of these artifacts, are closer to the linguistic phrases used in the
literature, and are suitable to be evaluated by our approach.

The diverse topics, synonyms, and semantic variants may also have significant impacts on
mapping efficiency. After all, researchers often use different terms to describe research
results. Despite the fact that researchers in the field of Natural Language Process and text
mining have made progress in this mapping effort [14, 35–37], it remains difficult to
identify all PubMed abstracts relevant to a particular term. Hypergeometric enrichment
testing can provide certain degrees of tolerance to the inefficient mapping of terms to
PubMed abstracts, especially since the ratio between the frequency of a term in domain
specific and non-domain specific abstracts (x/(k-x) from Figure 2) is likely to be the same as
the ratio for the synonyms/syntactic variants of the term. Under such a condition, the
probability of observing a term in the DPA would remain at similar levels to its syntactic
variants/synonyms, and the overrepresentation could still be detected.

Our approach surveys all PubMed abstracts to perform the hypergeometric test instead of
focusing on a pre-determined corpus of abstracts for some specialized field. However, the
hypergeometric test takes into consideration four different categories of PubMed abstracts
(Figure 2). The combination of three of these categories (PubMed abstracts containing: 1)
both ontology and the domain term; 2) ontology terms but not the domain term; 3) the
domain term but not ontology terms) can be viewed as a corpus. Based on the distribution of
ontology and domain terms among these categories, each abstract that has both the domain
term and the child term increases our confidence that the two are relevant. The mapping of
terms also helps us to separate commonly used terms that are widely used by the community
from obscure terms that are rarely used. Terms that are present with high frequency in the
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abstracts may have a better chance to be adopted as ontology terms since these are common
terms already widely accepted by the research community. Finally, we are aware that current
mapping does not identify all relevant articles through PubMed abstracts (i.e. terms are not
mentioned in the abstract but are used in the text). However, for those terms we are able to
identify, our approach showed that the enrichment test can prioritize relevant terms for
ontology development.

We noticed that a number of putative ontology terms were not overrepresented, and their
enrichment p-values were very high. Judged by domain experts we consulted, these few
terms were very general and their uses were not limited to clinical trials. As a result, these
terms would likely have lower priority for ontology development in the clinical trial domain.
A high p-value may also indicate the ambiguity of a term. The specificity or ambiguity of a
term is typically associated with its use across many different contexts. Therefore,
ambiguous terms are used for many different domains, and their degree of
overrepresentation in a particular domain is less than terms with very specific meanings for
that domain. For a term that is important to a domain (such as “Withdrawal Consent” and
“Electronic Signature” for the clinical trial domain in Table 1), a high enrichment p-value
may also suggest that a namespace would be needed to avoid ambiguity and to distinguish
the use of such terms within the intended domain from its use in other domains.

Our approach may help to develop an automatic/semi-automatic approach for ontology
development. Ontology development largely relies on scientific facts to depict the reality of
an intended domain. Often, a set of reviewer articles and textbook chapters can capture these
facts in great detail for a particular domain. Putative ontology terms can be extracted from
this corpus of selected articles and evaluated against the domain using our hypergeometric
enrichment test. In addition, the enrichment p-value can serve as a quantitative measure of
the relevance of a putative term to the domain term. Specific (child) terms may be
overrepresented to a greater degree than a general (parent) term in the DPA. Therefore, the
enrichment p-value may be used as a measure to place terms within an ontology hierarchy.
Such a scenario may help to improve the efficiency of the current ontology development
process and alleviate burdens on ontology developers/curators.

5 CONCLUSION
We have developed a computational method that utilizes a text mining approach based on
hypergeometric enrichment test to evaluate terms for ontology development. We analyzed
the occurrence of terms in the PubMed database and evaluated their relevance for ontology
development for a particular domain. Such an application can facilitate the current manual
process for ontology development.
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Figure 1.
Workflow of enrichment test to evaluate terms for ontology development
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Figure 2.
Using PubMed abstract database and hypergeometric test to evaluate terms for ontology
development. A) X is the number of abstracts that contains both a term for ontology
development (putative ontology term to be evaluated) and the domain term; M and N are the
abstracts with and without the term for the domain, respectively; K is the number of
abstracts with the term. M+N is the total number of PubMed Abstracts examined. For
example, to evaluate whether hexokinase activity is an appropriate term to develop an
ontology for monosaccharide metabolism, X is the number of PubMed abstracts that contain
both hexokinase activity and monosaccharide metabolism. B) The equation shows the
probabil-a! ity of observing X by employing the hypergeometric formulation, where

 is the binomial coefficient.
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Figure 3.
Hypergeometric test can be applied to identify children of a particular Biological Process
ontology term in well-developed Gene Ontology. A) The occurrence of child terms of
Monosaccharide Metabolic Process in PubMed Abstract. X axis is the frequency of each
term in the entire PubMed abstracts in logarithmic scale. Y axis is the number of terms at a
particular frequency. Terms are binned together based on their frequency. B) The Precision/
Recall curve created for the overrepresentation of all the children of parent term
“Monosaccharide Metabolic Process” in the abstracts that contain the parent term. This
curve indicates that the hypergeometric test or Weirdness Metric indeed can identify the
children (ontology terms) of the parent term (domain), and the result of this computational
method is consistent with the Gene Ontology created by domain experts.
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Figure 4.
Hypergeometric test can be applied to identify children of a particular Molecular Function
ontology term in well-developed Gene Ontology. A) The occurrence of children of “Protein
Kinase Activity” in PubMed Abstract. X axis is the frequency of each term in the entire
PubMed abstracts in logarithmic scale. Y axis is the number of terms at a particular
frequency. Terms are binned together based on their frequency. B) The Precision/Recall
curve created for the overrepresentation of all the children of parent term “Protein Kinase
Activity” in the abstracts that contain the parent term, indicating that the same enrichment
test also applies to a second domain of a well-developed ontology. For all these terms, the
common words “metabolic”, “catabolic”, “biosynthetic”, “process” and “activity” were
removed.
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Figure 5.
Separation of terms for developing Clinical Trial ontology and identifying irrelevant
ontology terms randomly selected from Gene Ontology. A) The Precision/Recall curves for
three sets of data; each set contains the terms assembled by experts for developing the
Clinical Trial ontology, as well as randomly selected ontology terms from GO. The
overrepresentation of each data set was computed under the domain terms “Clinical Trial” or
“Clinical-Trial”. B) p-value from three tests in A) where highest F-measures were obtained.
C) Terms developed by experts are evaluated using the p-value=0.0744 as a threshold for
enrichment test. The list of terms and their p-values are in the supplemental Table 1. About
22% of the terms are not overrepresented in the abstracts that have the term “Clinical Trial”
or “Clinical-Trial”. D) Out of 316 terms developed by experts, there are 136 terms in the
glossary of CDISC. For these 136 terms, 87% (119) are evaluated as overrepresented in the
PubMed abstracts that contain “Clinical Trial” or “Clinical-Trial”. A hypergeometric test
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indicates that this distribution had a p-value of 0.0003, indicating our enrichment test on 316
terms indeed had a strong bias toward terms involved in clinical trials.
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Table 1

Selected putative ontology terms for clinical trial domain. Terms were assembled by domain experts and
evaluated using a hypergeometric enrichment test. A threshold is determined using the p-value that generates
the highest F-measure to separate clinical trial terms from irrelevant terms (Figure 5C). CDISC terms are also
indicated. The full list of the terms is provided as Supplemental material.

Terms Included in CDISC P-value One sided
(ALL) P-value < 0.074 Included in CDISC with

signficant p-value

ADVERSE EVENT Yes 0.00 Yes Yes

COHORT Yes 0.00 Yes Yes

EFFICACY Yes 0.00 Yes Yes

GROUP SEQUENTIAL Yes 0.00 Yes Yes

MISSING DATA Yes 0.00 Yes Yes

TRIAL-DESIGN No 0.01 Yes No

TREATMENT-ASSIGNMENT No 0.01 Yes No

INDEPENDENT REVIEW BOARD No 0.02 Yes No

ENROLLED POPULATION Yes 0.02 Yes Yes

EXCLUDED POPULATION No 0.02 Yes No

ASSESSMENT SCHEDULE No 0.03 Yes No

PERMUTED BLOCK RANDOMIZATION No 0.04 Yes No

DATA COLLECTION SCHEDULE Yes 0.05 Yes Yes

DIAGNOSTIC TRIAL No 0.06 Yes No

NUTRIENT No 0.12 No No

WITHDRAWAL CONSENT Yes 0.12 No No

ELECTRONIC SIGNATURE Yes 0.22 No No

VULNERABLE SUBJECT Yes 0.31 No No

DOCUMENT ROLE Yes 0.49 No No

SUPPLIER Yes 0.55 No No

POSITIVE CONTROL No 0.66 No No

SURVEY Yes 0.90 No No

NEGATIVE CONTROL No 1.00 No No

CASE HISTORY Yes 1.00 No No
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