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The etiologic paradigm of complex 
human disorders such as autism is 

that genetic and environmental risk fac-
tors are independent and additive, but 
the interactive effects at the epigenetic 
interface are largely ignored. Genomic 
technologies have radically changed 
perspective on the human genome and 
how the epigenetic interface may impact 
complex human disorders. Here, I review 
recent genomic, environmental and epi-
genetic findings that suggest a new para-
digm of “integrative genomics” in which 
genetic variation in genomic size may be 
impacted by dietary and environmen-
tal factors that influence the genomic 
saturation of DNA methylation. Human 
genomes are highly repetitive, but the 
interface of large-scale genomic dif-
ferences with environmental factors 
that alter the DNA methylome such as 
dietary folate is under-explored. In addi-
tion to obvious direct effects of some 
environmental toxins on the genome 
by causing chromosomal breaks, non-
mutagenic toxin exposures correlate 
with DNA hypomethylation that can 
lead to rearrangements between repeats 
or increased retrotransposition. Since 
human neurodevelopment appears to 
be particularly sensitive to alterations 
in epigenetic pathways, a further focus 
will be on how developing neurons may 
be particularly impacted by even subtle 
alterations to DNA methylation and pro-
posing new directions towards under-
standing the quixotic etiology of autism 
by integrative genomic approaches.
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Environmental Toxins Negatively 
Impact Global DNA Methylation

The epigenetic modification of DNA 
methylation acts at the interface of genetic 
and environmental factors. As part of 
the emerging field of “environmental 
epigenetics,” a variety of environmental 
toxins with known adverse impacts on 
human health or neurodevelopment have 
been investigated for their potential effects 
on DNA methylation and other epigen-
etic effects (reviewed in ref. 1). Arsenic, 
cadmium, benzene and air pollution are 
exposures associated with reduction of 
DNA methylation levels at LINE1 and/or 
Alu repeats in human tissues.2-6 In mouse 
models of human exposures, methylmer-
cury resulted in hypermethylation of brain 
derived neurotropic factor (Bdnf ) in hip-
pocampus7 and diethylstilbestrol exposure 
reduced global methylation in the uterus.8 
In a human Greenlandic Inuit popula-
tion with high persistent organic pollut-
ant (POP) levels, reduced global DNA 
methylation (LINE1) was observed with 
increased POP levels.9 Furthermore, pre-
natal exposure of a rat model with organo-
chloride pesticides, methylmercury, POPs 
or a mixture of all three chemical classes 
showed that POPs in the mixture corre-
lated with reduced DNA methylation lev-
els in liver.10

Within the class of POPs, polychlori-
nated biphenyls (PCBs) are a widely dis-
tributed class of environmental pollutants 
previously used in industrial products 
until adverse health effects were recog-
nized in the 1970s resulting in discontin-
ued use. The developmental neurotoxicity 
of PCBs became devastatingly apparent 
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the same locus often leads to overlapping 
phenotypes, as is observed in 22q11.2, 
7q11.23, 17p11.2 and 15q11-q13 deletion 
and duplication syndromes with co-mor-
bid autism.35,36 Furthermore, although the 
gains and losses of genes within CNVs are 
expected to result in predictable changes 
to corresponding transcript levels, some 
genes within an autism 15q11-q13 dupli-
cation syndrome brain sample were actu-
ally expressed significantly lower than 
expected, likely due to the known epigen-
etic complexity of this locus.37,38

The other major challenge to inter-
preting the genetic relevance of CNVs is 
understanding how the loss or gain of spe-
cific chromosomal loci may cause disease. 
Since the loss of a gene copy is generally 
expected to be more pathogenic than a 
gain, the goal of human CNV disease asso-
ciation studies is often to find genes within 
small rare CNV deletions. However, this 
worthy approach may be unjustifiably 
ignoring the “elephant in the room” of rare 
CNV duplications associated with autism 
that are much larger than deletions (>500 
kb) and contain more genes implicated in 
autism than the CNV deletions that are 
more intensely investigated.34

Complicating CNV genotype-phe-
notype studies even further are issues of 
variable penetrance or variable expressiv-
ity of the phenotype. For instance, while 
maternal duplication of 15q11-q13 (15q 
dup or idic15) is associated with autism in 
85% of cases,38 paternal 15q11-q13 dupli-
cation has been observed in healthy unaf-
fected individuals39 as well as cases with 
autism or language and social defects.40-44 
Therefore, a simple genotype-phenotype 
correlation with CNVs and neurodevelop-
mental disorders is not apparent.

DNA Methylation Suppresses  
Genome Rearrangements  

and Hypomethylation Leads  
to Instability

DNA methylation is the first layer of epi-
genetic information, resulting from a cova-
lent modification of cytosine at CpG sites. 
In the mammalian genome, CpG sites are 
de-enriched because of frequent C to T 
mutations that occur at methylated CpG 
sites.45 Therefore, large clusters of CpG 
sites called CpG islands are frequently 

differences that are unique to human.20,21 
Interestingly, the human chromosomal 
regions that are significantly enriched for 
segmental dups22 also frequently overlap 
with regions of human/chimpanzee dif-
ferences in gene neighborhood and brain 
expression.23

In addition to their contribution to pri-
mate species differences, repeats are also 
quite polymorphic between individual 
human genomes. The largest duplication 
blocks are largely invariant between indi-
vidual humans, although 3% of assignable 
duplications are predicted to be unique to 
an individual.24 In addition, 2.7% of mic-
rosatellite repeats were recently estimated 
to be polymorphic between individuals, 
with long microsatellites showing the most 
variability.25 Additional variation in human 
genomes comes from the large blocks of 
ribosomal DNA repeats26,27 and interstitial 
telomeric repeats28 that are estimated to 
vary greatly between individuals. LINE-1 
transposable elements also continue to 
undergo retrotransposition, particularly 
in the neuronal lineage, suggesting that 
repeats may contribute to somatic mosa-
icism and individual variation.29,30

Human Neurodevelopmental  
Disorders Show Increased  

CNV Burden

While some common CNVs are poly-
morphic and often inherited in humans, 
a higher frequency of de novo rare CNVs 
are found in patients with autism and 
schizophrenia compared to unaffected 
controls.31-33 In addition, individuals 
affected by neurodevelopmental disorders 
in general appear to have a greater overall 
burden of common polymorphic CNVs 
than unaffected controls. Chromosomal 
regions that are hotspots for primate-
specific segmental dups and chimpanzee/
human differences frequently coincide 
with the breakpoints of CNVs found 
in autism and schizophrenia, including 
1q21.1, 15q11.2 and 15q13.3.31-34

While progress in CNV detection and 
their frequent occurrences in autism and 
other neurodevelopmental disorders is an 
exciting development for understanding 
genetic bases, challenges to understand-
ing causality of specific genes within spe-
cific CNVs remain.35 Gains and losses of 

after the large-scale consumption of PCB-
contaminated rice oil that occurred in 
1968 in Japan and in 1979 in Taiwan.11,12 
PCBs are known to disrupt neurotrans-
mitter systems, endocrine systems and 
intracellular signaling pathways.13,14 
While PCB levels are gradually declining 
in the environment following the discon-
tinued use, a related class of POPs, the 
polybrominated diphenyl ethers (PBDEs), 
are currently used as commercial flame-
retardants and are a growing concern for 
human exposures. Our recent analyses 
of perinatal PBDE exposure in a genetic 
mouse model susceptible to social behav-
ioral deficits showed global hypometh-
ylation in brain associated with adverse 
social and cognitive behavioral outcomes 
(Woods et al., in preparation).

The major future challenge that will be 
explored in this review is understanding 
how DNA methylation of human repeti-
tive elements interacts with environmental 
risk and protective factors in the etiology of 
a complex genetic disorder such as autism.

The Human Genome  
Is Highly Repetitive and Repeats  

Are Highly Polymorphic

Current estimates are that approximately 
half of the human genome is made up of 
repeats. Common repeats include trans-
poson-derived repeats, simple sequence 
repeats, processed pseudogenes and 
tandemly repeated sequences, together 
making up almost half of repeats in the 
human genome.15 In addition to the com-
mon repeat categories observed in other 
mammalian species, the primate lineage 
has evolved a unique group of “low copy” 
repeats (called segmental dups), whose 
breakpoints are enriched for a CpG-dense 
class of repeats called Alu.16 Segmental 
dups predispose certain chromosomal loci 
to copy-number variation (CNV), which 
are gains or losses of DNA segments rang-
ing from several kb to several Mb.17-19

Interestingly, segmental dups and the 
CNVs that arise from these low copy 
repeats appear to have played an impor-
tant role in primate evolution and species 
differences in levels of brain expressed 
transcripts. Comparisons of human gene 
expression patterns with other primates 
have shown brain-specific transcript level 
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Interactions of Genetics  
and Folic Acid Protection  

from an Epigenomic Perspective

Previous research on genetic susceptibilities 
for folic acid protection have been limited 
to common single nucleotide polymor-
phisms (SNPs) in several genes in the one-
carbon folate metabolism pathway, such as 
the common polymorphism in MTHFR. 
The protective nature of prenatal vitamin 
use for autism risk suggests that there could 
be an additional genomic susceptibility at 
the level of increased genomic repeat bur-
den. This effect could be counteracted by 
dietary methyl donors in the critical first 
month of pregnancy when most women 
are not supplementing because they are 
unaware that they are pregnant. In sup-
port of this hypothesis, the incidence of 
Down syndrome, a common genetic dis-
order resulting from trisomy of chromo-
some 21 (adding ~1.5% to total genome 
size), is reduced by the use of nutritional 
supplements (mainly folic acid and anti-
oxidant vitamins C and E) during the first 
month of pregnancy.62 Furthermore, the 
MTHFR genotype of mothers has been 
implicated in the risk of Down syndrome 
by numerous studies (reviewed in ref. 63). 
Interestingly, a recent genomic analysis 
of Down syndrome lymphocytes showed 
altered DNA methylation of multiple genes 
on autosomes other than chromosome 21, 
suggesting genome-wide defects in DNA 
methylation for this genetic disorder.64

Why are the earliest stages of preg-
nancy the most critical for dietary methyl 
donors from an epigenomic point-of-
view? Oocytes, early pre-implantation 
embryos and embryonic stem cells are 
characterized by having a greater need 
for DNA methylation, as they utilize 
non-CpG methylation in addition to 
higher CpG methylation as compared 
to differentiated fibroblasts.49 Recent 
next-generation sequencing efforts have 
now provided access to the whole human 
DNA methylome at single base resolu-
tion, revealing striking differences in 
the epigenomic landscapes of pluripotent 
and lineage-committed human cells.49,65 
These studies have confirmed that CpG 
island promoters are generally unmethyl-
ated, while rare promoter methylation is 
inversely correlated with gene expression, 

methylation pathways, as well as protec-
tion or reversal of DNA hypomethylation 
caused by environmental pollutants.57 
The synthetic form of folate, folic acid, 
is protective for human colon can-
cer through regulation of DNA repair 
and DNA methylation.58 Folic acid has 
well characterized protective effects on 
genome instability in cell culture of pri-
mary and transformed cell lines, likely 
mediated by DNA hypomethylation.

Folic acid supplementation recommen-
dations for women of childbearing age 
in 1991 and widespread cereal fortifica-
tion in 1998 are widely regarded as major 
advances in modern preventative medi-
cine in the US, as these measures have 
been credited in preventing up to 70% of 
neural tube defects. In addition, folic acid 
appears to protect against a wide range of 
human cancers and neurodevelopmental 
and neurodegenerative disorders. Recent 
data from a large case-control epidemio-
logical study demonstrates a significant 
protective association for prenatal vita-
min use and high periconceptional folate 
intake in relation to risk for autism102. The 
strongest protective effect was observed 
with prenatal vitamins taken in the month 
before and first two months of pregnancy 
and for mothers with the MTHFR T/T 
risk allele, similar to that observed with 
neural tube defects.

This new finding revealing a protec-
tive effect of prenatal vitamin usage for 
autism risk is somewhat paradoxical to 
multiple hypotheses suggesting that folic 
acid supplementation may be responsible 
for the recent decade’s apparent increase in 
autism diagnoses.59-61 Because the timing 
and level of folic acid supplementation in 
the form of prenatal vitamins is critical for 
the protective effect, these findings and 
hypotheses may not be in absolute conflict 
and there is middle ground to be reached 
with future studies. Perhaps the low-level 
of folic acid fortification in cereal grains 
in the diet may select for the survival of 
fetuses with increased number of repeats 
and structural duplications compared to 
previous generations. In this case, addi-
tional folic acid and B12 in prenatal vita-
mins taken prior to conception may buffer 
the genetic risk of increased repeat burden 
by providing additional methyl donors to 
methylate the additional DNA.

assayed for DNA methylation because 
they are also often associated with gene 
promoters or other regulatory elements 
and allow the analysis of multiple CpG 
sites in a single assay. However, this CpG 
island bias in methylation analyses may be 
a case of “looking under a streetlight for 
lost keys,” as gene promoters are vastly de-
enriched for DNA methylation, compared 
to gene bodies, intergenic and repetitive 
regions, where DNA methylation is exten-
sive.46-49 However, DNA methylation even 
at repetitive regions is not saturating, 
as globally human genomes have ~79% 
total methylation and the most methyl-
ated sequences are not higher than ~90% 
methylation of available CpG sites.46-48

Collectively, 25% of the total DNA 
methylation in human cells is at Alu 
sequences and the most recent Alu  
subtypes are the most methylated.50 
Interestingly, a correlation between the 
methylation state of Alu and structural 
genome variation in evolution has been 
suggested by a recent study of white-
cheeked gibbons, a hybrid primate species. 
White-cheeked gibbons show multiple 
chromosomal rearrangements at Alu 
breakpoints and these breakpoints cor-
respond to lower Alu methylation levels 
compared to humans.51 In human cell 
culture models and in cancer cell lines, 
DNA hypomethylation leads to genome 
instability.52 Furthermore, treatment with 
the DNA methylation inhibitor 5-aza-
cytidine resulted in global hypomethyl-
ation, genomic instability and structural 
rearrangements,53 while Dnmt1 deficiency 
led to microsatellite instability in mouse 
embryonic stem cells.54

Diet Influences DNA Methylation 
and Folic Acid Supplementation  

is Protective for Autism

Nutritional modification of DNA meth-
ylation can have profound effects on 
phenotypic outcome of social animals 
such as queen determination in honey-
bees55 as well as agouti coat color and 
obesity in the genetic mutant Avy allele 
in mouse.56 Folate is the major methyl 
donor to S-adenosylmethionine (SAM), 
a key enzyme for DNA methylation in 
the one carbon metabolism pathway, 
and thus has been investigated in DNA 
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self-perpetuate through genome instabil-
ity when segmental dups are hypomethyl-
ated. An additional environmental factor 
could be increased maternal age, which 
conveys higher risk for genomic instability 
as well as for autism.68,69 The total burden 
of environmental chemical exposures may 
also impact DNA stability as well as meth-
ylation levels. Developmental outcomes 
such as autism may be impacted by the 
size of the genomic sink, but supplemen-
tal folic acid may influence the selection of 
implanted embryos and the severity of out-
come for genetically high-risk individuals.

A Unifying Model  
for Environmental Impacts  

on the Human Methylomic “Sink”

What appears to be a unifying theme 
from the emerging literature of epigen-
etic impacts of environmental exposures 
is that a wide variety of environmental 
toxins with known adverse effects on 
human neurodevelopment also appear 

during cellular differentiation while also 
quite vulnerable to environmental chemi-
cal exposures.

Figure 1 shows a model using the 
analogy of the whole human genome as a 
large “sink” of methyl acceptors, coming 
not only from DNA, but also RNA and 
protein molecules that become methyl-
ated. The size of the genomic sink varies 
between individuals and is influenced by 
both genetic and environmental factors 
that predispose to genomic changes. The 
genetic environmental interactions that 
have been investigated to date have focused 
on the genes and dietary factors that regu-
late the supply of methyl donors, shown 
here as a “faucet.” Since DNA methyla-
tion reactions are not saturated, especially 
in the critical peri-implantation stage, the 
size of the genomic cytosine “sink” may 
be modified by increased genomic dupli-
cations, requiring more methyl donors 
for DNA methylation. Genomic repeats 
and duplications that influence the quan-
tity of methyl acceptors in the sink may 

often for a small subset of genes that reg-
ulate pluripotency and early lineage com-
mitment. For the majority of genes, the 
“shores” of their CpG islands, located up 
to 2 kb distant from the promoter itself 
appear to be more relevant for tissue-
type discrimination.46 Interestingly, gene 
bodies (spanning exons and introns) and 
intergenic regions show high (>75%) 
methylation in many human tissues, 
including embryonic stem cells and cere-
bral cortex.46-49 Gene body methylation 
levels and patterns vary considerably 
between cell types and developmental 
stages and are positively associated with 
gene expression.46,66,67 Emerging evidence 
is therefore in favor of distinct DNA 
methylation patterns that dynamically 
regulate cellular differentiation. Perhaps 
the reason that the pre- and periconcep-
tion stages are the critical window for 
folic acid protection of neural tube defects 
and autism is because the early embryo 
has a critical high-need for methyl donors 
for dynamic DNA methylation changes 

Figure 1. The epigenomic “sink” analogy for the interaction of genomic structural changes and factors affecting methylation. Prior studies of genetic 
and environmental factors influencing DNA methylation have focused on those factors influencing the supply of methyl donors, such as MTHFR, 
dietary folate, prenatal vitamins containing folic acid and other B vitamins. In this model, an analogy is made of the “faucet” for the supply of methyl 
donors, while the genome is represented as a large “sink.” The genomic sink varies in size with common repeats (Alu and LINE-1), segmental dups and 
the structural variants and CNVs that arise from repeat rearrangements. Trisomy, such as in Down syndrome, also changes the size of the genomic sink. 
Environmental factors such as increased maternal age and a variety of chemical exposures may also influence the genomic sink size by increased risk 
of genomic instability. The implanted embryo is perhaps at the most vulnerable stage for the epigenomic interface of genetic and environmental risk 
factors because DNA methylation levels are high and methylomic patterns are dynamically changing. Since most human fertilizations do not implant 
or make it to successful live births, there is a is a strong natural selection for embryo implantation and survival that may be directly influenced by di-
etary folate or other environmental factors. For fetuses that do implant, subtle alterations in DNA methylation patterns may impact the developmental 
outcome, as either typical development, atypical (resulting in neurodevelopmental disorders such as autism) or miscarriage.
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DNA Methylation Pathways Are  
of Critical Importance  
for Maturing Neurons

The developing mammalian brain is 
particularly sensitive to epigenetic altera-
tions, as observed by the fact that muta-
tions in epigenetic effectors can result in 
human neurodevelopmental disorders.71,72 
DNA methylation is highly dynamic in 
mammalian postnatal neurons and these 
cells express DNA methyltransferases 
(DNMT) at high levels.73 Importantly, 
deficiency in both DNMT1 and 
DNMT3A in forebrain excitatory neurons 
showed deficits in learning and memory,74 
similar to deficits in fear memory observed 
with DNMT1 chemical inhibition.75 
Likewise, DNMT3A regulates emotional 
behavior and spine plasticity76 and ensures 
the expression of key neurogenic genes by 
targeting non-promoter DNA methyla-
tion around active genes.77

In mammals, DNA methylation at 
CpG sites has traditionally been considered 

chemicals.70 Because the one-carbon 
methylation and the glutathione (GSH) 
synthesis pathways are biochemically 
linked, enhanced need for GSH to conju-
gate environmental toxins impairs SAM 
synthesis, acting as an added “demand” 
or drain on the availability of methyl 
donors for DNA methylation. In addition, 
increased DNA content resulting from 
genome instability between segmental 
dups leading to CNV duplications (that 
may also be increased due to DNA hypo-
methylation) increase demand for methyl 
donors by increasing the size of the sink. 
Furthermore, since new methyl groups 
need to be added with every cell division 
in an immune response, following DNA 
repair and following viral infections, 
inflammatory pathways are expected to 
increase demand on the methylome.

to result in reduced global DNA meth-
ylation.1 On the protection side, dietary 
methyl donors and antioxidants appear 
to counteract the detrimental epigenetic 
effects of environmental toxins. A unify-
ing mechanism for the biochemical con-
nection of pathways between diet and 
environmental exposures that interface 
DNA methylation levels has been previ-
ously proposed.70 This important unify-
ing hypothesis is expanded to include an 
integrative genomic point-of-view and the 
methylomic sink hypothesis in the model 
presented in Figure 2.

Figure 2 outlines an oversimplified 
model of the pathways that act on both 
the “supply” and the “demand” sides 
affecting DNA methylation saturation 
levels in the total genomic sink. The one-
carbon metabolic pathway is the major 
supplier of methyl groups for saturation 
of DNA methylation. The glutathione 
(GSH) synthesis pathway is upregulated 
in response to environmental chemicals 
as GSH becomes conjugated to diverse 

Figure 2. An integrative genomic model of the major genetic and environmental pathways influencing the human methylome. The total human 
methylome is represented in the middle grey box that may vary in its overall level of saturation of DNA methylation. Four different categories of path-
ways that appear to influence saturation of DNA methylation are shown by the colored circles that are either creating supply or demand for methyl 
donors. Dietary inputs are required by SAM for DNA methylation in the one carbon cycle, while the biochemically linked pathway of GSH synthesis 
acts as inhibitors of SAM, creating a demand for more dietary inputs when chemicals are present and oxidative stress pathways are activated. Envi-
ronmental toxins may also act directly as mutagens on the genome that may create more genome instability and potentially more CNV duplication 
events, creating more demand by increasing the size of the sink and could be self-perpetuating through hypomethylation. Lastly, viral infections or 
general inflammatory pathways may also increase demand on the need for methylation by promoting increased cell division, repression of viral DNA 
and DNA repair pathways.
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genome. Future investigations under the 
heading of “integrative genomics” could 
include understanding how human struc-
tural variation may be impacted by envi-
ronmental toxins and dietary factors. Of 
particular importance would be to under-
stand how folic acid supplementation at 
levels found in cereal grains and in pre-
natal vitamins may be globally impacting 
the human genome and the developing 
brain methylome. Understanding how 
large-scale DNA methylation patterns 
change during neuronal differentiation 
and maturation and how both genetic 
and environmental factors may result in 
alterations to these pathways is also likely 
to be critical. All of these types of studies 
are expected to be of importance for treat-
ment and prevention of autism and other 
complex genetic disorders.
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A New Perspective for Autism  
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Autism includes a complex mixture of 
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nostic features of social defects, language 
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for autism candidate genes (Schroeder et 
al. in revision). Collectively, these stud-
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around gene bodies for genes involved in 
calcium signaling, synaptic transmission 
and neuronal differentiation.

In addition to neuronal DNA meth-
ylation, the DNA methyl binding protein 
MeCP2 is highly expressed in mature neu-
rons in the brain. MeCP2 is an essential 
“reader” of DNA methylation marks in 
brain and has diverse roles in transcrip-
tional modulation,81,82 chromatin structural 
organization,83,84 RNA splicing85 and DNA 
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