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Introduction

Epigenetics can be defined as stable and heritable changes that 
either alter or have the potential to alter gene expression without 
changing the DNA sequence.1 DNA methylation is the most com-
monly studied epigenetic modification in humans due to its stabil-
ity and amenability to measurement. The covalent attachment of 
a methyl group to cytosine at the 5-carbon of the pyrimidine ring 
occurs primarily in the context of CpG dinucleotides.2 CpGs are 
disproportionately concentrated in enriched regions referred to as 
CpG islands (CGI), which tend to be differentially located in the 
promoter regions of genes. Methylation of CGIs in gene promoter 
regions is typically associated with transcriptional repression, 
although CGIs are generally not methylated in non-pathologic 
cells,2 but exceptions exist, as in the case of X-inactivation, imprint-
ing3 or tissue differentiation.4-8 However, 70–90% of all CpGs in 
the human genome are not situated within CGIs and are typically 
methylated under normal conditions, helping to maintain genomic 
stability9,10 and suppress expression of transposable elements.11

Although the term epigenetics was originally coined in 1942,12 
this discipline has burgeoned over the last three decades with the 
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major advances initially found in cancer biology. However, in 
recent years, the study of the epigenetics of aging has emerged 
as a novel field, seeking to discern the epigenetic contribution to 
the highly complex process of aging in the context of the environ-
ment, broadly conceived.1 Alterations in DNA methylation have 
been associated with aging-related diseases, including insulin-
resistant diabetes mellitus (type 2),13 Alzheimer disease,14 cardio-
vascular disease15,16 and cancer.3 Part of the key to understanding 
how altered DNA methylation patterns associate with aging is 
to determine whether they occur in response to endogenous or 
exogenous environmental exposures, are preprogrammed as a 
course of life, are primarily a stochastic process, or if the patterns 
of DNA methylation that develop over time in a tissue reflect an 
amalgamation of all of these inputs.

Gaining a better understanding of the potential for local 
sequence features and genomic context to influence the meth-
ylation state of CpGs will enhance our comprehension of how 
DNA methylation is regulated under normal conditions and 
becomes altered by aging and exposures and will provide impor-
tant clues to the role of epigenetics in pathogenesis. While the 
methylome of the peripheral blood mononuclear cell has been 
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and effective performance in clustering high-dimensional meth-
ylation array data (Sup. Analysis S1). The resultant CpG classes 
demonstrated interclass variability in their degree of methylation 
(Fig. 2; see Sup. Fig. 1 for additional detail).

To evaluate the associations between methylation and aging/
exposures, Spearman’s rank correlation coefficient with each 
respective exposure was calculated for the average methylation 
within each class (32 such class-specific averages per subject). 
This approach was taken based on the notion that CpGs within 
classes should possess similarities that influence the direction and 
magnitude of methylation. Overall association of class methyla-
tion and aging/exposures was assessed using two separate omni-
bus tests (Table 1), described in detail in the Methods section. 
CpG class methylation was significantly correlated with age  
(P

1st difference
 = 0.007; P

supremum
 < 0.001), cigarette pack-years restricted 

to ever-smokers (P
1st difference

 = 0.004; P
supremum

 = 0.006) and life-
time ever-use of hair dye (P

1st difference
 = 0.003; P

supremum
 = 0.01).  

After controlling for potential confounding factors using 
multiple linear regression (Table 1), there was still an over-
all association of CpG class methylation and age, adjusted 
for gender (P

1st difference
 = 0.006; P

supremum
 < 0.001); and hair dye 

use after adjusting for age and gender (P
1st difference

 = 0.006;  
P

supremum
 = 0.06); while the association between CpG methylation 

class and pack-years was borderline significant based on the “1st 
difference” test (P

1st difference
 = 0.06), which is designed to account 

for structure among the class methylation-exposure relationships 
but was non-significant by the omnibus test based on maximum 
absolute value (P

supremum
 = 0.41), after adjusting for age and gender.

When considering individual CpG classes (Fig. 2), after 
adjusting for potential confounding, classes with relatively greater 
extents of methylation (denoted by blue dots) were observed to 
have an inverse relationship between methylation and aging, 
although most were non-significant (controlling for multiple 
comparisons); while in the relatively unmethylated CpG classes 
(denoted by yellow dots), methylation tended to be positively 
associated with age, although none were individually significant 
(controlling for multiple comparisons). Hair dye use, arsenic and 
tanning lamp use also displayed similar patterns to that of age 
and methylation by class but no significant associations were 
observed for any individual class.

Cross-validation of unsupervised CpG class and methylation-
exposure associations. Methylation array data was available for 
peripheral blood from a second population of 92 healthy subjects 
(validation subjects). To assess the robustness of the unsupervised 
classes, CpG loci were again clustered into 32 classes by RPMM 
using the methylation data from the validation subjects, and class 
membership (CpG loci) was compared by cross-tabulation of the 
CpG classes derived from the primary study subjects and validation 
subjects. There was substantial concordance of CpG loci between 
the two sets of classes, indicating that the unsupervised clustering 
of CpGs by RPMM has a high-level of reproducibility in blood 
from healthy subjects (Sup. Fig. S2).

Next, we sought to validate the observed methylation-expo-
sure associations. The two sets of CpG classes, one derived 
via RPMM from the primary study subjects (primary classes) 
and one from the validation subjects (validation classes) were 

described in reference 17, enhancing our ability to understand 
the normal state of blood cells, we have focused upon the role 
of aging and the environment in explaining inter-individual dif-
ferences in DNA methylation. Considerable epidemiologic and 
basic research is currently being conducted investigating the pat-
terns of DNA methylation in peripheral blood for a plethora of 
pathological conditions thought to be related to altered epigen-
etic states.18 Hence, it is imperative that we further define the 
intrinsic factors, such as sequence context, affecting DNA meth-
ylation in the non-pathologic state. We have previously demon-
strated that CpG loci can be clustered in DNA extracted from 
the blood of healthy individuals according to their methylation 
patterns and that the extent and direction of correlation between 
CpG methylation and age is dependent upon CGI context.19 
Here, we have extended this research to the evaluation of 26,486 
autosomal CpG sites for methylation in blood DNA from 205 
healthy subjects to investigate the relationships among patterns of 
DNA methylation and age, gender, environmental exposures and 
sequence features in healthy individuals. We demonstrate that 
intrinsic biological characteristics, such as local sequence features 
surrounding CpGs, may interact with aging and the environ-
ment to influence DNA methylation, and suggest an appropriate 
approach and methodology for assessing associations of methyla-
tion with aging and environmental exposures in healthy people.

Results

To assess the complex relationship of DNA methylation with age, 
gender and various exposures, we used DNA from blood samples 
of 205 healthy individuals (a description of the study population 
is provided in Sup. Table S1) and high-density methylation array 
technology to analyze CpG methylation via three complemen-
tary approaches. We first used a data-driven approach, clustering 
CpGs (as opposed to subjects) by relative methylation across all 
subjects using an unsupervised model-based hierarchical clus-
tering algorithm. Our second approach applied classes derived 
externally from bioinformatic considerations, fitting the methyl-
ation data into these bioinformatic classes. Finally, to supplement 
the CpG cluster-based analyses, we developed marginal models 
to further assess the interactions between aging/exposures and 
local DNA sequence features with regard to methylation without 
needing to cluster the CpGs. An overview of our analytic strategy 
is presented in Figure 1.

Association of exposures with unsupervised CpG class 
methylation. Previous work by our group identified a correla-
tion of CpG methylation with age in peripheral blood DNA 
from healthy individuals, the magnitude and direction of which 
depended upon the CGI-status of the CpGs.19 We sought to 
expand on these findings with a larger pool of healthy study 
subjects using a denser methylation array, and to examine rela-
tionships of CpG methylation with several well-characterized 
exposures and potential cancer risk factors, while taking into 
account variability in propensity for methylation among CpGs. 
CpG loci were clustered by unsupervised recursively partitioned 
mixture model (RPMM),20 based on methylation (b) Z-scores, 
into 32 methylation classes. RPMM was chosen for its efficient 
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When applied to the same study population, each of the 2 
sets of CpG classes, derived respectively from the primary study 
subjects and validation subjects, were similar with regard to cor-
relation of class methylation and exposures, which was sustained 
after adjusting for potential confounders in the multiple regres-
sion models (Sup. Table S2). However a higher degree of varia-
tion was observed for each set of CpG classes when applied across 
populations, possibly indicative of inherent unaccounted differ-
ences between the populations.

Association of sequence features with unsupervised CpG 
class. To investigate how the genomic context around specific 
CpG sites may impact the associations between exposures 
and methylation, we examined variability of the individual 
unsupervised (RPMM-derived) classes with regard to specific 
local sequence features. Interclass variability by sequence fea-
ture for the CpG loci was observed (Fig. 3). The classes with 
relatively high levels of methylation had higher proportions of 
CpGs within non-long terminal repeat (non-LTR) transposable 

applied (i.e., used to define class-specific methylation averages) 
to each study population, resulting in four comparisons: pri-
mary classes x primary subjects, primary classes x validation 
subjects, validation classes x primary subjects and validation 
classes x validation subjects. For each of the 32 classes in each 
comparison, Spearman’s correlation and multiple regression 
were used to evaluate the association between methylation and 
exposures that were available in both data sets (age, gender, 
smoking and alcoholic drinks per week). Finally, omnibus tests 
of overall association of each exposure with class methylation 
were performed using a supremum test statistic, described in 
detail in the Methods section. Of the aforementioned expo-
sures, only alcohol consumption (p = 0.001) and race/ethnicity 
(p < 0.001) differed by study population (Sup. Table S1) with 
the validation subjects less likely to be non-drinkers and more 
likely to consume >6.5 drinks per week and more likely to be of 
a racial/ethnic background other than Caucasian, although the 
vast majority identified as non-Hispanic Caucasians.

Figure 1. Overview of the analytic strategy for this study. Methylation data for 26,486 autosomal CpGs was assayed for each of 205 blood specimens 
by the Infinium HumanMethylation27k BeadArray. Three complementary approaches were used to assess the association between DNA methylation 
and age, sex and select environmental exposures, while taking into account variation in DNA sequence features of each CpG: (1) unsupervised cluster-
ing of CpGs by recursively partitioned mixture modeling (RPMM) into 32 CpG classes based on like methylation patterns, followed by evaluation of 
an association of mean methylation of the CpGs for each resultant class with age, gender or exposures; (2) clustering of CpGs into 41 classes based on 
bioinformatic attributes (CpG sequence features), again followed by evaluation of an association of mean methylation of the CpGs for each resultant 
class with age, gender or exposures; and (3) a marginal-model based analysis (no clustering), assessing interactions between DNA sequence features 
and age, gender and exposures, with respect to methylation.
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Figure 2. Adjusted association of exposures with unsupervised RPMM class methylation. The colored dots indicate the degree of average class 
methylation. The y-axis represents the t-statistic for the association of class methylation and the corresponding exposure from the multiple regression 
models, while the 32 CpG classes are depicted on the x-axis. The p value for the omnibus test (first difference test) of significance for the association 
of each exposure and average class methylation is found at the top left of the corresponding exposure plot. The red dotted lines represent the 95th 
percentile of the permutation distribution of the maximum absolute value (over 32 classes) of the regression coefficient t-statistics as a control for 
multiple comparisons. Note: age was adjusted for gender; gender was adjusted for age and hair dye use; all other models were adjusted for age and 
gender. *Restricted to ever-smokers. **Compared to non-drinkers (zero alcoholic drinks per week).
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Dye-use (p = 0.04) and female gender (p = 0.05) were also signifi-
cantly correlated with class using an omnibus test of Spearman’s 
coefficient but lost significance after adjusting for age and gender 
and age and dye-use, respectively.

There was a significant inverse association of age and meth-
ylation for several individual bioinformatically-derived classes  
(Fig. 4). These 8 classes (each class is shown in brackets) included 
[CGI|MIR], [PcG target|TFBS], [PcG target], [TFBS], [PcG 
target|MIR|TFBS], [MIR|TFBS], [CGI|PcG target|LINE2] 
and [LINE2|TFBS]; all of which had relatively higher degrees 
of average methylation. No other exposures were associated with 
methylation of individual bioinformatically-derived classes (after 
controlling for multiple comparisons).

In response to recent literature suggesting a role in transcrip-
tional control and differentiation,25,26 we conducted a subanalysis 
of CpG island shores (defined as sequences within 2 kb distance 
of CGI). However, we found no association between their meth-
ylation and exposures (Sup. Table S4) and thus have not further 
included them in our analyses.

Model-based analysis of exposure-sequence feature inter-
actions. Building on the bioinformatically-derived classes, a 
model-based approach (independent of CpG clustering) was 
employed to further assess the relationship between exposures, 
sequence features and methylation. To do this, we developed 
separate marginal models for each exposure of interest, adjusted 
for potential confounders and examined the main effect and 
interactions of each exposure and sequence feature with respect 
to DNA methylation. The models substantiate the inclusion 
of the sequence features used in the bioinformatically-derived 

elements, including LINE-1, LINE-2, Alu and mammalian 
wide-interspersed repeat (MIR) elements. Conversely, unmethyl-
ated CpG classes predominately contained loci residing within 
CGIs and had a higher proportion of CpGs located within 
1,000 bases (1 kb) of at least one putative transcription factor 
binding site (TFBS). There was also variability among classes 
with respect to percent of CpGs located within a polycomb 
group (PcG) target gene,21-24 with the frequency of CpG loci 
associated with PcG targets within classes ranging from 4.0% 
to 32.8%; five classes had more than 20% of member loci that 
were associated with PcG targets.

Bioinformatically-derived CpG class. Motivated by the 
interclass variability by sequence features observed in the unsu-
pervised RPMM-based clustering, we next utilized a bioinfor-
matically-informed classification scheme, subdividing CpG sites 
by their sequence features to account for intricate interactions 
between them. Taking into consideration presence in a CGI, 
PcG target gene, LINE-1, LINE-2, Alu and MIR elements and 
proximity (≤1kb) to a TFBS, we obtained 41 classes containing 
at least one CpG based on various combinations of the afore-
mentioned bioinformatic attributes. Classes are denoted by the 
applicable attributes separated by a “|” (e.g., a class of CpGs 
located in CGI and LINE-1 element would be symbolized as 
CGI|LINE1). The distribution of CpG loci by bioinformatically-
derived class is presented in Supplemental Table S3. There was 
an overall significant relationship between age and bioinformat-
ically-derived CpG class methylation (Table 2) by omnibus tests 
(supremum) of per class Spearman’s rank correlation (p = 0.001) 
and multivariable regression (p = 0.001), adjusting for gender.  

Table 1. Omnibus tests of association for exposures and unsupervised RPMM CpG class methylation

Omnibus p value

Spearman correlation Multivariable regression

Exposure Supremum 1st Difference Supremum 1st Difference

Age (years)a <0.001 0.007 <0.001 0.006

Female genderb 0.04 0.20 0.23 0.64

Cigarette smoking

Ever-smokingc 0.06 0.07 0.29 0.28

Pack-yearsc,d 0.006 0.004 0.41 0.06

Alcohol consumptionc,e

Non-drinker (reference) - - - -

≤6.5 drinks/week 0.29 0.66 0.49 0.60

≥6.5 drinks/week 0.34 0.42 0.47 0.60

Hair dye-usec 0.01 0.003 0.06 0.006

Arsenic (μg/g)c,f 0.31 0.26 0.17 0.06

Selenium (μg/g)c,f 0.63 0.52 0.59 0.43

Ultraviolet radiation exposure

Tanning lamp usec 0.02 0.14 0.11 0.37

Lifetime painful sunburnsc 0.89 0.88 0.67 0.65

Note: Supremum test = test based on the maximum absolute value. 1st-difference test = test for structural relationships based on maximum absolute 
1st difference. aThe multiple regression model was adjusted for gender. bThe multiple regression model was adjusted for age and hair dye use. cThe 
multiple regression model was adjusted for age and gender. dRestricted to ever-smokers. eMedian = 6.5 alcoholic drinks per week among drinkers. 
fMeasured in toenail clippings.
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A summary of the results from the marginal models for the 
association of exposures and methylation, overall and by sequence 
features of the CpG loci, are presented in Table 3 (the individual 
models are presented in entirety in Sup. Table S5-S14). Age was 

classification of CpG loci, showing them to each be indepen-
dently associated with methylation at p < 0.00001, with the 
exception of PcG targets, which is non-significant in all but one 
of the models (Sup. Table S5–S14).

Figure 3. Frequency of sequence features associated with unsupervised RPMM class CpG loci. Classes are represented on each plot by the colored 
dots, which indicate the degree of average class methylation. The y-axis represents the frequency of CpG loci in each class associated with the 
sequence feature of interest, while the 32 CpG classes are depicted on the x-axis. Abbreviations: CGI = CpG island; PcG Target = located in a polycomb 
group protein target gene; TFBS, located within 1 kb of a transcription factor binding site; LINE, long interspersed nuclear element; MIR, mammalian 
wide-interspersed repeat element.
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intra-genomic differences in methylation acquired with age 
are more complex than just CGI vs. non-CGI, but rather vary 
according to biological differences in DNA sequence, as exempli-
fied by the complex interactions observed in our bioinformati-
cally-derived clustering approach.

We also undertook a more thorough examination of the rela-
tionship between methylation and environmental exposures 
experienced by the subjects studied. In doing so, we identified 
an association between hair dye use and methylation, where ever-
use of hair dye was inversely associated with methylation among 
the more highly methylated unsupervised (RPMM-based) classes 
and positively associated with methylation in the classes with low 
methylation and higher CpG island contents. This finding was 
further supported by our marginal model estimates, which indi-
cate an interaction between use of hair dye and methylation of 
CpGs in LINE-1 elements. However, using the bioinformatically-
informed classification scheme, after adjusting for age and gender, 
we no longer observe a significant association between methyla-
tion and ever-use of hair dye by class. This may suggest that while 
the bioinformatically-derived classes are meaningful, they either 
do not fully explain the genomic context which accounts for dif-
ferences in methylation between CpG loci or are over-parsing 
CpGs based on bioinformatic features, sacrificing statistical power 
for detection of associations. While several varieties of hair dyes 
exist, oxidative (permanent) dyes comprise 80% of the market 
share in the US.38 The main components of oxidative dyes include 
primary intermediates and couplers, composed of various forms 

inversely associated with overall average methylation (p = 0.002). 
When considering CpG loci by sequence feature, there was no 
significant effect of age (adjusted for gender) on methylation of 
CpGs located in CGIs, although there was a significant inverse 
interaction (P

interaction
 = 0.02; Sup Table S5); however methyla-

tion significantly decreased with age (adjusted for gender) for 
CpGs associated with all other sequence features, with signifi-
cant interactions with LINE-2 (P

interaction
 = 0.0003), MIR elements  

(P
interaction

 < 0.0001) or PcG target genes (P
interaction

 = 0.0003). There 
was no significant effect of any other exposures assessed, overall 
or by sequence feature, albeit there was an interaction between 
ever-use of hair dye (adjusted for age and gender) and methylation 
of CpGs in LINE-1 elements (P

interaction
 = 0.04; Sup. Table S6) 

and an interaction between ever-use of tanning lamps (adjusted 
for age and gender) and methylation of CpG loci located within a 
PcG target gene (P

interaction
 = 0.04; Sup. Table S13).

Discussion

Epigenetic research in human subjects has been ongoing for 
decades but has primarily focused on alterations related to 
cancer. However, in order to properly understand aberrant epi-
genetic regulation that occurs during the course of disease, the 
normal methylome must be described. More specifically, there 
is a need to characterize the epigenetic state in non-pathologic 
tissues from healthy individuals to identify the variability in 
the overall profile of DNA methylation across individuals, and 
to clarify the relationship of that variability with aging or envi-
ronmental exposures. Elucidation of the methylation patterns of 
CpG loci embedded in different genomic sequences or proximal 
to different features will critically inform our comprehension of 
alterations in epigenetic regulation that occur through pathologic 
processes and the mechanisms by which these alterations arise.

The study of the epigenetics of aging in healthy individuals 
is emerging as a novel discipline, seeking to discern the epig-
enomic changes that occur during the course of life. Early studies 
of this phenomenon examined candidate loci, such as individ-
ual gene promoters and “global” methylation markers, finding 
increased methylation of many of these specific gene promoters 
with aging,27-32 while methylation of the “global” markers (e.g., 
LINE-1, Alu, LUMA, CCGG, etc.,) decreased,33-36 giving rise to 
the notion that we lose global methylation with age, while we 
gain localized promoter methylation.37 In accordance with these 
earlier reports, we present here evidence, based on a genome-wide 
approach, of an association between aging and DNA methyla-
tion, the magnitude and direction of which is dependent upon 
the genomic context of the sequence in which the CpG is embed-
ded. This is demonstrated by our marginal model results, which 
show no effect of age on CGI methylation but a decrease in meth-
ylation, overall and for all other sequence features considered, 
including several repeat sequences, with varying effects. This is 
additionally corroborated by our previous results in reference 19, 
which clustered 1,413 CpG loci into methylation classes using 
blood samples from 30 healthy adult subjects and finding the 
association of methylation with age to be CGI-context depen-
dent. Furthermore, our present results indicate that inter- and 

Table 2. Omnibus tests of association for exposures and bioinformati-
cally-derived CpG class methylation

Omnibus p value  
(Supremum)

Exposure
Spearman 

Correlation
Multiple  

Regression

Age (years)a 0.001 0.001

Female genderb 0.05 0.56

Cigarette smoking

Ever-smokingc 0.15 0.29

Pack-yearsc,d 0.11 0.84

Alcohol consumptionc,e

Non-drinker (reference) - -

≤6.5 drinks/week 0.14 0.21

>6.5 drinks/week 0.17 0.20

Hair dye-usec 0.04 0.38

Arsenic (μg/g)c,f 0.25 0.09

Selenium (μg/g)c,f 0.92 0.82

Ultraviolet radiation exposure

Tanning lamp usec 0.15 0.47

Lifetime painful sunburnsc 0.87 0.54

aThe multiple regression model was adjusted for gender. bThe multiple 
regression model was adjusted for age and hair dye use. cThe multiple 
regression model was adjusted for age and gender. dRestricted to 
ever-smokers. eMedian = 6.5 alcoholic drinks per week among drinkers. 
fMeasured in toenail clippings.
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conflicting.46 In light of our findings, further studies are indicated 
to examine the effect of hair dye use on epigenetic endpoints and 
the impact of these alterations on disease susceptibility.

We found no overall association of class methylation with 
ever-smoking but there was a borderline association among 

of arylamines, oxidants and alkalinizing agents.39 A recent review 
concluded that there is no consistent evidence of genotoxicity from 
biomonitoring studies of hair dye exposure40 but there are some 
epidemiologic reports of increased risk of bladder41,42 and hema-
topoietic cancers43-45 among hair dye users, albeit the literature is 

Figure 4. Adjusted association of exposures with bioinformatically-derived CpG class methylation. The colored dots indicate the degree of average 
class methylation. The y-axis represents the t-statistic for the association of class methylation and the corresponding exposure from the multiple 
regression models, while the 41 bioinformatically-derived Cp6 classes are listed numerically on the x-axis; the bioinformatic attributes correspond-
ing to the numbers are provided in Supplemental Table S3. The p-value for the omnibus test (supremum) of significance for the association of each 
exposure and average class methylation is found at the top left the corresponding exposure plot. The red dotted lines represent the 95th percentile of 
the permutation distribution of the maximum absolute value (over 32 classes) of the regression coefficient t-statistics as a control for multiple com-
parisons. Note: age was adjusted for gender; gender was adjusted for age and hair dye use; all other models were adjusted for age and gender. There 
were 8 classes significantly associated with age: (12) CGI|MIR; (16) PcG|TFBS; (20) PcG; (23) TFBS; (24) PcG|MIR|TFBS; (27) MIR|TFBS; (29) CGI|PcG|LINE2; 
(31) LINE2|TFBS. Abbreviations: CGI = CpG island; PcG = located in a polycomb group protein target gene; TFBS = located within 1 kb of a transcrip-
tion factor binding site; LINE = long interspersed nuclear element; MIR = mammalian wide-interspersed repeat element. *Restricted to ever-smokers. 
**Compared to non-drinkers (zero alcoholic drinks per week).
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the sequence features that we considered and could potentially 
over-partition the data. Conversely, the unsupervised (RPMM-
based) clustering approach has the capacity to capture variation 
in methylation due to unknown or poorly-understood features 
and interactions that would otherwise be unaccounted for since 
it clusters based on like-methylation patterns rather than specific 
DNA sequence attributes, although the source of variation may 
not be as easily interpreted. Additionally, the data-driven RPMM 
approach suffers from the weaknesses of all 2-stage latent variable 
approaches, i.e., “double-dipping” where the data are used twice 
(once to predict the latent variables and once again to assess their 
associations with other variables/phenotypes). In general, 2-stage 
approaches provide reasonably unbiased point estimates but can 
often underestimate standard errors.49 Finally, the addition of 
the marginal model-based (non-clustering) approach allows us 
to specifically analyze the interaction of each exposure of interest 
with each sequence feature. However, this assessment is limited 
to evaluation of 1st order interactions, whereas the cluster analyses 
may better capture more complex relationships between aging/
exposures, variation in the DNA sequence and methylation.

Our results clearly demonstrate that the genomic context of 
CpGs is important when assessing associations of methylation 
with aging or exposures. They also indicate that simple consider-
ation of CpG island status is not sufficient with respect to meth-
ylation, but rather that other variations in DNA sequence should 
be taken into account. Moreover, we have provided additional 
evidence that DNA methylation is associated with age and novel 
evidence for an association with hair dye use, each operating in a 
CpG context-dependent manner. Proper careful analysis of CpG 

ever-smokers of pack-years with methylation using the RPMM-
based approach, although the direction was contrary to what 
would be expected and thus further research is required to deter-
mine whether this effect is real or spurious. No association was 
observed for alcohol consumption, arsenic or selenium exposure 
(measured via toenail clippings). However, it is important to 
note that although the measured exposures may not be signifi-
cantly associated with methylation in peripheral blood, they may 
be affecting methylation in other tissue types not measured in 
this study. Additionally, in response to evidence that ultravio-
let (UV) exposure modifies the immune system,47,48 which could 
potentially result in altered methylation signatures in peripheral 
blood, we assessed measures of UV exposure, including ever-use 
of tanning lamps and lifetime number of painful sunburns. CpG 
class methylation was not associated with either UV measure, 
although we did observe an interaction between ever-use of tan-
ning lamps and methylation of CpGs located within PcG target 
genes, the significance of which is unknown.

A key strength of this study is the employment of three com-
plementary analytic strategies for evaluating the impact of aging 
and exposures on DNA methylation: (1) unsupervised cluster-
ing by recursively partitioned mixture modeling (RPMM), (2) 
a bioinformatically-informed clustering approach and (3) a mar-
ginal-model based analysis. Each of the 3 methodologies used 
bears its own set of strengths and weaknesses, with each making 
a positive contribution to the analysis and filling in for potential 
shortcomings of the others. The bioinformatically-derived clus-
tering approach takes into account intricate interactions between 
DNA sequence features of the CpGs but is limited in scope to 

Table 3. Summary of results for the marginal model-based assessment of the association of exposures and methylation, overall and by sequence 
feature

p value (Effect Direction) for Associations of Exposures with Methylation

Cigarette smoking
Alcohol  

consumptionf UV Exposure

Exposure 
(x)

Agea Female 
Genderb

Ever-
Smokingc

Pack-
Yearsc,d

≤6.5 
drinks 

per 
weekc,e

>6.5 
drinks 

per 
weekc,e

Hair 
Dye 
Usec

Arsenicc 
(μg/g)

Seleniumc 
(μg/g)

Tanning  
Lamp 
Usec

Painful 
Sunburnsc,g

x (all CpGs) 0.002 (-) NS NS NS NS 0.13 (+) NS 0.07 (-) NS NS NS

x|CGI NS* 0.07 (+) NS NS NS NS NS NS NS NS NS

x|PcG 0.05 (-)* NS NS NS NS NS NS 0.13 (-) NS NS* NS

x|LINE1 0.01 (-) NS NS NS NS NS 0.10 (-)* 0.09 (-) NS NS NS

x|LINE2 0.0009 (-)* NS NS NS NS NS NS 0.11 (-) NS NS NS

x|Alu 0.03 (-) NS NS NS NS NS NS 0.10 (-) NS NS NS

x|MIR 0.0006 (-)* NS NS NS NS NS NS 0.09 (-) NS NS NS

x|TFBS  0.0003 (-) NS NS NS NS 0.11 (+) NS 0.09 (-) NS NS NS

Abbreviations: CGI = CpG island; PcG, polycomb group protein target gene; TFBS, located within 1 kb of a transcription factor binding site; LINE, long 
interspersed nuclear element; MIR, mammalian wide-interspersed repeat element. Notes: x represents the exposure of interest for each respective 
model; The effect of exposures on methylation of CpG loci by sequence feature is denoted as: x|[feature]; p values >0.15 are denoted by NS. *Signifi-
cant interaction term in the marginal model (Sup. Tables S5–S14) aPer decade; Adjusted for gender. bAdjusted for age and hair dye use. cAdjusted 
for age and gender. dRestricted to ever-smokers. eRelative to non-drinkers. fMedian = 6.5 alcoholic drinks per week among drinkers. gTotal lifetime 
number. This table summarizes the results from the marginal models for each of the 11 exposures assessed. Each column represents the model results 
for a specific exposure (x) and rows represent the overall or sequence feature-specific estimates of the association of each exposure with methylation 
(determined through linear combinations of the main effect and interaction term), presenting the p value and direction of the effect in parentheses.
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previously demonstrated that methylation of CpG loci detected 
through BeadArray platforms can be replicated using alternative 
detection techniques including pyrosequencing, Massarray analy-
sis and quantitative methylation-specific PCR.53-58

Statistical analysis. To capture relative, CpG-specific heteroge-
neity across specimens, methylation b values B

ij
 were transformed 

to Z-scores (conferring robustness to biochemical range) by cal-
culating mean  and standard deviation S

j
 for each individual 

CpG j and subsequently computing . CpG loci 
were clustered into methylation classes based on Z-scores using 
a recursively partitioned mixture model (RPMM) 20 adapted for 
Gaussian distributions. This likelihood-based hierarchical cluster-
ing algorithm has processing and memory requirements that are 
less burdensome than commonly used metric-based hierarchical 
clustering procedures, thereby granting computational feasibility 
to the clustering of 26,486 CpGs. In fact, by comparing the con-
sistency of RPMM clustering to that of metric clustering (using 
Euclidean distance with Ward’s linkage) by pairwise analysis of 
100 resampling experiments, we have demonstrated that RPMM 
provides more consistent clustering than metric hierarchical clus-
tering for this dataset (Sup. Analysis S1). In addition, its hierar-
chical presentation of classes confers robustness, compared with 
other mixture model algorithms, in the selection of the num-
ber of classes. The model was arbitrarily pruned after 5 splits  
(Q = 5), yielding 32 CpG methylation classes. For each of the 205 
control subjects, 32 corresponding aggregate methylation values 
were obtained by averaging together average β values from all 
CpGs within the class. RPMM classes are labeled by 5-letter com-
binations of L (left) and R (right), denoting the direction of each of 
the 5-splits in the dendogram.

For each of these 32 aggregate measures, Spearman’s rank cor-
relation coefficient was used to measure the correlation between 
subject-specific exposure and subject- and class-specific aggregate 
methylation. Multiple linear regression models were used to assess 
the association of exposures and aggregate methylation, while 
adjusting for potential confounding variables. The model for the 
association of aggregate methylation and age (continuous, centered 
at the median) was adjusted for gender; the model for the asso-
ciation of aggregate methylation and gender was adjusted for age 
and hair dye use (ever/never); the model for the association with 
pack-years of smoking (continuous) was restricted to ever-smokers 
and was adjusted for age and gender; the respective models for  
≤ and >6.5 alcoholic drinks per week (median) were compared 
to non-drinkers and adjusted for age and gender; and models for 
smoking (ever/never), hair dye use (ever/never), arsenic exposure 
(measured from toenail clippings as μg/g), selenium exposure 
(measured from toenail clippings as μg/g), tanning lamp use (ever/
never) and number of lifetime painful sunburns (continuous) were 
all adjusted for age and gender.

Omnibus tests for overall association between exposure and 
aggregate CpG class methylation were obtained by permutation 
test. Two types of tests were used. The first type of test is a supre-
mum test, analogous to a Kolmogorov-Smirnov test: specifically, 
for each hypothesized association, a test statistic was constructed 
as either the maximum absolute correlation or the maximum abso-
lute t-statistic for the appropriate coefficient from the regression 

loci with respect to methylation patterns in response to aging 
and exposures in healthy individuals, such as we have described 
here, will help us to gain insight into the mechanics of DNA 
methylation and epigenetic control. Ultimately, such conception 
of normal epigenetic variation will help to guide future research 
of aberrant methylation that occurs during the course of disease, 
enhancing our understanding of pathologic processes.

Methods

Study population. The primary study population was composed 
of 205 healthy subjects with no prior history of cancer who served 
as shared controls for two case-control studies on bladder and skin 
cancer, and for whom peripheral blood (buffy coat) was available. 
Briefly, controls were population-based New Hampshire resi-
dents, ages 28–74 years.50 Upon enrollment, consenting subjects 
underwent personal interviews furnishing sociodemographic and 
exposure information, and provided a toenail sample used to 
assess the burden of arsenic and selenium in the body via induc-
tively coupled plasma mass spectrometry.

A second study population of 92 healthy control subjects from 
a case-control study of head and neck squamous cell carcinoma 
(HNSCC) was used for cross-validation of the unsupervised 
CpG clustering (validation subjects), and has also been previ-
ously described in reference 51. Population-based control sub-
jects were randomly selected from a larger pool recruited from 
the greater Boston area, ages 32–86 years. All subjects completed 
a self-administered questionnaire, providing sociodemographic 
and exposure information.

Institutional Review Board approval was obtained for sample 
collection and use of patient data for all subjects included in this 
study. All subjects provided written informed consent for partici-
pation in this study.

Methylation profiling. DNA was extracted from peripheral 
blood buffy coats using the QIAmp DNA mini kit (Qiagen, 
Valencia, CA) according to the manufacturer’s recommenda-
tion and was subsequently sodium bisulfite converted using 
the EZ DNA methylation kit (Zymo Research, Orange, CA). 
The bisulfite-converted DNA was analyzed using the Infinium 
HumanMethylation27 BeadChip array (Illumina, San Diego, 
CA) according to the manufacturer’s recommendations at the 
Genomics Core Facility at the UCSF Institute for Human Genetics 
(San Francisco, CA). Analysis was conducted in 2 batches across 
42 BeadChips. Outliers were detected using array control probes 
supplied by Illumina to diagnose problems such as poor bisulfite 
conversion, batch or BeadChip effect or color-specific problems. 
Specifically, Mahalanobis distances were determined based on fit-
ted mean vector and variance-covariance matrix, and arrays with 
large distances (inconsistent with multivariate normality52) were 
discarded. The methylation status for each individual CpG locus 
was calculated as the ratio of fluorescent signals (β = Max(M,0)/
[Max(M,0) + Max(U,0) + 100]), ranging from 0–1, using the 
average probe intensity for the methylated (M) and unmethyl-
ated (U) alleles. Beta (β) = 1 indicates complete methylation;  
β = 0 represents no methylation. Only the 26,486 autosomal CpGs 
were considered in the statistical analyses. We and others, have 
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i and CpG j, x
i
 is a vector of exposures/phenotypes and confound-

ing variables, z
j
 is a vector of CpG-specific attributes, ⊗ denotes 

Kronecker product, m
j 
and a

j
 are zero-mean CpG-specific effects, 

ε
ij 

is a zero-mean error term, T symbolizes a transpose operation 
and the remaining coefficients are the focus of biological interest. 
Specifically, the vector α represents overall effect of exposure or 
phenotype on DNA methylation, γ represents the effects of indi-
vidual CpG attributes on DNA methylation and δ represents the 
extent to which various CpG-specific attributes modify the effect 
of exposure or phenotype. Estimates were obtained in a two-stage 
approach by first computing individual regression coefficients  
and  for the model , then fitting the models 

 and  to obtain estimates ,  
,  and the coefficient matrix estimate  and finally vector-

izing  to obtain . This marginal-models approach is similar 
in spirit to the generalized estimating equation (GEE) popular in 
longitudinal data analysis. Statistical inference was obtained by 
bootstrap, i.e., obtaining 500 representatives of the sampling dis-
tribution by constructing 500 bootstrap data sets, each of which 
was obtained by sampling, with replacement, 205 data vectors 
consisting of methylation data concatenated with exposure/phe-
notype covariate data. We acknowledge that small biases in esti-
mates will arise from the extent to which  and , computed 
over all the autosomal CpGs on the 27K array, would differ from 
the corresponding values obtained from all CpGs on the human 
genome, but conjecture that the bias is small for dense arrays, and 
that the resulting regression estimates will be representative of all 
human genome CpGs that conform to the selection criteria used 
by Illumina for inclusion on the 27K array.

All statistical analyses were performed using the R statistical 
package (v. 2.11.1).
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model, where the maximum was computed over the 32 individual 
correlations or regression models. The corresponding null distribu-
tion was obtained by randomly permuting the individual exposure 
or phenotype variable with respect to aggregate methylation val-
ues and potential confounders and computing the corresponding 
test statistic. 10,000 permutations were used and a hypothesized 
association was considered significant when p ≤ 0.05. Since this 
test is inefficient for detecting structural dependencies between 
classes that are adjacent with respect to a natural ordering (e.g., 
CpG classes ordered alphabetically by RPMM label or numerically 
by mean methylation) we employed a second type of test statistic, 
a “1st-difference” test: the sum of the squares of the first-order dif-
ferences in smoothed correlation or t-statistic, where the smooth-
ing was obtained by fitting a generalized additive model (GAM) 
to the statistics (with respect to the assumed order of the classes) 
and extracting the predicted smooth. GAMs were fit using the 
mgcv library in R. Since the classes must have a natural ordering in 
order for the “1st difference” test to be meaningful, this test was not 
applied to the bioinformatically-derived classes.

Additionally, an alternative clustering of CpGs was obtained 
by considering epigenetically relevant bioinformatic attributes of 
each CpG, including CpG island status,59 PcG target status of 
associated gene (i.e., gene was described as a PcG target in at least 
one of21-24), presence within 1 kb of at least one of 258 compu-
tationally predicted TFBS sequences obtained from the tfbsCons-
Sites track of the UCSC Genomes Browser site (TFBS Z-score >2) 
and situation within each of the following classes of repetitive ele-
ments as defined by the Repeatmasker track of Genomes Browser: 
Alu, LINE-1, LINE-2 and MIR. This bioinformatic classification 
resulted in 41 distinct CpG classes containing at least one CpG, 
summarized in Supplemental Table S3.

Finally, to further analyze the interaction of each exposure of 
interest with each bioinformatic attribute with respect to CpG 
methylation, we fit attribute x exposure/confounder interaction 
regression models (marginal models). For each regression, we 
assumed the following data-generating model:

Where Y
ij
 = sin-1(B

ij
1/2) is the variance-stabilized methylation value 

obtained by arcsine transformation of average β value, B
ij
, for subject 
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