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Abstract
Bowers (2009) challenged the common view in favor of distributed representations in
psychological modeling and the main arguments given against localist and grandmother cell
coding schemes. He revisited the results of several single-cell studies arguing that they do not
support distributed representations. We praise the contribution of Bowers for joining evidence
from psychological modeling and neurophysiological recordings, but disagree with several of his
claims. In this comment we argue that distinctions between distributed, localist and grandmother
cell coding can be troublesome with real data. Moreover, these distinctions seem to be lying
within the same continuum, and we argue that it may be sensible to characterize coding schemes
using a sparseness measure. We further argue that there may not be a unique coding scheme
implemented in all brain areas and for all possible functions. In particular, current evidence
suggests that the brain may use distributed codes in primary sensory areas and sparser and
invariant representations in higher areas.

Understanding the principles of how our brains are capable of different functions arguably
constitutes one of the greatest scientific challenges of our times. Such an enterprise requires
a combined effort across diverse disciplines, such as neuroscience, biology, computer
science, psychology, philosophy and physics, to name only a few. Along these lines, the
recent contribution of Bowers (2009) should be praised for its significant attempt to put
together knowledge derived from neurophysiological recordings, computational models and
psychology. In this comment we discuss a few ideas to clarify some of the
neurophysiological concepts addressed in Bowers’ review. In particular, we emphasize the
technical difficulties in addressing questions about the coding of information by neurons
based on single-cell recordings and discuss how these experimental constraints affect claims
of distributed, sparse and grandmother-cell representations.

One of the most striking facts in visual perception is how, in a fraction of a second, our
brains can make sense of very rich sensory inputs and use this information to create complex
behaviours. It is perhaps the easiness with which we perform such functions that may make
us typically unaware of the exquisite machinery in the brain required for such computations.
We may be amazed at realizing that we can solve “Rubik’s cube” or at beating a master in a
chess game, but we are hardly surprised when we perform something as complex as
recognizing a familiar face in a crowd. A key question to understand how the brain
processes information is to determine how many neurons, in a given area, are involved in the
representation of a visual percept (or a memory, a motor command, etc) and what
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information each of these neurons encodes about the percept. On the one hand, the
representation of a given percept could be given by the activity of a large population of
neurons. In this case the percept emerges from the ensemble response and cannot be
understood by inspecting the responses of individual neurons without considering the whole
population. On the other hand, the percept might be represented by very few and more
abstract cells, and each of these cells gives explicit information about the stimulus. In
neuroscience, the first scenario is usually referred to as distributed population coding and
the second one as sparse coding, its extreme case -of having one neuron coding for one
percept- usually referred to as “grandmother cell representation” (but note that the term
“grandmother cell” can also be taken as meaning many neurons encoding for one percept, or
just meaning an abstract representation). We anticipate that these definitions may be
imprecise (as noted by Bowers) and that the same terms may be used with different
meanings by different communities of researchers. For example, we already mentioned
different uses of the term grandmother cell. Moreover, for Bowers sparse codes are a form
of distributed codes and in neuroscience these two types of coding are taken as the opposite.
To avoid confusion, in the following we will refer to distributed and localist codes,
following Bowers notation. It is indeed the vagueness and different meaning of these
definitions that give rise to some of the discussions in the field.

A central theme in the discussion by Bowers concerns the biological plausibility of localist
models. To address this question, Bower refers to evidence from single-cell recordings, the
gold standard to elucidate the function of neural circuits. Such parallels between
neurophysiology and psychological models could have a major impact in both fields. It is in
this spirit that we aim to contribute to this discussion by adding to and commenting on
Bowers’ claims from the perspective of neurophysiologists trying to extract this type of
information from single-cell recordings.

Defining distributed and local (or sparse) coding
Bowers defined distributed codes as a representation in which each unit is involved in
coding more than one familiar “thing”, and consequently, the identity of a stimulus cannot
be determined from the activation of a single unit (Bowers, 2009) (our emphasis on “thing”).
Moreover, he distinguishes between dense distributed representations, i.e. distributed
coding schemes where each neuron is involved in coding many different things, as
commonly associated with Parallel Distributed Processing (PDP) theories in psychological
modeling (McClelland, Rumelhart, & Group, 1986; Rumelhart, McClelland, & Group,
1986) -for related ideas in Theoretical Neuroscience, see (Hopfield, 1982, 2007)-, and
coarse coding schemes, i.e. distributed codes where single neurons have broad tuning
curves, such that a single neuron codes for a range of similar “things”. Although a broadly-
tuned neuron may respond most strongly to a preferred stimulus, noise would preclude
identifying the stimulus precisely from the single-cell activity (Bowers, 2009). In contrast to
distributed codes, according to Bowers, a localist representation is characterized by neurons
coding for one thing, where it is possible to infer a stimulus from the activation of a single
unit. In between localist and coarse coding schemes, Bowers introduced one more term,
sparse distributed coding, but it seems that these definitions lay within the same continuum
and the distinction between a localist and a sparse distributed code is just given by the
number of objects encoded by a neuron.

The above definitions seem at first plausible but the distinction among them becomes fuzzy
when considering neurophysiological recordings. We should first mention that the
distinction between distributed representation and coarse coding appears to be in how
“similar” the neuronal preferences are. Defining “similarity” in a rigorous way is already
quite a complex challenge in itself. For example, we can loosely imagine that a front view of
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a face is similar to a profile view of the same face, and very different from a front view of a
different face. However, such a statement is quite arbitrary: at the pixel level, the similarity
between front views of two different faces is much larger than between a front and profile
views of the same face. This is far from a trivial consideration: achieving a good definition
of what humans consider similar things constitutes a central challenge in computer vision,
neuroscience and psychology. A second problem with these definitions, and perhaps a more
fundamental one, is given by the ambiguity of what is meant by “thing”. A “thing” could be
a face, a car, an animal but also a pixel, an oriented bar or an abstract concept. How “thing”
is defined may radically alter our conclusions regarding how distributed or local a neural
coding is. For example, a neuron in V1 may have a local representation for oriented bars in
their receptive fields but at the same time a distributed representation for faces. To address
this problem, Bowers argues that we cannot think of a distributed representation of a
complex familiar thing (e.g. a face) at a low level of the system (e.g. the retina or V1).
Indeed, the retina does not “know” that there is a face. This dichotomy is usually referred to
as implicit versus explicit representation. The retina encodes information about the face in
an implicit manner (it seems far-fetched to argue that the retina does not encode the visual
information at all!). In contrast, the representation of the face at the level of the temporal
lobe becomes explicit, in the sense that single-cells can give us reliable information about
the presence or absence of a face. To be more precise, an explicit representation can be
defined by requiring that the information can be decoded by a single layer network (Koch,
2004).

Given the activity of a single V1 neuron, we can discriminate the presence or absence of an
oriented bar within the receptive field well above chance but we cannot tell whether a
particular face is present or not because this information is not explicit at the level of V1.
But even when considering only oriented bars, should an oriented bar at 49 degrees
constitute a different “thing” compared to an oriented bar at 50 degrees? How many degrees
of separation do we require before an oriented bar becomes a new “thing”? The continuum
nature of orientation makes this distinction difficult. In higher visual cortex it is also
possible that there exists a similar continuum of features to which neurons respond, only that
it is in general difficult to assess what those features are (Connor, Brincat, & Pasupathy,
2007; Tanaka, 1996). This distinction is even harder for areas such as the hippocampus,
where a neuron could fire preferentially to the different views of the tower of Pisa and the
Eiffel Tower and another one to different pictures of Jennifer Aniston and Lisa Kudrow
(both actresses of the TV series “Friends”), see Figures S6 and S7 in (Quian Quiroga,
Reddy, Kreiman, Koch, & Fried, 2005). Clearly, these responses are related at some high
level of abstraction, which seems plausible given the role of hippocampus, among other
areas, in coding associations (Miyashita, 1988; Wirth et al., 2003). However, it is unclear
how different these concepts are or whether they should be considered as the same “thing”
(landmarks of Europe in the first case, and the two actresses of Friends in the second one).

Another problem with these definitions is that, in real life, identifying the stimulus encoded
by the neural activity involves setting a responsiveness criterion for defining what is a
significant response and what is not, which of course depends on the particular criterion
chosen. Alternatively, it is also possible to use decoding algorithms or the information
theory formalism to extract information about the stimulus from the neural responses
(Abbott, 1994; Quian Quiroga & Panzeri, 2009; Rieke, Warland, de Ruyter van Steveninck,
& Bialek, 1997). But this can be also problematic for the above definitions because, due to
trial-to-trial variability, noise, lack of enough number of trials, etc, decoders or information
theory do not provide yes/no answers, but estimations of performance or amount of
information.
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To avoid defining what is a “thing” and whether two stimuli are similar or not, it seems to us
preferable to simplify the nomenclature by describing a continuum with dense distributed
representations at one end and localist representations at the other. Central to this discussion
is to determine where neuronal representations reside within this continuum, something that
can be quantified with a sparseness measure, as the one to be discussed in the following
sections. Then, a high degree of sparseness will imply a local coding and, conversely, a low
degree of sparseness will be evidence for a distributed representation.

Neural responses and neural codes
Bowers discusses the interactive activation (IA) model of visual word recognition
(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982) to distinguish between
what a neuron “responds to” and what a neuron “codes for”. In his example (see Figure 4 in
(Bowers, 2009)), a unit at the top level of the IA model responds to both “blur” and “blue”
due to the similarity between these two stimuli: they share the first 3 letters and differ only
in the last one. However, he argues that a particular unit only codes for blur by construction.
According to Bowers, in this case the neuron shows a localist code because, although it
responded to two “things”, the neuron encoded the meaning of only one of them. He
therefore claims that responses to multiple objects do not provide evidence of a distributed
representation. But this argument has some problems. For example, suppose that the same
network is used with a new set of words, containing “blue” but not “blur”.

The neuron will consistently fire to “blue” and, in fact, from the firing of this neuron we
may accurately predict the presence of this word. Will we then say that in spite of such an
explicit representation the neuron does not code for “blue”, given that it was trained to code
for a similar word in the first place? These distinctions become even more problematic with
real neuronal activity, because we do not have direct access to what a neuron “codes for”,
but rather to what it “responds to”. In other words, if a neuron responds to more than one
thing, how could we know which response is “meaningful” and which one is not? Moreover,
if we extrapolate Bower’s argument based on the IA model, we could easily conclude that
every single neuron in the brain is only coding for one “thing”: when the neuron responds to
many “things” we could simply state that it surely prefers only one “thing” and it merely
responds to the other “things” due to similarity. What would then constitute evidence for a
distributed representation (but a neuron responding to multiple “things”)? In other words,
how can we falsify a localist coding scheme if we do not accept the evidence from neurons
responding to multiple “things”? In fact, it seems implausible to argue that we do not have
evidence for distributed coding because we do not know if we should ignore most of the
responses. For any definition of localist and distributed coding, it is important to specify
what type of evidence would support or falsify each type of code. Below, we propose to
characterize neuronal responses quantitatively by a single “degree of sparseness”. While
many of our caveats described above remain even under this approach, this quantitative
definition allows us to provide support for or falsify both distributed and localist
representations.

Measuring sparseness
Given the problems highlighted in the previous sections, it seems preferable to refer to
distributed and local (or sparse) responses, with the understanding that neuronal responses
constitute a proxy for neuronal codes. In order to quantify the distinction between localist
and distributed responses, we need to be able to measure the degree of sparseness of single-
cell activations in a reliable way. Figures 1A and 1D show the responses of 2 single units
simultaneously recorded from the same micro-wire, whose activity could be separated after
spike sorting (Quian Quiroga, 2007; Quian Quiroga, Nadasdy, & Ben-Shaul, 2004). Both
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units are nearly silent during baseline (average < 0.01 spikes/sec) and fired with up to 40
spikes/sec to only a few of the 114 pictures shown in this recording session. The first unit
responded to two basketball players and the second one to two landmark buildings. Due to
space constraints, only 10 responses are shown. There were no responses to the other
pictures not shown.

From Figures 1A and 1D the high degree of selectivity of these neurons is clear, but how
can we measure sparseness? There are two notions of sparseness (or local coding, according
to Bowers notation) in the literature: 1) ‘population sparseness’ refers to the activation of a
small fraction of neurons of a population in a given time window; and 2) ‘lifetime
sparseness’ refers to the sporadic activity of a single neuron over time, going from near
silence to a burst of spikes in response to only a small subset of stimuli (Olshausen & Field,
2004; Quian Quiroga, Reddy, Koch, & Fried, 2007; Willmore & Tolhurst, 2001). These two
notions are related, since one expects that if a cell fires to few stimuli, then each stimulus
will be encoded by a relatively small population of cells. However, it is in principle possible
that most cells in a given population respond to one (or a few) stimuli, or that a small subset
of neurons is very promiscuous, responding exuberantly to many stimuli. Most studies
usually assess lifetime sparseness, assuming that it will be similar to population sparseness.
In this context, lifetime sparseness, also termed selectivity or specificity, means that a given
cell responds only to a small subset of the presented stimuli. On the contrary, if a neuron
responds to many stimuli it is said to be broadly tuned, pointing towards a distributed
representation.

The notion of sparseness –and any measure to quantify it- depends on the stimulus set. In
particular, the units of Figure 1A and 1D have sparse responses because they were activated
only by very few of the more than 100 pictures presented. However, it is conceivable that a
lower degree of sparseness would have been obtained for the unit in Figure 1D if more
views of landmarks (and in particular of the tower of Pisa) had been used. To give a more
clear (and extreme) example, if one neuron responds to many different faces, as in monkey
IT (C.G. Gross, 2008; C. G. Gross, Rocha-Miranda, & Bender, 1972; Hung, Kreiman,
Poggio, & DiCarlo, 2005), it would appear to respond in a highly sparse manner if the
stimulus set contains only one face and a large number of other stimuli. This seemingly
trivial point makes it difficult to compare the degree of sparseness in different areas because
different stimulus sets are typically used.

The simplest measure of sparseness would be to report the relative number of stimuli
eliciting significant responses in a neuron. However, this number depends on the criterion
used for defining what is a significant response and what it is not. In particular, if a very
strict threshold is used, then only the few largest responses will cross this threshold and,
consequently, this neuron will appear to be sparse. To overcome this dependence, a novel
sparseness index (S) was introduced (Quian Quiroga et al., 2007) by plotting the normalized
number of ‘responses’ as a function of a threshold (Figures 1C, 1F). One hundred threshold
values between the minimum and the maximum response were taken, and for each threshold
value the fraction of responses above the threshold was computed. The area under this curve
(A) is close to zero for a sparse neuron and is close to 0.5 for a uniform distribution of
responses (dotted line in Figures 1C and 1F). The sparseness index (S) was defined as S=1 –
2A. S is 0 for a uniform distribution (a dense representation) and approaches 1 the sparser
the neuron is (for a localist representation). The sparseness index values in Figures 1C and
1F (0.97 in both cases) confirm that the sparseness of these neurons is not just the
consequence of the arbitrary choice of a very strict threshold.

Related to the discussion of how localist (sparse) or distributed is the representation of
neurons in a given area, it should be noted that highly selective neurons, as the ones

Quiroga and Kreiman Page 5

Psychol Rev. Author manuscript; available in PMC 2011 August 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



presented in Figures 1A and 1D, are hard to be detected without optimal data processing and
recording conditions. This basically relies on: 1) the recording of broad band continuous
data allowing off-line analysis; 2) the use of an optimal spike detection and sorting
algorithm and 3) the use of semi-chronic multiple electrodes in contrast to traditional single
electrode recordings. In fact, single electrode recordings are usually carried out with
movable probes that tend to miss sparsely firing cells - that are quiet when the electrode
passes by their vicinity unless the right stimulus is shown - and are more likely to record the
activity of neurons with high spontaneous rates and broadly-tuned responses. This
introduces a bias towards distributed representations, which is likely to be prevalent in
multiple descriptions of apparently distributed representations in the literature. This issue is
becoming quite relevant given recent evidence of highly sparse neurons in different systems
(for a review see (Olshausen & Field, 2004)). For example, Perez-Orive and coworkers
(Perez-Orive et al., 2002) using multi-electrode recordings found cells in the mushroom
body of the locust with a baseline activity of about 0.025 spikes per second, which fired
about 2 spikes to very few odors. Hahnloser and coworkers (Hahnloser, Kozhevnikov, &
Fee, 2002) using antidromic stimulation found ultra-sparse firing neurons in the songbird.
These neurons had less than 0.001 spikes per second baseline activity and elicited bursts of
about 4 spikes when the bird sang one particular motive. As shown in Figure 1, neurons in
the human medial temporal lobe can have a baseline firing of less than 0.01 Hz and respond
with up to 50Hz to very few stimuli.

Evidence for local and distributed codes in the brain
In his overview, Bowers revisits neurophysiology evidence of sparse and distributed
representations and reinterprets these works as evidence for localist and even grandmother
cell codes. He particularly refers to the recordings in macaque monkeys by Young and
Yamane (Young & Yamane, 1992) saying that these authors claimed to have provided
evidence for a distributed code. It seems that Bowers’ criticism of this paper is due to the
different meanings given to some terms by different communities of researchers. In fact,
Young and Yamane argued for a sparse representation (in the sense of being opposite to
distributed, as generally taken in neuroscience) already in the title of their well known
Science paper “Sparse population coding of faces in the inferior temporal cortex” (Young
& Yamane, 1992). What may be confusing is the fact that they also referred to population
coding, but this is just reflecting the fact that even with sparse responses a population of
neurons –in contrast to a single-cell- is needed to encode a percept.

Hung and coworkers showed that neurons in monkey IT respond to multiple images ((Hung
et al., 2005), see also (Kreiman et al., 2006)). They used a statistical classifier to decode the
activity of an ensemble of hundreds of neurons. Bowers argues that the classifier units coded
for only one object and concludes that the data do not support distributed coding arguments.
Here it is important to distinguish between the experimental data (the recordings of neurons
in inferior temporal cortex) and the classifier units. The units in IT cortex responded to
multiple objects and it was not possible to decode the presence of individual objects with
high accuracy from only one neuron. In contrast to the case of IT neurons (the physiological
data), the classifier units that operated on the output of hundreds of IT neurons, showed
sparser responses. But this does not provide any direct evidence that such a code exists in
the brain, as the classifier is a theoretical construct. Further support to the claim of
distributed coding by these neurons is given by the fact that decoding performance increased
nonlinearly with the number of neurons. For a pure localist code, each neuron contributes to
identify one or a few objects and therefore, the decoding performance or alternatively the
capacity -i.e.: the number of objects that can be identified at a fixed performance level-
grows linearly with the number of neurons, as it is the case for recordings in the human
MTL (Quian Quiroga et al., 2007). On the contrary, for a distributed code each neuron
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contributes to the representation of many objects and both decoding performance and
capacity have a nonlinear grow with the number of neurons, as observed in IT recordings in
monkeys ((Hung et al., 2005); see Point 15 in
http://klab.tch.harvard.edu/resources/ultrafast/index.html). In fact, it is in principle possible
to encode 2N objects with a fully distributed network of N binary neurons, but it has to be
noted that the exact nonlinear functional dependence with the number of neurons depends on
several factors, such as noise levels, trial-to-trial variability and saturation of decoding
performance due to limited sampling of stimuli (Abbott, Rolls, & Tovee, 1996). In this
respect, Bowers claims that the exponential increase of decoding performance with the
number of neurons found by Hung and colleagues (and also by Rolls and colleagues, as
described in the next paragraph) does not constitute evidence of distributed representations.
This argument brings us back to the previous discussion of how to experimentally establish
what a neuron codes for, given what it responds to. In our view, the fact that neurons fire to
multiple stimuli (therefore having an exponential increase of performance with the number
of neurons) gives strong evidence for distributed coding. Again, the claim that these neurons
may encode only one “thing” and fire to the other ones by mere “similarity” (as in Bowers’
argument with the IA model) is of limited relevance since it cannot be verified or falsified
with the existing data and recording tools.

Further evidence for distributed representations in visual processing areas comes from the
recordings of Rolls and coworkers (Rolls, Treves, & Tovee, 1997), showing also an
exponential increase of decoding performance with the number of neurons (see also (Abbott
et al., 1996)). Bowers criticizes these results because: i) the study was carried out on a set of
face cells that were not highly selective, and ii) the same analysis carried out on our MTL
neurons would likely lead to a different conclusion. If Rolls and colleagues had recorded
data from different areas, results may have been different because different areas may
represent information in a different way. However, we do not see this as a problem with the
experiment or the approach taken by these authors, as claimed by Bowers. Rolls and
colleagues report observations based on the area they recorded from and do not generalize
their claims to other areas. In fact, they explicitly mention that this encoding may be
different in other parts of cortex and for other category of visual stimuli (Rolls et al., 1997).
Interestingly, a similar decoding analysis was indeed carried out with our selective responses
in the human MTL (Quian Quiroga et al., 2007). In contrast to the findings of Rolls et al
(Rolls et al., 1997) and Hung et al (Hung et al., 2005), in this case the decoding performance
increased linearly rather than exponentially, in agreement with a very sparse or localist
coding scheme.

An extreme example of sparse coding is given by the single-cell responses to picture
presentations in the human medial temporal lobe, as showed in the examples depicted in
Figure 1. In spite of the striking degree of sparseness of these neurons, we argue that they
cannot be taken as conclusive evidence of the existence of grandmother cells -understood in
the sense that one neuron encodes only one object (Quian Quiroga, Kreiman, Koch, & Fried,
2008; Quian Quiroga et al., 2005)-. In particular, given the number of responsive units in a
recording session, the number of stimuli presented and the total number of recorded neurons,
using probabilistic arguments we estimated that from a total population of about 109 neurons
in MTL, less than 2×106 neurons (not 50–150 as incorrectly reported by Bowers) are
involved in the representation of a given percept (Waydo, Kraskov, Quian Quiroga, Fried, &
Koch, 2006). Bowers argues that this estimation is flawed because: (i) multiple neurons can
respond to the same image and (ii) these calculations assume that a grandmother cell should
only respond to one face or object. Briefly, the fact that multiple neurons can respond to the
same image – a possibility that we consider very likely - is not a problem for the above
calculations. In fact, it seems highly unlikely that we happened to find the one and only
neuron that responds to a particular face. This argument was explicit in (Quian Quiroga et
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al., 2005) and further quantified in (Waydo et al., 2006). With regards to the second point,
we did not assume that grandmother cells should respond to only one object, as claimed by
Bowers, but rather estimated an upper bound for the number of objects that a neuron may
respond to. In fact, in our calculations we did not consider any properties of how
grandmother cells should or should not respond at all. It should be also stressed that, as
discussed in Waydo et al (Waydo et al., 2006), the estimated number of neurons responding
to one concept could be much lower because: 1) images known to the subjects are more
likely to elicit responses than unfamiliar stimuli, and 2) neurons with a higher degree of
sparseness are very difficult to detect in our recording sessions lasting, on average, about 30
minutes.

Evidence from single-cell recordings shows that the brain may go from distributed
representations in lower sensory areas to sparse representations in higher areas. We already
mentioned the very sparse responses to odors by Kenyon cells (KC) in the locust (Perez-
Orive et al., 2002). KC neurons receive direct inputs from projection neurons in the antennal
lobe, which have a largely distributed representation for odors (compare the responses of
Figure 1A and Figure 1B in (Perez-Orive et al., 2002)). Similarly, the ultra-sparse responses
of RA (robust nucleus of the archistriatum) neurons in the zebra-finch are driven by HVC
(high vocal centre) neurons with distributed responses (see Figure 2b in (Hahnloser et al.,
2002)). Further evidence in other species is still scarce since, as mentioned in the previous
section, to compare selectivity across different areas one should use the same stimulus set.
Barnes and coworkers showed that neurons in the hippocampus in rats responded more
selectively than neurons in entorhinal cortex to the rat spatial location (Barnes,
McNaughton, Mizumori, Leonard, & Lin, 1990). These results seem to support the
hypothesis of complementary learning systems, with higher level of sparseness in the
hippocampus than in cortex (Norman & O'Reilly, 2003), an appealing idea that would
explain fast learning of new episodic memories and associations in the hippocampus by
using sparse coding on the one hand, and generalization in cortex by using a distributed
representation on the other. Bowers criticizes the study of Barnes et al and its support to the
complementary systems hypothesis by claiming that entorhinal cortex is not part of
neocortex and that a proper comparison of sparseness should be made between hippocampus
and neocortex. However, the entorhinal cortex is the main gateway to the hippocampus –i.e.:
most of the information from neocortex is conveyed to the hippocampus through the
entorhinal cortex. To us this gives valuable evidence of how the representation gets sparser
when reaching the hippocampus. Moreover, a more recent study with single-cell recordings
in the human medial temporal lobe showed that the selectivity of the single-cell responses
was significantly lower in the parahippocampal cortex (one of the main inputs to entorhinal
cortex) compared to the one in the entorhinal cortex, amygdala and hippocampus (Mormann
et al., 2008).

It seems also plausible to argue that a distributed representation in IT is transformed to the
sparser representation shown in the medial temporal lobe (compare responses of Hung et al
(Hung et al., 2005) in IT with those of Quian Quiroga et al (Quian Quiroga et al., 2007;
Quian Quiroga et al., 2005) in MTL), given the close anatomical connections between these
areas. However, we emphasize that this is still a conjecture due to the different recording
techniques, species and stimuli used in these studies. In this respect, it has been argued that
more distributed representations in IT (compared to MTL) may be necessary to identify the
different views of the same person or object with a population code (DiCarlo & Cox, 2007),
in contrast to the sparse and invariant responses in the human MTL, where neurons fire to
the concept in an abstract manner and the particular view or details of the pictures are
irrelevant. It is also possible that very sparse neurons are also present in IT but are hard to be
found, partially due to the technical difficulties described in the previous sections.
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Conclusions
In summary, Bowers made a commendable effort to link psychological theories and
computational models to the firing of individual neurons in the brain. This effort should be
praised and hopefully extended through further interactions across these fields. In this
commentary, we tried to emphasize the difficulties inherent to neurophysiology and the
challenges involved in distinguishing between distributed and local codes. We also attempt
to provide a quantitative framework to describe neuronal representations, residing in a
continuum that ranges from distributed to local representations. Given how poor our
understanding of visual cortex currently is, we hope that this quantitative formulation will
avoid semantic discussions and will pave the way to comparisons across areas, laboratories,
experimental conditions and between physiology and computational models. Unraveling the
codes used by circuits of neurons to represent information is arguably one of the most
fascinating and challenging adventures at the intersection of psychology, computer science
and neuroscience.
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Figure 1.
a–d) Ten largest responses of two simultaneously recorded single units in the right posterior
hippocampus. There were no responses to the other 104 pictures shown to the patient. For
each picture (upper subplots) the corresponding raster plots (middle subplots; first trial on
top) and post-stimulus time histograms with 100 ms bin intervals (lower subplots) are given.
Highlighted boxes mark significant responses. The vertical dashed lines indicate the times of
image onset and offset, 1 second apart. Note the marked increase in firing rate of these units
roughly 300 ms after presentation of the responsive pictures. b–e) median number of
responses (across trials) for all the pictures presented in the session. c–f) relative number of
responses as a function of the variable threshold (see text). Note the high selectivity values
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for both units (S=0.97), thus implying a sparse representation. Data reprinted from (Quian
Quiroga et al., 2007).
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