Skip to main content
. 2011 Aug 10;6(8):e23146. doi: 10.1371/journal.pone.0023146

Table 2. Clustering of 10 datasets (generated after performing 10 attribute weighting algorithms) into T (mesophile) and F (thermophile) classes by four different unsupervised clustering algorithms (K-Means, K-Medoids, SVC and EMC).

Chi Squared Correlation Deviation Gini Index Information Gain Relief Rule PCA SVM Uncertainty
T F T F T F T F T F T F T F T F T F T F
K-Means 1461 596 1810 247 1222 835 1452 605 1333 724 1603 454 1601 456 434 1623 1076 981 372 1685
K-Medoids 487 1570 1521 536 104 1953 1570 487 1152 905 583 1474 1652 405 1768 289 892 1165 939 1118
SVC 363 1688 1701 328 1705 6 363 1688 570 1487 529 1324 1561 4 631 1426 0 2057 1089 947
EMC 0 2057 1544 513 0 0 0 2057 0 2057 0 2057 4 2053 0 2057 0 2057 1544 513

The actual numbers of T (mesostable) and F (thermostable) classes in the original datasets were 1544 and 513, respectively. The highest accuracy (100%) was observed when the EMC clustering method was applied to datasets generated by Correlation and Uncertainty attribute weighting algorithms that highlighted in the table.