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Abstract
Proper execution of transcriptional programs is a key requirement of gene expression regulation,
demanding accurate control of timing and amplitude. How precisely the transcription machinery
fulfills this task is not known. Using an in situ hybridization approach that detects single mRNA
molecules, we measured mRNA abundance and transcriptional activity within single
Saccharomyces cerevisiae cells. We found that expression levels for particular genes are higher
than initially reported and can vary substantially among cells. However, variability for most
constitutively expressed genes is unexpectedly small. Combining single-transcript measurements
with computational modeling indicates that low expression variation is achieved by transcribing
genes using single transcription-initiation events that are clearly separated in time, rather than by
transcriptional bursts. In contrast, PDR5, a gene regulated by the transcription coactivator complex
SAGA, is expressed using transcription bursts, resulting in larger variation. These data directly
demonstrate the existence of multiple expression modes used to modulate the transcriptome.

Regulation of gene expression occurs on multiple levels, beginning with promoter
accessibility1. As a key step in gene expression, transcription is probably one of the most
complex and tightly regulated processes within the cell, requiring a series of events to occur
in a coordinated fashion to initiate mRNA synthesis2. Chromatin rearrangement makes
promoters accessible for sequence-specific transcription factors that mediate the assembly of
coactivators, additional regulatory factors, the basal transcription machinery and finally
RNA polymerase II resulting in initiation2–5. Once promoter complexes are assembled, the
interaction of transcription factors with DNA keeps the gene active, probably by recruiting
polymerases to a preassembled transcription complex. The stability of promoter complexes
and their assembly efficiency will therefore influence the amplitude of a transcription
response2–7. Different trans-acting factors and promoter elements including the TATA box
have been shown to be important to stabilize promoter complexes and allow efficient
transcription, for example, by rapid re-initiation on an assembled promoter complex3,6,8,9.

As is true for most biological processes, the different steps leading to transcription are
subject to stochastic fluctuations10. A gene will not be expressed identically in two cells,
even if they are grown under the same conditions. Such fluctuations should optimally be
minimal, because many proteins such as transcription or splicing factors require well-
defined concentrations. High-throughput analyses in yeast showed that protein variation for
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most genes is low11. However, in the yeast Saccharomyces cerevisiae, most mRNAs are
present in low abundance; 80% of the transcriptome, including many essential genes, are
expressed at less than two copies per cell12. Therefore, high mRNA expression variation
would be likely to lead to a situation where many cells are depleted of essential mRNAs,
making it difficult to keep protein levels constant. How the cell keeps this variation low is
not known.

This question has been difficult to address owing to technical limitations. Classical ensemble
methodologies such as northern blots and reverse-transcription PCR (RT-PCR) are
unsuitable for the study of single-cell variability. Most single-cell studies have measured
gene expression variation using green fluorescent protein (GFP) reporters to monitor the
variability of protein concentrations13,14. However, by measuring protein concentration,
they could only determine the combined result of transcription and translation, not the direct
output of transcription since the mRNA itself was not measured. To understand how cells
mediate mRNA expression and how this results in expression variation requires single-cell
analysis with single-mRNA resolution.

Few studies have used single-molecule techniques to understand gene expression kinetics.
Fluorescence in situ hybridization (FISH) suggested that genes in mammalian cells are
expressed as ‘bursts’ of transcription: infrequent periods of transcriptional activity that
produce many transcripts within a short time15. Such transcription bursts were shown to lead
to large variability in mRNA numbers15. Using different techniques, transcriptional bursting
has been described for many genes and has become the prominent model for gene
expression14,16–20. Transcriptional bursting has also been observed in bacteria, although in
this system bursting was much weaker and measured only on an inducible gene21. However,
bursting with its consequential large mRNA variation does not explain the low-noise
characteristics found for most genes in yeast. To measure variation precisely and the
underlying transcriptional activity and expression levels, we have derived a single-molecule
counting approach that allows us to enumerate every single mRNA and nascent transcript
from a given gene within a cell. The approach is nondisruptive and simple, is applicable to
any endogenous gene and does not require any genetic manipulation.

We have used single molecule–sensitivity FISH to determine the exact number of mRNAs
that are present in individual S. cerevisiae cells for different genes while characterizing the
transcriptional status in the same cell by enumerating the number of nascent transcripts. By
using these numbers in a mathematical modeling approach that constrains the probable
outcomes, we were able to determine kinetic parameters that mediate the expression of these
genes. We show that expression of genes in yeast can be achieved by single, noncorrelated
transcription-initiation events, in contrast to what occurs in higher eukaryotes. However, we
also find that some genes can show bursting expression as well.

RESULTS
Single mRNA–sensitivity FISH to analyze gene expression

To achieve single-transcript resolution, we adapted a FISH technique previously described
in mammalian cells22. The protocol uses multiple oligodeoxynucleotides, each labeled with
five fluorescent dyes, creating a sufficient signal-to-noise ratio to allow single-mRNA
detection (Fig. 1a). To validate the approach in paraformaldehyde-fixed yeast, we
hybridized a mixture of four DNA probes complementary to the MDN1 gene (Fig. 1b).
MDN1, the largest gene in yeast (14.7 kb) is an essential, constitutively expressed gene
involved in preribosomal processing and reportedly expressed at one mRNA copy per
cell12,23. Probes were designed to hybridize to the 5′ end of the gene to allow the detection
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of an mRNA from the very beginning of its synthesis, when it is still associated with the site
of transcription.

We acquired three-dimensional data sets and reduced them to two-dimensional images to
facilitate data analysis. The fluorescent in situ probes appeared as multiple diffraction-
limited spots within the cytoplasm of individual yeast cells; this is similar to what has been
seen in mammalian cells, where they were shown to represent single mRNAs15,22 (Fig. 1b).
Higher-intensity spots were found in the nucleus, colocalizing with the DAPI signal, and
were likely to represent the assembly of multiple nascent transcripts associated with the
MDN1 gene (Fig. 1c). Consistently, a single higher-intensity nuclear spot is found in haploid
cells, whereas two are present in diploid strains. Nascent transcripts of neighboring genes
should colocalize within these nuclear spots.

CCW12 is a short but actively transcribed gene starting 6,000 bp upstream from the MDN1
promoter. Signals for CCW12 and MDN1 mRNA colocalized in the nucleus, indicating that
the nuclear spots represent sites of transcription (Fig. 1d). Notably, although frequently
transcribed, only nascent RNA for CCW12 was found in the nucleus, indicating that export
of these mRNAs after their release from the site of transcription is rapid. As expected, sites
of transcription disappear with treatment by the transcription inhibitor thiolution, followed
by the reduction of cytoplasmic mRNAs (Fig. 1e).

Different studies have shown that many genes in yeast associate with the nuclear periphery
when they are transcribed24,25. Notably, although we often found MDN1 transcription sites
at the border of the DAPI stain, they did not localize to the nuclear periphery but to the
region between the nucleoplasm and the nucleolus. This is likely to be caused by the
proximity of the MDN1 and CCW12 genes to the ribosomal RNA genes located only about
90 kb further upstream (Fig. 1d).

To demonstrate that the detected signals correspond to single mRNAs and not to multiple
mRNAs clustering in a diffraction-limited spot, we quantified the signal intensities of the
cytoplasmic and nuclear signals using a spot-detection program that detects and quantifies
the signal intensities for each spot26 (Fig. 2a–c). The signal intensities of the cytoplasmic
spots show a uniform distribution and can be fitted to a single Gaussian curve, as expected
for the detection of single mRNAs (Fig. 2d). Consistently, the intensity of these single
mRNAs hybridized to four oligonucleotide probes equals four times the intensity of a single
probe (Supplementary Fig. 1 online). The intensity distribution for spots in the nucleus can
be fitted to a superposition of Gaussian distributions corresponding to the assembly of
multiple nascent transcripts associated with the MDN1 gene (Fig. 1c,d). This provides a
direct measure of how many mRNAs are being transcribed. Therefore, this methodology
allowed us to determine two essential parameters defining gene expression: the ‘expression
state’, the total number of mRNAs per cell; and the ‘transcriptional status’, an instantaneous
measure of the number of nascent transcripts on a gene. Notably, this analysis addressed
endogenous RNA as close to a physiological state as was experimentally possible, as genetic
modifications were not required.

Expression variation of constitutively active genes
We then analyzed the expression of one of the most common classes of genes, the
housekeeping genes. The extent of RNA variation for these genes is not known, although
protein variation has been the subject of many studies14.

To address this question directly, we analyzed the expression profiles of three unrelated,
constitutively expressed genes—MDN1, KAP104 and DOA1—involved in such diverse
functions as ribosome biogenesis, ubiquitin-mediated protein degradation and
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nucleocytoplasmic transport. All genes have been indicated to be expressed at one copy per
cell12. The three genes show similar expression profiles, suggesting a common mode of
expression, and several characteristics are immediately evident (Fig. 3). First, expression
levels were higher than previously estimated. On average, cells contained three to six times
the number of mRNAs as had been measured by microarray. This observation corrects the
long-standing assumption that most mRNAs in yeast are expressed at only one or two copies
per cell and that many genes are transcribed only once during a cell cycle12,27,28. Second,
few cells were devoid of mRNA for any of the genes tested. Even for DOA1, which is
expressed at the lowest levels, only about 8% of the cells lacked DOA1 mRNA, indicating
that cells have evolved a transcriptional behavior to maintain a basal level of expression.
Third, the expression levels varied among individual cells in the population. For example
MDN1 mRNA was expressed from 1 to 15 mRNAs per cell with a mean of 6.1. Finally,
expression variation for housekeeping genes fell within a narrow range that can be described
by a Poisson distribution, suggesting that the variation might be explained by uncoordinated
transcription initiation.

Modeling expression kinetics from mRNA-abundance data
To obtain a general understanding of the kinetic parameters leading to the observed mRNA
distributions, we performed simulations using a mathematical framework based on a gene-
activation and -inactivation model15,29. In this model, a gene alternates between an active
‘on’ and an inactive ‘off ’ state (Fig. 4a). The three variable parameters that describe the
distribution of mRNA in the cytosol are the rate for switching to an on state (parameter a;
Fig. 4a), the rate for switching to an off state (parameter b; Fig. 4a) and the rate of
transcription while in the on state (parameter c; Fig. 4a). The transcripts accumulate in the
cytoplasm where they are degraded at a fixed, specific rate (parameter d)12. Notably, this
mathematical framework allowed us to distinguish between two transcriptional modes
suggested to mediate mRNA expression: ‘bursts’ (infrequent on states producing multiple
transcripts rapidly), or the ‘constitutive’ mode (initiation distributed in time; Fig. 4b).
Simulations have shown that these two modes can lead to distinctly different mRNA
distributions14. However, our simulations of RNA abundance alone resulted in poorly
constrained transcriptional models that did not differentiate between a bursting model (c/b >
1) and a nonbursting model (c/b ≤1). Recent theoretical studies similarly have suggested that
cytoplasmic distributions alone do not allow the full description of expression modes30.

Measuring polymerase loading to determine expression kinetics
To obtain an additional kinetic parameter allowing a better description of the expression
kinetics, we determined the temporal spacing of individual transcription-initiation events by
measuring the number of active polymerases at a gene. We achieved this by determining the
number of nascent mRNAs at the site of transcription (Figs. 1c, 2d and 4b). For example, a
transcription site containing multiple nascent mRNAs indicates that several transcripts were
initiated within the time interval it takes to synthesize a complete transcript. This synthesis
time (τ) depends on the length of the gene.

The transcriptional status is shown in Figure 4c–e and 4g. Nascent mRNAs of the DOA1
gene were detected in about 20% of the cells, and cells transcribing DOA1 contain only a
single nascent mRNA (Fig. 4e). Assuming that RNA polymerase II elongates at 2 kb min−1,
the synthesis of its 2.2 kb transcript will last at least 1 min31. Therefore, in a cell containing
a single nascent DOA1 mRNA, at least 1 min has passed after the initiation of the previous
transcript. Thus, determining the number of nascent mRNAs at a site of transcription acts a
direct measure for initiation. The KAP104 gene shows a similar polymerase-loading
distribution to DOA1, indicating that individual initiation events are well separated in time
(Fig. 4d). However MDN1, the longest gene investigated in this study, shows a
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transcriptional profile with up to four nascent mRNAs at the gene (Fig. 4c). This could have
resulted from a transcriptional burst where several transcripts were initiated in rapid
succession. If this were the case, we would expect to observe a cluster of up to four nascent
chains somewhere in the gene. Therefore, multiple nascent transcripts should be detected
using FISH probes against a 3′ subregion within the gene, as there is a probability that the
polymerases would have progressed into this region together. However, multiple nascent
RNAs were observed only when using FISH probes that hybridized to 5′ regions, but never
with probes that hybridized closer to the 3′ end of the gene, suggesting that clustering of
polymerases does not occur on MDN1 and that correlated initiations do not occur (Fig. 4f,g).
Taken together, these data indicate that, for constitutively active genes, individual initiation
events are spaced minutes apart.

Modeling MDN1 expression kinetics
To test this hypothesis, we modeled the polymerase-loading data using the activation-
inactivation model. The variables a, b and c were defined as previously and an additional
parameter, τ, the time a nascent transcript is associated with the gene, was introduced.
Figure 5a–e (see also Supplementary Table 1 online) shows three examples of models that
fit the measured MDN1 data equally well for both the distribution of total mRNA (Fig. 5a,
χ2 < 2.43) and the nascent chains (Fig. 5b, χ2 < 9.15). Representative Monte Carlo time
traces are shown in Figure 5c–e. In the first model, the gene is on 26% of the time, and 0.24
transcripts are produced on average from each active state (Fig. 5a,b, red curve, and 5c).
This represents the extreme limit of nonbursting transcription, where some active states are
too short to even allow transcription initiation (c/b ≪ 1). An intermediate case occurs when
the on state is exactly as long as the average time between transcription-initiation events (c/b
= 1) (Fig. 5a,b, green curve, and 5d), and in this case the gene is on 80% of the time. Finally,
there is the case where the gene is practically always on (Fig. 5a,b, blue curve, and 5e); here,
the burst size is substantial (c/b ≫ 1), with each active period producing around seven
transcripts. These models result in statistically similar distributions, and all three describe
the measured data within the variation. Furthermore, the polymerase occupancy (Fig. 5b–e,
black lines) is not noticeably different for the three models.

The difference between models is due only to which rate constant is limiting, suggesting that
c/b by itself is not a sufficient determination of bursting. For example, when using only the
value c/b > 1 as the definition of bursting, scenario 3 with c/b of 6.8 would suggest a
bursting expression for MDN1. However, the gene is on for almost the entire generation
time, and initiation events are spaced minutes apart, hardly consistent with bursting.
Therefore, a better way to describe the expression modes of these genes is needed. To obtain
a fully inclusive picture of the parameter space that describes the experimental data, we
considered a locus of points that fits both the mRNA abundance and the nascent-chain data
(Fig. 7a). When initiation rate (c) is plotted against fraction−1 ((a + b)/a), the acceptable (χ2

< 25.99; see Supplementary Tables 2 and 3 online) models cluster around a line. The slope
of this line is defined by ac/(a + b), and this value provides an effective transcription rate
(that is, the initiation frequency in the on state multiplied by the fractional time spent in the
on state) that is necessary to balance the degradation in steady state. The locus of points is
an unambiguous description of the possible modes of transcription and shows a continuum
of kinetic modes without relying on the arbitrary binary classification of ‘bursting’ or
‘nonbursting’. To the right of the graph are models where the fraction of time the gene
spends in the on state is low, and the initiation rate is high (bursting limit); to the left, the
fraction of time the gene spends in the on state is high, and initiation is low (nonbursting
limit). In addition, the models that fit the RNA abundance alone (Fig. 7a, open green circles,

), are further restricted to models that fit both RNA abundance and nascent-chain
data (Fig. 7a, black circles, ). Monte Carlo traces from those fits taken from the
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nonbursting end of the graph (Fig. 7a, dashed red circle) that fits the nascent-chain data, and
traces from the bursting end of the graph (Fig. 7a, dashed blue circle) that does not fit the
nascent-chain data (  ), clearly demonstrate the importance of determining the
nascent-chain loading. Notably, only scenarios with low initiation frequencies fit the data.

Expression kinetics of a cell cycle–regulated gene
For comparison, we extended this analysis to a gene that is not constitutively expressed, the
POL1 gene, which encodes DNA polymerase I and is expressed during part of the G1 and S
phases32. As expected, the expression profile for this gene was different, with many cells not
expressing POL1 mRNA or having a single mRNA in the cytoplasm (Fig. 6a). However, in
cells containing active sites of transcription, nascent mRNA distributions resemble
constitutively active genes: only one and rarely two nascent mRNAs were found associated
with the POL1 gene, suggesting a more ‘constitutive’ mode of transcription in the on state,
but no transcription bursts. When evaluated using the mathematical framework, the POL1
data showed low initiation frequency, during a prolonged on state that occurs infrequently
during the generation time, suggestive of a portion of the cell cycle (Fig. 7b). The bursting
limit can be ruled out by an inadequate fit to the nascent-chain data. Hence, the part of the
cell cycle in which POL1 is expressed is long enough to permit uncorrelated initiations.

Bursting expression of PDR5
In contrast to what we observed in yeast, genes in higher eukaryotes are reported to show
transcription bursts15,17,18,22. We investigated whether bursting genes might also exist in
yeast. Analyses on the yeast HIS3 promoter have suggested that, depending on the
conservation of the TATA element, expression could be achieved by a constitutive or
inducible transcription mode8,33,34. It was then shown that the presence of a consensus
TATA box leads to robust transcription mediated by transcription re-initiation, a process that
could be the cause of transcriptional bursting6,8,9. Measurements of protein variation in
yeast identified a subset of genes whose expression showed substantially higher variation
than found for most of the proteome, suggesting that they might be regulated differently11.
Many of these genes were regulated by the transcriptional coactivator SAGA (Spt–Ada–
Gcn5–acetyl transferase complex) and contain conserved TATA boxes11,35. We therefore
determined the mRNA distribution and transcriptional status of the TATA-containing,
SAGA-regulated PDR5 gene. The mRNA distribution for PDR5 was much wider than the
constitutive genes (Fig. 6b). Nascent-transcript analysis showed that about 50% of cells
contained no or only a single nascent PDR5 transcript, whereas the remaining cells showed
up to 11 nascent transcripts, indicating the presence of transcription bursting (Fig. 6b, below
middle). Simulating the PDR5 distributions showed that the expression kinetics fit a bursting
mode (Fig. 7c). Thus, the SAGA-regulated PDR5 gene shows a transcriptional mode that is
comparable to those observed in higher eukaryotes.

Defining constitutive expression
We have described different expression modes in S. cerevisae in which bursting and
constitutive, or nonbursting, are limiting descriptive classifications when bursting is defined
only as the ratio of the initiation frequency and the on state of a promoter (c/b). The kinetic
modes are determined by different rates of gene activation and inactivation and the initiation
frequency. The physical meaning of the gene activation and inactivation parameters for
transcription can be partially assessed by considering scenarios that apply to all genes. The
expression states of the constitutive genes (Fig. 3b–d, left, red curves) can all be fit with a
single set of gene activation and inactivation parameters (a,b) and a variable initiation rate
(c). The average off time (1/a) for this particular model is 1.4 min; the average on time (1/b)
is 8.7 min (87% on time). Using this scenario, the average number of transcripts produced
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during each on state is 1.4 transcripts. Using only c/b > 1 to define bursting, these genes
would show a weak bursting expression. However, considering the short off times and the
low initiation frequency, the individual initiations are spaced by minutes, making the term
bursting inaccurate. These data suggest that a promoter stays in an open state long enough to
initiate one or two transcripts. Mechanistically, this observation indicates that, after the
assembly of a transcription competent complex at a promoter, at most only one or two
transcripts are produced before the complex falls apart and the complex must be
reassembled on a promoter that is still accessible. This scenario might be different for
bursting genes such as PDR5, where factors such as SAGA might stabilize promoter
complexes and allow multiple initiations from a single complex assembly.

Extracting polymerase speed and termination time
The distribution of nascent chains further implies a synthesis time uniquely determined from
the fit. If plotted against the effective length of the gene, the inverse slope provides the
average speed of RNA polymerase: 0.81 ± 0.07 kb minute−1 (Fig. 8a). In addition, the y-
intercept corresponds to a termination time of 56 ± 20 s. The elongation speed is slower than
the elongation speed measured from a Gal promoter–driven gene, measured at 2 kb min−1

(ref. 31). A velocity of 2 kb min−1, however, does not fit our data, suggesting that different
elongation speeds exist for different classes of gene. Different elongation speeds have been
measured in various organisms and on different genes, ranging from 0.7 kb min−1 to 4.4 kb
min−1 (refs. 31,36–41). One reason for the differences in elongation speed might be that
polymerases on strongly transcribed genes, such as Gal-induced genes, are more processive
because the chromatin is more open compared to sporadically transcribed genes42,43.
Additionally, elevated polymerase densities on highly transcribed genes might increase
polymerase velocity, as shown in bacteria40.

DISCUSSION
We have analyzed the expression behavior of endogenous genes in yeast using single-
molecule analysis. For the first time, we have determined the exact number of mRNAs
expressed in a single cell and used this information to model the expression kinetics for
these genes. The key for these analyses was combining the number of cytoplasmic mRNAs
present with the transcriptional status for each of the genes.

The ability to use cells without the need for any genetic modification is one main advantage
of FISH. Cells are simply fixed, hybridized and analyzed. By this method, many cells can be
analyzed and used for mathematical modeling. Additionally, placing FISH probes at
different positions along the mRNA can be used to define the spacing between individual
transcription-initiation events or to produce ‘footprints’ of polymerases on a gene (Fig. 4f,g).
Expanding this analysis by interrogating multiple genes simultaneously in the same cell will
allow not only the dissection of single genes but also the study of co-regulatory networks
and provide an important tool for systems analysis.

Our observation that mRNA abundance for most genes was higher than previously
suggested was surprising, as these numbers were obtained by different hybridization
techniques and are commonly used in the literature12,28,44,45, although higher numbers have
been suggested previously for a small subset of genes46. The main reason for the
discrepancy may lie in the normalization factor used by these studies, wherein it was
assumed that a yeast cell expresses 15,000 mRNAs per cell. As shown in Supplementary
Table 4 online, the genes used in this study show a three- to six-fold higher expression than
that determined previously12. This would correct the number of transcripts to around 60,000
mRNAs per cell and indicates that the yeast transcriptome is more active than initially
thought. This number also fits measurements suggesting that about 85% of the 200,000 yeast
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ribosomes are associated with mRNAs at an average ribosome density of 1 ribosome per
154 nt47,48. Our observations also illustrate the utility of tools that enable the absolute
quantification of gene expression, independently of ensemble measurements that use
calibration and normalization factors.

Analyzing the expression of constitutively active genes revealed that mRNA variation is
low, almost to a level that would be expected from pure Poisson noise. Although theoretical
work has shown that different expression modes can lead to similar distributions30, we show
that expression is achieved by single, temporally well-separated initiation events, but not by
transcription bursts. Even the cell cycle–regulated POL1 gene is expressed in a similar
manner to a constitutive gene during its active period. With respect to promoter kinetics, this
indicates that the assembly of an entire transcription complex usually leads to the initiation
of a single transcript before the complex falls apart.

Recent work suggests that transcription complexes in general might not be as stable as
thought. Even if transcription factors interact stably with their specific binding sites in vitro,
the residence time of many transcription factors at promoters in vivo is short49,50. However,
for some classes of genes and promoters, factors that stabilize promoter complexes might
allow the production of multiple mRNAs from a preassembled and stabilized complex.
Transcription re-initiation has long been assumed to be required for efficient transcription
from a promoter3,51,52. Transcription bursts found for the PDR5 gene or for genes in higher
eukaryotes might depend on factors allowing transcription re-initiation. Many genes in yeast
showing high expression variation in protein levels are regulated by SAGA and contain a
well-conserved TATA box, which is unusual for genes in yeast. Notably, it had previously
been suggested that more stable binding of a TBP–TFIID complex, caused by the conserved
TATA box, leads to re-initation–competent complexes, thereby causing transcriptional
bursting6,9. Consistent with this, mutating the TATA box in yeast has been shown to affect
expression and reduce protein variation8,16,53.

Figure 8b shows the parameter space for each gene tested, with the initiation rate c
normalized by the mRNA decay rate d. Although some genes (MDN1, DOA1) have a less-
restricted parameter space than others (POL1, KAP104), these genes all overlap in the
nonbursting limit, whereas PDR5 is much less restricted. RNA polymerase II in mammalian
cells and a bursting, artificial gene in bacteria are shown for comparison (the parameter
space depicted for these two genes is only schematic). So, why has yeast but not higher
eukaryotes chosen a constitutive expression mode for housekeeping genes? The possible
explanation might lie in the fact that yeast is a rapidly dividing single cell. In higher
eukaryotes, although mRNA variation is high owing to transcriptional bursting, the final
protein variation is relatively low because mRNA noise is damped out by long mRNA and
protein half-lives15. In yeast, however, such buffering is not possible, as the average protein
half-life is short and only twice as long as the average mRNA half-life54,55. Maintaining
constant expression is therefore better achieved by nonbursting, low-variation expression
that constantly produces new proteins. Constant protein production is achieved by efficient
translation, as most mRNAs (>70%) in a yeast cell are also polysome associated47.
However, in some cases, when fast responses are more important than precise control of
transcriptional amplitudes, for example, during stress responses, bursting expression might
be beneficial56. Notably, bursting as well as constitutive RNA expression have been
described in bacteria21,57.

It is reasonable to speculate that the simple structure of yeast promoters, when compared to
promoters in higher eukaryotes makes it easier to assemble transcription complexes for
single initiation events. Promoters are often only a few hundred base pairs long and consist
mainly of the histone-free region just upstream of the transcription start site58,59. Opening
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promoters and assembling a transcription-competent complex is likely to require much more
effort for the cell in higher eukaryotes, so it might be advantageous to transcribe multiple
mRNAs once a complex is assembled, especially as higher total mRNA numbers are
required as well60. However, genes may exist in higher eukaryotes that are expressed in a
less bursting and more constitutive manner. Future studies will show how other eukaryotes
have evolved their modes of transcription and whether higher eukaryotes use transcription
bursting only to express their transcriptome or if constitutive expression also exists. Single-
molecule approaches such as that presented here will be essential to understand the kinetics
of gene expression.

METHODS
In situ probes

Probes were designed, synthesized and labeled using cyanine dyes cy3, cy3.5 and cy5 (GE
healthcare, #PA23001, PA23501, PA25001) as described previously18. RNA probes were
generally 50 nt long and contained four or five amino-modified nucleotides (amino-allyl T).
The free amines were chemically coupled to fluorophores after synthesis. Probes used in this
study are listed in Supplementatary Table 5 online.

Fluorescence in situ hybridization
Yeast cells (haploid BY4741 or diploid w303) were grown in YPD media at 30 °C to an
optical density at 600 nm (OD600) of 0.8, and fixed by adding 32% (v/v) paraformaldehyde
directly to the media to a final concentration of 4% (v/v) for 45 min at room temperature
(20–25 °C). The cell wall was digested with lyticase (Sigma #L2524), cells were attached to
poly-L-lysine (Sigma #P8920)–coated coverslips and stored in 70% (v/v) ethanol at −20 °C.
Before hybridization, cells were rehydrated twice in 2× SSC for 5 min and once in 40% (v/
v) formamide and 2× SSC (5 min). Coverslips were inverted onto 20 µl of hybridization
solution containing 0.5 ng of labeled DNA probe (typically three or four DNA probes per
gene) in 50% (v/v) formamide, 2× SSC, 1 mg ml−1 BSA, 10 mM VRC (NEB #S1402S), 5
mM NaHPO4, pH7.5, 0.5 mg ml−1 Escherichia coli tRNA and 0.5 mg ml−1 single-stranded
DNA and hybridized overnight at 37 °C. Coverslips were washed twice with 40% (v/v)
formamide and 2× SSC at 37 °C for 15 min, once in 2× SSC and 0.1% (v/v) Triton X-100 at
room temperature for 15 min and once with 1× SSC at room temperature for 15 min, stained
with DAPI and mounted with ProLong Gold antifade reagent (Invitrogen # P36930).

Image acquisition
Images were acquired with an BX61 epi-fluorescence microscope (Olympus) with an
internal focus motor and an Olympus UPlanApo 100×, 1.35 numerical aperture oil-
immersion objective using an X-Cite 120 PC (EXFO) light source for fluorescence
illumination and Uniblitz shutters (Vincent Associates). Differential interference contrast
(DIC) was generated using an Olympus U-DICTHC Nomarski prism. Digital images were
acquired using a CoolSNAP HQ camera (Photometrics) as stacks of 30 images taken with a
Z step size of 0.2 µ m using IPLab software (Windows v3, BD Biosciences) and filter sets
31000 (DAPI), 41001 (FITC), SP-102v1 (Cy3), SP-103v1 (Cy3.5) and CP-104 (Cy5)
(Chroma Technology).

Data analysis
RNA counting and nascent-chain determination. Three-dimensional data sets were reduced
to a two-dimensional image by maximum Z projection using IPLab software. Spot detection
was based on a two-dimensional Gaussian mask algorithm described previously26 and was
implemented with custom-made software for the IDL platform (ITT Visual Information
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Solutions). Single-transcript intensity was defined as the integrated intensity determined
from the Gaussian mask algorithm. The number of nascent transcripts at the site of
transcription was obtained by dividing the spot intensity of the transcription side by the
single-transcript intensity, and rounding up or down to the nearest whole number. Cell
segmentation was achieved by a hand-drawn mask using a custom-made script in IPLab.
Nuclear segmentation was done by DAPI thresholding using an IPLab script. To obtain the
single-cell, single-transcript expression profiles, data from spot detection, nuclear and cell
segmentation were combined using custom-made software in IDL, computing total mRNA
per cell and the number of nascent transcripts per cell. To obtain mRNA distributions, we
used data sets from at least three independent experiments containing more than 80 cells.

Histogram of fluorescence in situ hybridization intensity
The intensity histogram of the cytoplasmic mRNAs (Fig. 2d, red curve) is fit to a single-
peak Gaussian distribution:

where A is the amplitude, x0 is the center intensity and m is a gain factor that relates the
intensity of the peak in counts to the width. The variance thus has the form σ2 = mx0, which
is the variance of a Poisson distribution multiplied by the gain factor to convert counts to
photons.

The intensity histogram of the nascent mRNAs in the nucleus is fit to a multiple-peak
Gaussian distribution:

where the additional parameters are now the relative amplitudes B, C and D. Using the
amplitudes of the fit, the weighted nascent chain occupancy for MDN1 is 1.60. Using simple
rounding to the nearest integer value, occupancy in each nucleus gives a mean of 1.77.

Numerical modeling
The theoretical model for mRNA abundance is based on the Markovian model of Peccoud
and Ycart as implemented by Raj and coworkers15,29. The analytical form derived by Raj
and co-workers for the steady-state solution is:

where a, b, c and d are as defined in the text, N is the number of mRNA transcripts and 1F1
is the confluent hypergeometric function of the first kind. We note that d is a fixed value
taken from the literature12. To calculate the distribution of nascent chains, we use a Monte
Carlo simulation. For a given set of a, b and c parameters, the gene transitions to an on state
with an exponentially distributed waiting time a−1 and remains in the on state for an
exponentially distributed waiting time b−1. From the on state, initiation events follow a
gamma distribution with mean waiting time c−1 (first initiation: gamma = 1; second
initiation: gamma = 2, and so on). Once a polymerase has been initiated, it remains on the
gene for a fixed synthesis time τ. The occupancy level therefore reflects the frequency of
initiation and the synthesis time. Each time trace is 85 min long, corresponding to the
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generation time of yeast under these conditions. The number of total time traces (that is,
cells) was chosen such that the distribution of nascent chains converged (typically 1,000).
Thus, for a given set of a, b and c parameters, one has the analytical calculation of the
mRNA distribution; for those same a, b and c parameters and also τ, one has the nascent-
mRNA distribution determined from the Monte Carlo calculation.

Model parameters (a, b, c, τ) are varied concurrently to generate a complete map of phase
space. Models are evaluated at the P = 0.10 level with a χ2 test. Specific numerical χ2

values, corresponding to the number of data points for each gene, are presented in
Supplementary Table 2. Acceptable models are those that fit both the mRNA abundance
distribution and the nascent-chain distribution. In general, we find that the nascent-chain
distribution results in a more restrictive phase space than the mRNA abundance, as reflected
in Figure 7.

The polymerase velocity was obtained by determining the best-fit line for the synthesis time
(τ) using a single set of parameters a, b and c that fit the mRNA distributions of all the
constitutive genes (parameters described in the section “Defining constitutive expression” 1/
a = 1.4, 1/b = 8.7) and another single set of parameters for PDR5 (1/a = 2.3, 1/b = 0.2). The
synthesis time τ is varied until the minimum χ2 for the nascent-chain distribution is found.
The error bars represent the 95% confidence level. The velocity is determined from the slope
of the line where synthesis time is plotted against length.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Single mRNA–sensitivity FISH. (a) Schematic diagram of the FISH protocol. A mixture of
four 50-nt DNA oligonucleotides, each labeled with five fluorescent dyes, is hybridized to
paraformaldehyde-fixed yeast cells to obtain a single-transcript resolution. (b) Single-
mRNA FISH for MDN1 mRNA. Single mRNAs are detected in the cytoplasm, with a higher
intensity spot in the nucleus. Haploid and diploid yeast cells are shown. Probes hybridize to
the 5′ end of the mRNA. MDNI mRNA, red; DAPI, blue; superimposed on the differential
interference contrast (DIC) image. (c) Cartoon showing how the number of nascent mRNAs
at the site of transcription is used to determine the polymerase loading on a gene when using
FISH probes that hybridize to the 5′ end of the gene. (d) Nascent transcripts of neighboring
genes colocalize at the site of transcription. Diploid cells are hybridized with probes against
MDN1 (labeled with cy3) and CCW12 (labeled with cy3.5). The nucleolus is stained with
probes against the ITS2 spacer of the ribosomal RNA precursor (labeled with Cy5).
Maximum projection of a three-dimensional data set and single plane containing the
transcription sites is shown. (e) Nascent-transcript detection requires ongoing transcription.
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Cells were fixed 0, 5, 15 and 30 min after addition of the transcription inhibitor thiolutin
(4ug ml−1) to the media. FISH was carried out using probes to MDN1 mRNA as shown in b.
Representative cells are shown for each time point.
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Figure 2.
Quantitative single-molecule, single-cell gene expression analysis. (a,b) A spot-detection
algorithm detects and quantifies FISH signals. Red dots in b show signals identified by the
spot-detection software from the raw signals in a. (c) The nucleus and cytoplasm were
segmented using a hand-drawn mask (cellular boundaries) and DAPI thresholding (nucleus).
(d) Histogram of cytoplasmic (left axis, red bars) and nuclear (right axis, blue bars) signal
intensities of MDN1 signals from multiple fields, determined using the spot-detection
algorithm. The cytoplasmic mRNA intensities fit to a Gaussian distribution (red line), and
the mean is used as the brightness of a single transcript. The nuclear signal intensities
(assembly of nascent mRNAs associated with the gene) fit with multiple Gaussian
distributions (blue line), where the mean of each Gaussian distribution is an integer multiple
of the single-peak intensity. The width of each peak also scales with the mean, as expected

Zenklusen et al. Page 16

Nat Struct Mol Biol. Author manuscript; available in PMC 2011 August 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for Poisson noise in spot localization26. The individual contributions to the composite fit are
shown in black. Error bars indicate s.e.m.
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Figure 3.
Expression profiles of constitutively active genes. (a) Cartoon showing the position of the
FISH probes used according to their target region on the corresponding mRNAs. (b–d)
mRNA expression profiles of different yeast genes shown in a were determined using FISH.
Frequency (y axis) of mRNA numbers (x axis) per cell determined for MDN1, KAP104 and
DOA1 are shown. <n> shows the average number of mRNAs per cell. Red lines in b–d
show fits describing the expression kinetics (see text). Error bars indicate s.e.m.
Representative FISH images (mRNA, red; DAPI, blue) superimposed on the differential
interference contrast (DIC) are shown on the right.
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Figure 4.
Transcriptional loading determines the mode of transcription. (a) Gene-activation and -
inactivation model used to simulate the expression kinetics. The gene transitions to the on
state (red line, high) with rate a and to the off state (red line, low) with rate b. The initiation
rate from the on state is c, and initiation events are denoted by a vertical green hash mark.
The average time intervals are a−1, b−1 and c−1, respectively. (b) Alternative transcription
modes. In the constitutive transcription mode, individual initiation events are clearly
separated in time, whereas for transcription bursts multiple transcripts are produced within
short time intervals followed by long periods of transcription inactivity. Initiation of a single
transcript is shown as a green vertical line. Red and blue lines indicate the time the
polymerase needs to synthesize an mRNA and is therefore equal to the time an mRNA stays
at the site of transcription. On a long gene (orange), constitutive and bursting transcription
can lead to similar distributions. On short genes (blue), bursting and constitutive expression
lead to different distributions. Full and broken lines show two time points when cells are
fixed. (c–e) Transcription status profiles of MDN1, KAP104 and DOA1 determined using
FISH. The frequency (y axis) of the number of nascent transcripts (x axis) per cell is shown.
The fraction of cells not containing an active site of transcription are highlighted in blue.
Error bars indicate s.e.m. (f) Position of FISH probes to different region on the MDN1 gene.
(g) Polymerases do not cluster on the MDN1 gene. MDN1 mRNA FISH using cy3-labeled
probes to regions 1, 2, 3 and 4 on MDN1. RNA, red; DNA stained with DAPI, blue.
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Figure 5.

Modeling MDN1 expression kinetics. (a,b) mRNA abundance ( , a) and nascent
transcripts ( , b) for MDN1 fit with a model based on the scheme in a. Three
different scenarios with different values for a, b and c are shown (red, green and blue curves,
respectively). Error bars indicate s.e.m. (c–e) Representative Monte Carlo time traces of
transcription, where c (red), d (green) and e (blue) show a different set of rate constants a, b
and c, corresponding to the curves in a and b. The black curve is the polymerase-occupancy
level on the gene; the red curve is the on/off state of the gene; the green curve marks
initiation events. The average burst size and fraction of time spent in the on state are shown
above each time trace.
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Figure 6.
Expression profiles of a cell cycle–regulated and a SAGA-controlled gene. mRNA
expression and transcription status profiles of POL1 (a) and PDR5 (b), as determined using
FISH. Frequency (y axis) of the number of cytoplasmic mRNAs (left) and nascent
transcripts (below middle) (x axis) per cell are shown. <n> shows the average number of
mRNAs per cell. Fractions of cells not containing an active site of transcription are
highlighted in blue. Error bars indicate s.e.m. Above middle, position of FISH probes.
Representative FISH images (mRNA, red; DAPI, blue) superimposed on the differential
interference contrast (DIC) are shown on the right.
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Figure 7.
Transcription kinetics of endogenous yeast genes. (a) The combinations of transcription rate
constants that result in statistically significant models for MDN1 are shown as circles
designating a particular value of a, b and c (min−1), with τ implicit. 1/fraction = (a + b)/a.
Models that fit the mRNA abundance only are shown in open green circles; models that fit
both the mRNA abundance and the nascent-mRNA loading are shown in closed black
circles (χ2 significance level = 0.10). Simulated Monte Carlo time traces for MDN1
transcription using the parameters corresponding to the parameters used for the regions in
red and blue circles are shown on the right. The black line shows the occupancy level of the
gene; the red line shows the activation state of the gene (high = active, low = inactive); the

Zenklusen et al. Page 22

Nat Struct Mol Biol. Author manuscript; available in PMC 2011 August 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vertical green lines mark single initiation events. (b,c) Parameters describing the expression
kinetics of POL1 and PDR5.
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Figure 8.
Extracting kinetic data from fixed-cell analysis. (a) Determining polymerase speed from
FISH data. The synthesis time (τ) is plotted against the length of the gene. The length is
determined from the position of the FISH probe nearest the 3′ end of the gene. Error bars
indicate s.d. determined from the model by allowing τ to vary for a fixed set of a, b and c
parameters. The slope of the line gives (polymerase speed)−1, resulting in a speed of 0.80 ±
0.07 kb min−1; the y intercept corresponds to a termination time of 56 ± 20 s. The individual
data points correspond to the previously described genes (KAP104, DOA1, MDN1, POL1
and PDR5) and multiple regions of MDN1. (b) The parameters space for endogenous gene
transcription. The statistically significant models for each gene are presented as in Figure 7.
The y axis is the initiation rate constant c normalized by the mRNA decay constant d, which
allows for comparison between genes. 1/fraction = (a + b)/a. For the genes studied in this
report (MDN1, KAP104, DOA1, POL1, PDR5), the colored regions represent the actual
parameter space for a, b and c. For the genes described in previous reports15,21, the full
parameter space was not reported. The approximate value of a, b and c is based on the
findings of these authors (Raj et al.: c/d ~ 120; 1/f ~ 12. Golding et al.: c/d ~ 50; 1/f ~7), but
the physical extent of these regions as depicted in b is only for graphic display.

Zenklusen et al. Page 24

Nat Struct Mol Biol. Author manuscript; available in PMC 2011 August 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


