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Abstract
Rationale and Objectives—Breast density is a significant breast cancer risk factor that is
measured from mammograms. However, uncertainty remains in both understanding its underlying
physical properties as it relates to the breast and determining the optimal method for its
measurement. A quantitative description of the information captured by the standard operator-
assisted percentage of breast density (PD) measure was developed using full field digital
mammography (FFDM) images that were calibrated to adjust for inter-image acquisition
technique differences.

Materials and Methods—The information captured by the standard PD measure was quantified
by developing a similar measure of breast density (PDc) from calibrated mammograms
automatically by applying a static threshold to each image. The specific threshold was estimated
by first sampling the probability distributions for breast tissue in calibrated mammograms. A
percent glandular (PG) measure of breast density was also derived from calibrated mammograms.
The PD, PDc, and PG breast density measures were compared using both linear correlation (R)
and quartile odds ratio measures derived from a matched case-control study.

Results—The standard PD measure is an estimate of the number of pixel values above a fixed
idealized x-ray attenuation fraction. There was significant correlation (P < 0.0001) between the
PDc-PD (R = 0.78), PDc-PG (R = 0.87), and PD-PG (R = 0.71) measures of breast density. Risk
estimates associated with the lowest to highest quartiles for the PDc measure [odds ratios: 1.0
(ref.), 3.4, 3.6, and 5.6], and the standard PD measure [odds ratios: 1.0 (ref.), 2.9, 4.8, and 5.1]
were similar and greater than that of the calibrated PG measure [odds ratios: 1.0 (ref.), 2.0, 2.4,
and 2.4].

Conclusions—The information captured by the standard PD measure was quantified as it relates
to calibrated mammograms and used to develop an automated method for measuring breast
density. These findings represent an initial step for developing an automated measure built upon
an established calibration platform. A fully developed automated measure may be useful for both
research and clinical based risk applications.
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1. Introduction
Breast density is a significant breast cancer risk factor that is measured from mammograms
(1-4). Nevertheless, there remains uncertainty in understanding the optimal approach for its
measurement. The strengths and weaknesses of various breast density measurement
techniques were reviewed in detail previously (5) and are briefly discussed here to provide
context for the novel calibration technique evaluated in this analysis.

In the assessment of breast density from mammograms, the breast is usually considered as a
two-component model consisting of adipose and fibroglandular (abbreviated as glandular
hereafter) tissue to varying degrees. A user assisted binary labeling technique is often used
to estimate breast density (6-8). With this approach, image areas are labeled as
radiographically dense tissue (glandular tissue) or as non-dense (adipose) tissue. Breast
density is then calculated as the ratio of the radiographically dense area to the total breast
area (dense + non-dense). We refer to this binary labeling technique as the standard user-
assisted percentage of breast density (PD) measure (ie, the percent density measure).

The standard PD approach has repeatedly produced a measure that correlates well with
breast cancer (2, 4) without considering the inter-image acquisition technique variations.
This method is normally implemented by an operator at a graphical computer interface
applying an interactive threshold to each raw image. Each image has its own breast density
threshold because the raw image pixel value scale is not standardized and therefore inter-
image pixel values are not directly comparable due to acquisition technique differences. One
of the obstacles in fully automating the PD measure is estimating this image dependent
threshold without user assistance. To date, the information captured by the PD measurement
has not been quantified as it relates to the physical characteristics of the breast.

Another approach for estimating breast density is to calibrate for the differences in the inter-
image acquisition technique (9-17). This standardization (calibration) adjusts for variations
in the target/filter combination, x-ray tube voltage, radiation exposure, and compressed
breast thickness. These methods produce various forms of standardized image data
representations. The final measures are produced without operator interaction, although the
methods can require considerable upfront data analyses and experimental imaging prior to
their implementation. By hypothesis, calibration should strengthen the risk association, by
reducing unwanted measurement variation and result in more accurate risk estimates. In
contrast, recent work (18, 19) suggests that calibrated measures of breast density do not
result in stronger associations with breast cancer than those based on the standard PD
measure applied to raw mammograms.

The calibration methodology evaluated here was described in detail previously (13, 16, 20,
21) and is an extension of earlier work (10) using full field digital mammography (FFDM).
The calibration process, briefly described in the Appendix, produces a normalized effective
x-ray attenuation coefficient scale at the pixel level referred to as the percent glandular (PG)
representation. Once establishing the supporting calibration framework, prospective
mammograms are standardized automatically. The calibration results in normalized images
with pixel values in this range (0,100), where increasing value represents increased x-ray
attenuation.
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Often calibration work relies on the same type of breast tissue equivalent phantoms. Our
experience indicated that the adipose tissue equivalent phantom composition has greater x-
ray attenuation than its respective adipose breast tissue counter part. The effect is most
recognizable and quite severe, for example, in Rhodium/Rhodium (target/filter) breast image
acquisitions that tend to have greater compressed breast thicknesses. The calibration
application in these instances produces negative values in adipose image regions because the
received signal is attenuated less than that anticipated by the respective calibration mapping.
It is not clear if an analogous artifact exists for the glandular tissue equivalent phantom
composition with image regions corresponding to increased x-ray attenuation. Image regions
corresponding to near 100% adipose tissue are more recognizable by observation and also
occur with greater frequency than near 100% glandular tissue. Due to the technical problems
with these phantoms, it was necessary to modify our calibration methods (see the
Appendix).

There are various detector technologies used in mammography (22). The calibration
methodology developed on one particular mammography system may not generalize to
either similarly manufactured systems (16) or to different imaging platforms without
modification. Our approach is to first show that the calibration process is useful by
restricting the imaging to one FFDM unit to account for unwanted measurement variation
before attempting to generalize the approach. As such, we investigated the relationship
between a calibrated PG breast density measurement and the information captured by the
standard PD measure. This analysis resulted in another PD-type measurement, referred to as
PDc, derived from the calibrated mammograms automatically. These three measures of
breast density were compared in a side-by-side case-control analysis toshow their
similarities.

2. Materials and Methods
2.1 Imaging system

One General Electric (Waukesha, WI) Senographe 2000D FFDM system was used for this
work. This mammography unit is used for routine breast cancer screening at this facility.
This unit has a 100 μm digital spatial resolution and produces an image data matrix size of
1914 × 2294 pixels. The Senographe 2000D has a smaller detector than newer model FFDM
systems, which is a limitation in accommodating large breast sizes with a single exposure
(22). A more detailed description of the detector specifics can be found elsewhere (23).
Craniocaudal (CC) views were used in this analysis to reduce chest muscle interference. The
system produces both raw data and processed data for clinical use. Raw data was used in the
analyses (not processed data for clinical viewing). The system-processed images (clinical
display images) were used as raw image surrogates for display illustration purposes. The
raw image data is not useful for display purposes without considerable manipulation.

2.2 Study Population and Data Collection
A quantitative description of the standard operator assisted PD measure was developed
using calibrated FFDM images acquired from breast cancer cases and controls. Breast
cancer cases (n=106) were selected from women undergoing mammography at the H. Lee
Moffitt Cancer Center between August 2007-May 2010. For inclusion, women had to have
been diagnosed with first time unilateral breast cancer. For the purpose of matching controls
to cases, three groups of cases were considered based on their screening history. Group-1
was comprised of women who had screened normal within 30 months prior to their breast
cancer diagnosis (n1 = 90). Group-2 was comprised of women who had a history of normal
screening that fell outside of the 30 month window, such as a woman who had a screening in
2007 (normal) but not again until 2010 at which time she was diagnosed with cancer (n2 =
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12). Group-3 was comprised of women who were just beginning screening and were
diagnosed at their baseline mammogram (n3 = 4). Cases were identified through review of
retrospective records for those women with archived mammograms acquired with the study
FFDM unit (n=35) or recruited, consented, and imaged for the study (n =71). These archived
mammograms were used as study images. The recruited case patients are those women
found to have breast cancer in screening clinics in the surrounding geographic area that were
referred to the Moffitt Center for diagnostics or patients that were found to have breast
cancer at the Moffitt Center that did not have mammograms archived on study FFDM unit.
Recruited case participants were given a standard screening type mammogram with the
study FFDM unit before their treatment commenced. In multiple-mammography unit
facilities that have mixed detector sizes, x-ray technicians (as normal practice) direct women
with larger breasts to units with larger detectors. Cases (as well as controls) were restricted
based on breast size. Breast cancer diagnosis was histologically verified for all case patients.
Sixty six case samples had non-palpable abnormalities. Height, weight, and hormone
replacement therapy (HRT) usage were abstracted from patient records.

Controls (n=106) were individually matched to cases by age (±2 years), HRT usage and
duration, and screening history as defined by the three screening categories above. For HRT
matching, non-users were those women who never used HRT as well as those that stopped
using HRT two years or more prior to the time point at which their study mammograms
were acquired. For current users, controls were further matched to cases by duration of HRT
usage (± 1 year). All controls were located by retrospective records review and restricted to
women with archived screening mammograms acquired with the study FFDM unit over the
same time period as the cases. These archived mammograms were used as study images.
Height, weight, and HRT usage were abstracted from patient records.

The patient data was collected as part of a larger ongoing case-control study, designed to
estimate the magnitude of association between the PG measurement of breast density and
breast cancer. In this ongoing study, the PG measure estimated from the cancer-free breast
of a given case will be matched with the ipsilateral control breast. To meet the objectives of
this current analysis, the cancerous breast of a given case was matched with the ipsilateral
breast of its control for the case-control breast density analysis to avoid over fitting and
training in the ongoing PG measurement validation study. The non-cancer side / cancer side
dual analysis provided two statistically similar datasets: one for explorative studies (this
report) and the other for measurement validation, respectively. It is important to note that the
epidemiologic considerations are not the main focus of this report but were used for internal
measurement comparisons. All study procedures were approved by the institutional review
board at the University of South Florida.

2.3 Calibration
The calibration approach and the methods derived from statistical estimation theory used to
address the adipose phantom artifact are outlined in the Appendix. Briefly, the calibration
uses previously catalogued acquisition dependent parameters derived from imaging tissue
equivalent phantoms. When calibrating a given mammogram, the acquisition technique
parameters are read from the image header file. These image (patient) specific acquisition
technique details are used in combination with the respective catalogued calibration
parameters to standardize the image at the pixel level. For this report, the PG calibration was
applied at a lower resolution by averaging over 10×10 pixel regions to reduce unwanted
variation. The calibration requires an accurate spatial assessment of the compressed breast
thickness. Before applying the calibration, the breast area was eroded by 25% to produce the
image region that was coincident with where the breast was in contact with the compression
paddle (21) to eliminate the breast curvature region. This is a necessary approximation to
produce the portion of the image where the compressed breast thickness is known. To
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determine the eroded breast area, the total breast image area was first segmented from the
background automatically by setting all pixels within the breast area =1 and setting all other
pixels to zero. A radial coordinate system origin was positioned at the side of the image
(chest wall position) at the vertical direction (parallel to the chest wall) centroid position
estimated from the segmented binary image. The breast silhouette was then eroded by 25 %
of the distance measured from the radial coordinate system origin to the breast perimeter
along a given radial direction The average of the calibrated pixel values within the eroded
region for each image was used as the PG breast density measure of risk. Three raw image
surrogates are shown in Fig. 1 (top row) with their corresponding calibrated images (second
row) after applying the erosion operation.

2.4 Percent Density
For internal comparisons, the standard PD measurements were generated with the Cumulus3
(CM) software by JJH using the batch file procedure operating on the raw (non-calibrated)
FFDM images (same database described above). The images were first de-identified and
randomized by KC. The CM operator was blinded to both the case-control status and
original image identifiers. The case-control dataset was labeled in one session.

2.5 Calibrated Percent Density
A method was developed to generate a percentage of breast density measurement from
calibrated images automatically, referred to as the PDc measure. This method relies on
applying a static (image independent) threshold to each pixel within a given image resulting
in a binary labeled image, similar to that produced by the PD measurement process. To
determine the threshold, the relationship between the calibrated pixel values and breast
density was explored by developing inter-image sample distributions for adipose and
radiographically dense tissue. To develop this measure, it was also necessary to transform
both the calibrated images and samples to another data representation.

A user interactive method was developed to sample ½ cm × ½ cm regions (50 × 50 pixel
regions) within each PG representation image. Five higher-intensity (bright) areas were
sampled from each image ranging from high-low values (within the regions considered
bright) by user discretion without spatial preference and labeled as mammographically dense
tissue (DT). Five additional samples were taken from each calibrated image from areas of
lower-intensity lacking tissue structure (radiolucent) in a similar manner and labeled as
adipose tissue (AT). The average of the pixel values within each sample region was used in
the distribution analysis. For this analysis, we used both the left and right CC views of the
case-control dataset described above in addition to 26 other images acquired with the study
FFDM unit not related to the case-control data (n = 450 images). The 10 × 450 sample
averages were used to develop the probability distributions for each tissue type.

Both the PG representation images and the corresponding sample points were first
transformed to a more favorable data representation (i.e., a representation that supports the
static threshold application). We let p(x,y) = PG(x, y) /100, where PG(x,y) is the calibrated
image pixel value at location (x, y). This normalization restricts p(x,y) to this range (0,1) of
values. We define the normalized x-ray attenuation representation image with this transform

Eq. (1)

where ts is the system compressed breast thickness readout quantity expressed in cm for
each image, and k =5000 is an arbitrary constant. Each calibrated image of the case-control
dataset was transformed with Eq. (1) producing the A(x,y) representation (case-control)
dataset. Equation (1) is a variant of Beer’s law that can be used to define an idealized
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attenuated x-ray beam fractional measure [i.e., A(x,y)/k]. The support for this relationship
follows from the calibration methods outlined in the Appendix. This transform restricts the
pixel values of A(x, y) within this range (0, k), and lends itself to a useful interpretation
discussed below.

Another binary image representation, similar to PD labeled images, was generated
automatically by applying a static threshold, Ac to each A(x,y) image. The DT and AT
sample averages were also transformed with Eq. (1) using the respective compressed breast
thicknesses. The empirical probability distributions for the transformed DT and AT samples
were used to estimate the specific Ac threshold by evaluating their overlap. For a given
A(x,y) image, all pixel values within the eroded breast region meeting this condition A(x,y)
≥ Ac were counted as glandular tissue regions (number of glandular pixels= dn) and all pixel
values meeting this condition A(x,y) < Ac were counted as adipose tissue regions (the
number of adipose pixels = an). Two variations of the PDc measure were developed differing
in the normalization. For a given image, the new breast density measure was derived using
the pixel counts from the eroded image area

Eq. (2)

where PDc indicates the PD-type measure was generated from calibrated data. The quantity
dn + an is the number of pixels within the eroded breast area. The other variant used the total
breast area of the non-eroded image in the denominator as the normalization.

2.6 Analysis Methods
For all case-control breast density measurement comparisons, conditional logistic regression
was used to assess the association between the various measures of breast density and the
case-control status using the n=106 matched pair dataset. A standard quartile analysis was
used for the odds ratio (OR) comparison, where the control breast density distribution for a
given measure was used to determine the cutoff values. The first quartile of breast density
served as the reference group for the second-fourth quartiles. The quartile analysis provided
a means for comparing the inter-measure OR distributions. We adjusted for body mass index
(BMI) in the analyses as a continuous variable (kg/m2). The area under the receiver
operating characteristic curve (Az) was also used for predictive capability comparisons.
Regression analysis was used to compare the correlation between the three breast density
measures without consideration of the case-control status. For the regression analysis, m, b,
and R were used to define the slope, intercept, and linear correlation coefficient,
respectively.

3. Results
3.1 Breast tissue distributions

The empirical probability distributions for each tissue type were generated by processing the
sample averages with Eq. (1). The distributions corresponding to the transformed AT sample
averages (dashed) and transformed DT samples averages (solid) are shown in Fig. 2. As an
estimate, the two distributions intersect in the vicinity of A ≈ 3200. The PG dataset was
processed using Ac = 3200 as the static threshold to generate the PDc case-control breast
density scores.
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3.2 Breast density measurement comparisons
The three measures of breast density were compared. The patient characteristics are
summarized in Table 1. The PG measure (see Fig. 1 second row) case-control quartile
analysis in the non-adjusted and adjusted formats and the associated Az quantities are
summarized in Table 2. Although the ORs show positive association for the PG measure
with breast cancer, the confidence intervals span unity for all divisions, whereas the Az
shows the measure is predictive (i.e., Az > 0.5). Figure 1 shows the corresponding (standard)
PD labeled image examples (third row). The associated PD findings are also presented in
Table 2. In contrast with the PG findings, these OR findings show increased magnitude of
association with breast cancer and increased Az. The corresponding PDc labeled image
examples are shown in the bottom row of Fig. 1, and the corresponding measurement
findings are presented in Table 3, which are similar to the standard PD measure (Table 2). In
this table, PDc was generated with both the total breast area normalization (upper portion of
Table 3) and eroded breast area normalization (lower portion of Table 3) and analyzed
separately as two models (similar findings).

Regression analysis comparisons were also used to show the similarities between the various
measures. The (PD, PDc) regression plot is displayed in Fig. 3. For this plot, R = 0.78 (linear
correlation) with m = 0.90 ± 0.05 (slope), and b = −0.33 (intercept). The (PD, PG)
regression analysis gave R = 0.71, m = 0.59 ± 0.04, and b = 5.50 (not shown). The (PDc,
PG) analysis gave R=0.87, m = 0.62 ± 0.02, and b = 6.44 (not shown). For all R
assessments, P < 0.0001 indicating all the measures are related. The breast density
measurement distribution characteristics are summarized in Table 4 by case-control group.

We note that applying a static threshold to the PG images to generate a PD-like measure
with without the Eq. (1) transformation was not possible. The reason for this can be
explained by rearranging Eq. (1) with the threshold inequality A(x,y) ≥Ac, which gives

Eq. (3)

The threshold for the PG representation images is now dependent upon ts (i.e. image
dependent) because the other terms on the right side of Eq. (3) are constants.

4. Discussion
This work produced three new findings. First, the PDc findings show that the calibrated
image data representation can be used to describe the information captured by the PD
measure as it relates to a given patient’s normalized effective x-ray attenuation coefficient
distribution. The PD and PG breast density measures are capturing two different properties
of the same data field. The PDc measure shows that the standard PD measurement is an
approximation of the total number of pixel counts equal to or above a normalized
attenuation threshold derived from an idealized model. In the scale used for this work, the
critical fraction was approximated as 16/25. In contrast, the average PG breast density
measure captures the central tendency of a given patient’s normalized x-ray attenuation
coefficient distribution, which is not exactly a measure of degree as captured by the other
measures. We would expect a positive correlation between the PG and PD measures as
demonstrated, but these two measures are not equivalent or approximations for each other.
Secondly, the findings show that the eroded breast area has a marginal impact on the
findings (Table 3). Thirdly, the work suggests that once a calibration system is established,
the PDc breast density measurements can be automated. A comparison of the PDc labeled
images with the corresponding PD labeled images along with the odds ratio comparisons

Heine et al. Page 7

Acad Radiol. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



indicates the two measures are capturing similar information, which is also supported by the
strong linear correlation between these measures. Both the odds ratios and the Az findings
for the PD and PDc measures found here are similar to those reported previously for the PD
measure (24). The PD and PDc measures showed stronger associations with breast cancer
than the PG measure. These association comparisons agree with the findings from other
calibration research (18, 19) in that the calibrated measure does not explicitly produce
stronger breast cancer associations than the standard PD measure. In summary, these
findings indicate that the calibration process can be used to describe the information content
captured by the binary labeling and provide an explanation for the weaker association of the
PG measure.

Although our findings show internal validity in the measurement comparisons, there are
study limitations that will require further analysis and experimental replication. The
threshold, Ac, for the PDc generation was found by observation of the empirical distributions
and not with training (not estimating the optimal Ac value with a threshold Az feedback loop
for example). The degree of breast erosion was also an estimate from previous work and not
found by applying optimization techniques with an objective endpoint criterion such as case-
control status. The sample size is another limitation. Changing the PDc threshold will likely
alter the findings due to the limited number of patient observations used in this work. The
adjustable parameters in the modified calibration approach (see Appendix B) were set as
static values, rather than using optimization techniques to determine their operating points.
At this time, the database size does not support applying optimization techniques to
determine Ac or to make better estimates of the parameters outlined in the Appendix. We
note, there is not exact correlation of PDc with PD. The second and third case quartile
distributions for PDc and PD show some inter-measure variation whereas the first and fourth
distributions are similar. There is also uncertainty in labeling the images with the CM
software. On some images, multiple user selected thresholds appear to be correct
simultaneously, which may be related to (a) the tissue distribution overlap, (b) pixel
dynamic range issues related to the breast curvature region, and (c) operator preference. The
propagation of these uncertainties is likely to induce variation between the PD and PDc
measures. One mammography unit was used for this work, which provided an important
benefit while limiting the generalization of the findings. The study FFDM system has a
linear pixel value response relationship with x-ray exposure that provided a significant
advantage in simplifying the calibration analysis in comparison with film systems or FFDM
units without this property. The work will require further evaluation with different datasets.

This work does not address the efficacy of making calibrated breast density measurements in
the future. The user assisted PD approach has produced a wealth of information, which
shows the human observer can essentially label the important tissue consistently with the
drawback of expending considerable effort when addressing large databases. The evidence
from this study suggests that PDc can be generated automatically with a fixed threshold once
a calibration system is established. Additionally, the work shows that PG measure, as well as
its related variants (9, 11, 25) as described in the Appendix, and the PD measure are
complementary. Future work involves determining the optimal threshold value, determining
the optimal parameters for the statistical estimation techniques (26-28) used in the modified
calibration approach, and investigating other distribution quantities derived from the PG
representation images as possible risk factors. We hypothesize that developing a calibration
system may be the price for automated breast density measurements. Similarly, a rigorously
evaluated automated measure of breast density may be useful for both research and clinical
based risk applications.
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Appendix

A. Calibration Approach
The calibration framework developed previously (16, 21) is described to support the
findings and to facilitate the description of its modifications. The development below applies
to a given x-ray beam type (i.e, for a given kVp, and target-filter combination). The
logarithmic response (LR) is defined as LR(x,y) = ln[r(x,y)/mAs], where, r(x,y) is the raw
image data representation, (x, y) are integer valued pixel coordinates, and mAs is the system
readout value. Calibration parameters were derived with linear regression analysis by
measuring the LR for both adipose and glandular tissue equivalent phantoms as a function of
phantom height. Two calibration points are required to standardize a given mammogram.
These points correspond to the LR for each tissue equivalent phantom type for the same
acquisition technique and compressed breast thickness as the respective mammogram. The
two required points are generated with the calibration parameters

(A1)

where μj (cm−1) and lj are the effective x-ray attenuation coefficient and logarithmic
intercept for either the glandular (j = g) or adipose (j = f) breast tissue equivalent phantoms,
respectively. In the above expression, T(x, y) is the spatially dependent compressed breast
thickness assumed constant for the next development. All calibration data was acquired with
the reference mAs = 160. The percent glandular (PG) calibration is given by

(A2)

with

(A3)

and

(A4)

where z is a measured arbitrary LR at (x, y).

To show the relationship with other calibration representations, we let p(x,y) = PG(x,y)/100,
where PG(x,y) is the calibrated image. The glandular height representation is given by

(A5)

which is analogous to the representation developed by these researchers (9). For a projection
of a given volume that has mpixels, the average glandular-volume/pixel is given by
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(A6)

where d is the detector element spacing (resolution) expressed in units of length.
Multiplying the above equation by m gives the glandular volume. We define VN as the
glandular volume normalized by the given volume (V= mTd2) under consideration.
Substituting Eq. (A5) into Eq. (A6), multiplying by m, and dividing by V gives

(A7)

This expression is equivalent to the spatial average <PG>/100 and is analogous to
normalized measures developed independently by other researchers (11, 25).

B. Calibration Modification
The calibration application was modified to overcome the adipose phantom attenuation
artifact. We let pi represent the proportion of glandular tissue and ci represent the
corresponding calibrated value for a given pixel or region if the calibration application was
without error. For example when p = (1.0, 0.5, 0.0), c = (100.0, 50.0, 0.0), respectively. In
this formulism, the components of p have the same interpretation as p(x,y), and the
components of c are PG quantities. We let wi assume the respective theoretical LR value
(derived below) that would give ci after applying the calibration. The corresponding
components of p, c, and w are taken as known quantities. We adjust Eq. (A1) to account for
the estimated uncertainty in the effective x-ray attenuation coefficient by incorporating a
positive valued increment. The modified expression is given by

(A8)

where Δ = 0.05 cm−1 is the estimated error between the effective x-ray attenuation
coefficient of the adipose phantom material and the respective coefficient for that of adipose
breast tissue, which was estimated from adipose regions in mammograms. This expression
[Eq.(A8)] replaces Eq. (A1) for the adipose calibration point. We generate known valuesof
wi using this relationship

(A9)

For this application, p, c, and w were generated with n components to calibrate an arbitrary
LR = z with compressed breast thickness = T. The original calibration application [Eqs.(A2-
A4)] was replaced with an approach based on non-parametric probability density estimation
(26, 27) and generalized regression (28) techniques. Results are stated without the
mathematical development. We define a symmetric distance metric

(A10)

and related kernel
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(A11)

where normalization factors are suppressed, and σ is an adjustable weight. The probabilistic
calibration then takes the form of a conditional expectation for PG

(A12)

where E is the expectation operator and n = 10. This expression constrains the calibration
between the desired range and incorporates the parameter uncertainty. The estimated weight
is given by

(A13)

The σ and Δ parameters were held constant for all acquisition techniques, which is not
optimal. These parameters are most likely functions of the acquisition technique. There may
be 13-15 different values for each parameter (upper limit).
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Figure 1.
Image examples. The top row shows three display images produced by the study
mammography unit used for viewing purposes. These surrogate raw images show the
contrast between the glandular tissue (bright) and adipose tissue (gray) regions. The second
row shows the corresponding calibrated (eroded) images in the percent glandular (PG)
representation. From left to right, the average pixel values taken over the eroded breast area
are 17.3, 20.2, and 30.0, respectively, in PG units. The third row shows the corresponding
standard percent density (PD) labeled image examples using the Cumulus method. The PD
scores from left to right are 8.6 %, 29.6%, and 42.9 %, respectively. The bottom row shows
the percent density (PDc) images derived from the calibrated images. The PDc scores
derived with the full breast area normalization from left to right are 9.5%, 26.7% and 51.4%
and derived with eroded breast area normalization are 16.8%, 47.1% and 89.8%,
respectively.

Heine et al. Page 13

Acad Radiol. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Tissue distribution approximations. This figure shows the adipose (AT) and radiographically
dense tissue (DT) pixel value distributions in the A(x,y) representation after transforming
each sample average with Eq. (1). The transformed AT distribution (left) is represented by a
dashed line and the transformed DT distribution (right) by a solid line.

Heine et al. Page 14

Acad Radiol. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Percent density regression analysis. This figure shows the regression plot (crosses) of the
standard percent density (PD) breast density measure and the percent density (PDc) measure
derived from calibrated images. The regression line is solid with slope = 0.90 ± 0.05 and
intercept = −0.33 with R = 0.78 (linear correlation coefficient).

Heine et al. Page 15

Acad Radiol. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Heine et al. Page 16

Table 1

Patient Characteristics. This gives the number of observations (n) in the case and control groups, hormone
replacement therapy (HRT) distribution by years of usage, and the mean body mass index (BMI), mean age,
and associated standard deviation (SD)

Characteristic Case, n Case
mean (SD) or %

Control, n Control
mean (SD) or %

Age 106 58.91 (9.95) 106 58.71 (9.86)

HRT

 Never 56 52.83% 61 57.55%

 1-5 yrs 18 16.98% 15 14.15%

 6-10 yrs 13 12.26% 14 13.21%

 11-15 yrs 8 7.55% 7 6.60%

 > 15 yrs 11 10.38% 9 8.49%

 BMI (kg/m2) 106 26.86 (4.49) 106 25.51 (4.36)
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Table 2

Percent glandular and Percentage of breast density associations. The percent glandular (PG) and percent
density (PD) findings are presented in both unadjusted and adjusted for body mass index (BMI) quantities.
The odds ratios (ORs) are shown by quartile with 95% confidence intervals (CIs). The number of case/control
samples for each quartile is given in the third column. The area under the receiver operating characteristic
curve (Az) and its standard error (SE) are also provided

Measure: PG
Quartile

OR (95% CI) cases/controls Az (SE)

unadjusted 0.56 (0.02)

1 1.00 (Ref.) 17/27

2 1.89 (0.81 - 4.43) 30/26

3 2.01 (0.87 - 4.63) 33/27

4 1.73 (0.69 - 4.34) 26/26

BMI adjusted 0.62 (0.02)

1 1.00 (Ref.) 17/27

2 1.96 (0.82 - 4.72) 30/26

3 2.37 (0.99 - 5.62) 33/27

4 2.43 (0.92 - 6.49) 26/26

Measure: PD

unadjusted 0.61(0.02)

1 1.00 (Ref.) 10/26

2 2.39 (0.96 - 5.97) 26/27

3 3.78 (1.51 - 9.43) 39/27

4 3.12 (1.23 - 7.95) 31/26

BMI adjusted 0.68 (0.04)

1 1.00 (Ref.) 10/26

2 2.88 (1.09 - 7.57) 26/27

3 4.81 (1.82 - 12.67) 39/27

4 5.09 (1.73 - 15.02) 31/26
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Table 3

Calibrated percent density associations. The calibrated percent density (PDc) measure was derived by
applying a static threshold to the transformed percent glandular (PG) representation images. The findings are
presented with the total breast area normalization (top) and eroded area normalization (bottom). All findings
are presented in unadjusted and adjusted for body mass index (BMI) quantities. The odds ratios (ORs) are
presented by quartile with 95% confidence intervals (CIs). The number of case/control samples for each
quartile is provided in the third column. The area under the receiver operating characteristic curve (Az) and its
standard error (SE) are also provided.

Measure: PDc total area
Quartile

OR (95% CI) cases/controls Az (SE)

unadjusted 0.59 (0.02)

1 1.00 (Ref.) 11/26

2 2.94 (1.17 - 7.36) 32/27

3 3.01 (1.13 - 8.02) 29/26

4 3.83 (1.39 - 10.50) 34/27

BMI adjusted 0.65 (0.03)

1 1.00 (Ref.) 11/26

2 3.44 (1.32 - 8.99) 32/27

3 3.60 (1.29 - 10.06) 29/26

4 5.62 (1.89 - 16.76) 34/27

Measure: PDc eroded area

unadjusted 0.59 (0.02)

1 1.00 (Ref.) 11/26

2 3.11 (1.24 - 7.81) 32/27

3 3.14 (1.17 - 8.39) 28/26

4 3.74 (1.40 - 9.99) 35/27

BMI adjusted 0.65 (0.03)

1 1.00 (Ref.) 11/26

2 3.67 (1.39 - 9.63) 32/27

3 3.76 (1.34 - 10.56) 28/26

4 5.46 (1.88 - 15.80) 35/27
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Table 4

Breast density measurement distribution summary. The three breast density (BD) distribution summaries are
shown: percent glandular (PG), percent density (PD) and PD generated from the calibrated data (PDc). The
mean and standard deviation (SD) for each breast density measure are provided by case and control group

Cases Controls

BD
measure

mean
(SD)

mean
(SD)

PG 20.5
(18.4)

19.3
(14.1)

PD 26.5
(15.6)

22.1
(17.4)

PDc
Total area

27.2
(19.1)

22.3
(19.9)

PDc
Eroded area

48.2
(33.9)

39.7
(35.4)
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