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Abstract
Publicly available molecular datasets can be used for independent verification or investigative
repurposing, but depends on the presence, consistency and quality of descriptive annotations.
Annotation and indexing of molecular datasets using well-defined controlled vocabularies or
ontologies enables accurate and systematic data discovery, yet the majority of molecular datasets
available through public data repositories lack such annotations. A number of automated
annotation methods have been developed; however few systematic evaluations of the quality of
annotations supplied by application of these methods have been performed using annotations from
standing public data repositories. Here, we compared manually-assigned Medical Subject Heading
(MeSH) annotations associated with experiments by data submitters in the PRoteomics
IDEntification (PRIDE) proteomics data repository to automated MeSH annotations derived
through the National Center for Biomedical Ontology Annotator and National Library of Medicine
MetaMap programs. These programs were applied to free-text annotations for experiments in
PRIDE. As many submitted datasets were referenced in publications, we used the manually
curated MeSH annotations of those linked publications in MEDLINE as “gold standard”.
Annotator and MetaMap exhibited recall performance 3-fold greater than that of the manual
annotations. We connected PRIDE experiments in a network topology according to shared MeSH
annotations and found 373 distinct clusters, many of which were found to be biologically coherent
by network analysis. The results of this study suggest that both Annotator and MetaMap are
capable of annotating public molecular datasets with a quality comparable, and often exceeding,
that of the actual data submitters, highlighting a continuous need to improve and apply automated
methods to molecular datasets in public data repositories to maximize their value and utility.
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1 Introduction
Advances in high-throughput molecular measurement technologies continued to
dramatically increase; and due to this, the demand for the sharing of data and results from
these technologies has intensified [1, 2]. Many journals now require the public availability
of such data [3], and the National Institutes of Health requires grant applicants to include a
section on data sharing if their proposals exceed a threshold amount.

As a result of these policies, the amount of data in international repositories has grown
exponentially. One such example is NCBI GEO, an international repository for gene
expression data developed and maintained by the NLM [4]. As of this writing, GEO holds
531,381 samples (i.e., gene expression microarray experiments) and has been doubling in
size every year or two. Similarly, the ArrayExpress repository maintained by the EBI
contains 153,233 independent samples [5]. Recently, international repositories for proteomic
experimental datasets have also been instituted. PeptideAtlas, supported by the Institute for
Systems Biology, is an example of one such repository [6]. As of this writing, PeptideAtlas
holds the raw and processed mass spectra for 366 experiments. Similarly, the PRIDE
database at the EBI currently holds over 13 thousand experiments, 4 million protein
identifications, and 100 million spectra [7].

One major barrier to the wider usage of this public molecular data is poor indexing using
controlled vocabularies and ontologies [8, 9]. The contents of most of these repositories
provide basic search functionality across the free-text annotations associated with the data
and do not leverage the biomedical knowledge inherent in the annotations. The primary
means of data access is typically the unique identifier assigned to the experiment by the
repository (e.g., GEO accession number), which is typically provided in publications
describing experimental results. But the potential for these and other repositories is more
than just serving as a reference for those who wish to verify and validate published findings.
We and others have shown that primary research can be performed using data stored in these
repositories [10–14].

GEO, ArrayExpress, PeptideAtlas, and PRIDE are all successful databases and possess
either fully integrated or advance search interface to retrieve relevant datasets. For example,
GEO appears to be indexed with MeSH and free text queries are usually translated to MeSH
term searches. PRIDE can be browsed using a variety of biomedical ontologies but no
semantic expansion is performed on free text searches. Surprisingly, most repositories, even
GEO or ArrayExpress that are compliant with MIAME and MAGE-ML standard formats [3,
15], do not provide tools to the dataset submitters to annotate their own submitted data using
controlled vocabularies or ontologies. Consequently, contextual annotations are still
represented by unstructured narrative text and determining the phenotypes, diseases, and
environmental contexts studied by these experiments is no longer a tractable manual
process.

We have previously proposed that the free-text annotations associated with experimental
datasets can be processed using concept identification programs to yield a high-content set
of contextual details [16]. While it is possible to use automated methods to extract concepts
related to phenotypes, diseases, and drugs studied in an experiment, it may still be argued
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that the original dataset submitter of a dataset might better be able to assign concepts to their
data in a more sensitive and specific manner than text parsing. Numerous errors in
automated concept identification from the annotations of molecular datasets have been
described [13]. It has been suggested that the best long-term strategy to deal with the
mapping problem will be to ask dataset submitters of data to label their own data with
concepts chosen from an ontology relevant to their experimentation.

However, it is not a foregone conclusion that annotations supplied by data submitters will
outperform annotations applied to the same data by automated annotation methods.
Annotating free text without support of an integrated annotation service is a non-trivial task
and a burden to the submitters that do not necessarily have the knowledge and/or time to
provide high quality annotation during the submission process. The EBI PRIDE repository,
described above, is unique in that it has asked, but not enforced, dataset submitters to select
and submit MeSH terms along with their proteomic datasets. Thus, in this work, we
compared these submitter-assigned MeSH terms with the concepts found by applying
concept identification tools to free-text annotations in PRIDE.

We compared both submitter-assigned and concept-identified MeSH against a gold standard
consisting of the MeSH terms assigned to those MEDLINE publications associated with
PRIDE entries. MeSH terms that are later assigned by NLM indexers to publications are
obviously not available earlier to dataset submitters, and we suspect that the terms used by
dataset submitters in the submission of data to EBI PRIDE are not otherwise easily available
or queried by the NLM indexers in annotating publications. Thus, we feel these annotations
are reasonably independent and can enable a valuable comparison. We compared the output
of two automated concept identification methods, the NCBO Annotator [17, 18] and the
NLM MetaMap [19]. Our goal was to answer which concept assignment method (manual or
automated) is most accurate, and determine whether dataset submitters are educated enough
about concept-assignment, that their assignments can sufficiently enable the search and
integration of datasets.

2 Material and methods
2.1 PRIDE database

We downloaded all 11694 PRIDE data files representing 9317 unique PRIDE entries from
the EBI FTP server on July 27, 2010. Each PRIDE entry has several free-text fields, and we
specifically extracted the following: “Title”, “ShortLabel”, “sampleDescription”,
“ProtocolName”, “sampleName” and “additional” (Figure 1). We also extracted the PubMed
IDs and MeSH terms associated with these datasets.

2.2 MEDLINE gold standard
Only 2452 PRIDE entries were associated to one or more scientific publications. Of those
we retrieved 88 unique PubMed IDs corresponding to publications. Numerous PRIDE
entries were annotated with the same PubMed ID. Through MEDLINE, we retrieved overall
298 unique MeSH terms that we associated back to their respective PRIDE entry to build
our gold standard set of annotations. We used all MEDLINE MeSH terms, and did not focus
just on primary MeSH terms. Trained NLM indexers assign these MeSH annotations by
contrast to PRIDE dataset submitters, who may not be very familiar with MeSH structure.
To test our hypothesis, we also collected the MeSH annotation entered by the dataset
submitter. We found 203 PRIDE entries were annotated with 32 distinct MeSH terms
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2.3 Natural language processing programs
We evaluated the performance of two concept identification software systems on annotating
the PRIDE free-text fields using MeSH terms. The MetaMap developed by the NLM,
represents the state of the art in automated biomedical text indexing [19]. MetaMap is a
well-established software system under development and evaluation at the NLM for
indexing MEDLINE. MetaMap indexes free-text with concepts from the Unified Medical
Language System (UMLS) Metathesaurus. The UMLS contain multiple controlled
vocabularies and ontologies such as Gene Ontology, SNOMED-CT and MeSH. The 2010
release of the program was used.

The NCBO Annotator tool was chosen as a promising newer alternative to MetaMap,
considering its overall higher precision and faster execution time obtained across different
biomedical resources [17, 18]. The Annotator service is a Representational State Transfer
(REST)-based web service. Annotator has the capability of matching free-text against a
variety of standardized vocabularies and ontologies, as well as in the UMLS Metathesaurus.
In this study, only the MeSH structure was used to annotate PRIDE entries. Precision (1)
and recall (2) for newly mapped annotations were calculated as follow:

(1)

(2)

2.4 Network representation
Annotator annotated 9311 PRIDE entries that grouped into 373 clusters sharing the exact
same group of MeSH annotation. We build a network from these clusters based on the
shared MeSH annotation between clusters. Clusters were displayed using Cytoscape [20].
By setting a threshold over the minimum number of MeSH terms to be shared between
clusters we discovered highly connected subset of clusters.

3 Results
3.1 Automated annotation results

Using MetaMap and Annotator, we were able to successfully annotate 9315 and 9311 of the
9317 PRIDE entries, respectively (Table 1). MetaMap assigned 862 unique MeSH terms
compared to 504 for Annotator. This represents a much greater number than the current state
of MeSH annotations in PRIDE with only 32 different concepts over 203 PRIDE entries.

3.2 Precision and recall using MEDLINE gold standard
We compared the precision and recall obtained with MetaMap and Annotator with the ones
obtained by dataset submitter using our MEDLINE gold standard (Table 1). We found that
the precision achieved by both concept identification programs were similarly high, with
scores of 32.96% and 35.37% for Annotator and MetaMap respectively. Dataset submitters
scored almost perfect precision (97.58%) in tagging their experiments with MeSH concepts.
However, dataset submitters scored very low on recall, at 0.59%. Automated concept
identification programs outperformed the recall from dataset submitters by more than three
fold. These results have to be contrasted with the number of PRIDE entry annotated by both
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automated concept identification programs reaching above 99.9% coverage of the entire
database compared to only 2.2% for dataset submitters.

3.3 User submitted annotation as gold standard
To place the precision and recall from Table 1 in context, we compared MetaMap and
Annotator tagging of PRIDE entries with MeSH terms assigned by dataset submitters to
their own data (Table 2).

We observed that both MetaMap and Annotator were able to retrieve most of the dataset
submitters MeSH terms with a recall of 79.44% and 79.48%, respectively. The higher
precision observed for Annotator is most likely explained by MetaMap tagging datasets with
a much greater number of MeSH terms than Annotator (see Table 1), which consequently
lowered MetaMap precision.

3.4 Automated annotations group biologically related samples
To further validate the relevance of the annotation retrieved using automated concept
identification programs, we displayed the newly generated annotations in a network. We
chose the annotations from the Annotator as a proof-of-concept here; however, an identical
approach can be undertaken using MetaMap annotations. We found that all 9311 PRIDE IDs
annotated using the Annotator could be grouped into 373 clusters sharing exactly identical
sets of MeSH annotations between them. The largest PRIDE cluster contained 4090 unique
PRIDE entries sharing three identical MeSH terms. All the entries in this cluster belonged to
the same project: “Quantitative Proteomics Analysis of the Secretory Pathway”. Similarly
the second largest cluster of 916 PRIDE entries represented the single project: “GPMDB
Submission: Protein complexes in Saccharomyces cerevisiae”. We then determined the level
similarity between these 373 clusters through the number of shared MeSH terms between
each cluster.

Figure 2 shows PRIDE clusters having at least 10 MeSH annotations in common. We found
that highly connected clusters are grouped mainly according to PRIDE projects as well as
biological context. For example, all 95 experiments from the “HUPO Plasma Proteome
Project” were found to share high number of MeSH annotation. More interestingly, the
second cluster represent 25 individual experiments related to dendritic cells (a sub-type of
immune cells specialized in antigen presenting) but from two different projects.

4 Discussion
Secondary use of the exponentially growing numbers of publicly-available molecular
measurements depends on our ability to discover and identify them within international
repositories. We found that dataset submitters, not otherwise trained specifically in
standardized vocabularies, can submit relevant MeSH terms. This finding is encouraging for
public repositories and should engage them in including controlled vocabularies into their
submission workflow.

However, while dataset submitters are precise in using terms that NLM indexers use on their
resulting papers, we found that dataset submitters do not annotate their dataset in great
depth, using on an average only 1.5 MeSH terms per PRIDE experiment, thus leading to low
recall when compared against our MEDLINE gold standard. This behavior of the data
submitters might be explained in part by the current non-enforcement of the MeSH
annotation step in PRIDE and also by the lack of awareness within the community of the
benefit of annotation with standardized terms. Additionally, ontologies are often large and
finding all relevant concepts for the experiment at hand can be laborious and time
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consuming. Lastly, there are many ontologies that frequently overlap and are regularly
updated and expanded.

Interestingly, the automated concept-identification methods we tested exhibited a higher
recall than the dataset submitters in capturing the terms used by NLM indexers, but at the
same time, automated concept-identification methods demonstrated low precision against
the specific MeSH terms selected by dataset submitters. This suggests while dataset
submitters actually type in good terms in the free text annotations of their datasets, they are
not judging these as relevant enough to put them into their list of MeSH terms. Future hybrid
systems suggesting to dataset submitters several candidate terms from their own free text
might be an ideal solution to the annotation problem. Additionally, excluding specific
categories (also called: semantic types) of MeSH terms, such as “Geographic Area” or
“Professional Society”, could reduce noise and increase precision of automated annotations.
MetaMap and Annotator demonstrated an excellent ability to retrieve the dataset submitter
MeSH terms with almost 80% of recall. In our hands, MetaMap exhibited a lower precision
(5%) than Annotator for user submitted annotation. We do not imply here that one
automated concept-identification method is better than the other; instead we used both to
ensure our results were not an artifact of one particular concept identification tool.
Improvement of the indexing quality performed by Annotator and MetaMap are possible by
tuning the numerous parameters within these programs.

MEDLINE indexing includes a very large spectrum of annotations where not all MeSH
terms relevant to the research papers are also relevant for the associated PRIDE
experiments. This could explain the overall low recall rates for automated and submitter
supplied annotation when using MEDLINE indexing as gold standard; as in some case it is
virtually impossible to capture from the free text available through PRIDE the MeSH terms
from MEDLINE. Thus, we are likely underestimating the true recall that could have been
achieved if MEDLINE MeSH annotation could be filtered for annotation relevant to the
PRIDE dataset only. Despite this, we feel this gold standard serves as a good metric for
comparing different methods, since user submitted annotation displayed 97.58% precision
indicating that MEDLINE indexers annotate the published work with the same concept
independently from the dataset submitters. Additionally, MeSH annotations from
MEDLINE are widely accepted and used throughout the scientific community. We and
others have used publication-based MeSH concepts to annotate and find experimental
datasets through MEDLINE relations [21].

Network analysis revealed meaningful annotation of PRIDE entries grouping biologically
relevant experiments. Clusters grouping experiments from the same projects were found
predominantly as they shared almost identical titles, descriptions, sample names and
protocol descriptions.

5 Conclusion
We showed that automated concept identification methods could reach a higher recall of
MeSH annotations than human dataset submitters who are not specifically trained in
annotating their own experiments with MeSH concepts. Human submitters achieved the
highest precision when annotating their experiments, but we found they are also using too
few terms to annotate their experiments. Additionally, we showed that automated concept
identification programs could successfully map proteomic data from PRIDE given only the
free text fields provided by datasets submitters. However, having dataset submitters select
their own MeSH terms without assisted term selection, does not necessarily add much value
beyond using the MeSH terms provided through MEDLINE or found with automated
concept identification programs.
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Our results were established numerically and graphically, and both suggest that our method
is a realistic approach to annotating the PRIDE database, and by extension other molecular
databases. Concept identification programs, such as the NLM MetaMap or NCBO
Annotator, are freely available and perhaps could be used by submitters to scan their abstract
for relevant MeSH terms prior to submission. Enabling dataset submitters to scan their free
text to attain better MeSH annotations would add little, if any, burden on the submitters, but
could provide an enormous benefit in the areas of data mining, verification of research
results, secondary use of data, and overall accessibility of high-throughput molecular data to
the public.
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Figure 1.
Example of PRIDE entry raw XML file displaying the free-text fields used by NLM
MetaMap and NCBO Annotator.
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Figure 2.
PRIDE entries clusters sharing 10 or more common MeSH annotation organized according
to experiments and tissues of origin. Numbers displayed in nodes are number of PRIDE
entries in cluster. Width of the edges is proportional to number of MeSH term in common
between clusters. HUPO = Human Proteome Organization; AMD = Acid Mine Drainage;
RBC = Red Blood Cells; A.T. = Arabidopsis Thaliana.
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Table 1

Precision and recall obtained using MEDLINE annotation’s gold standard for Annotator and MetaMap
programs and original dataset submitter annotations.

Method Precision (%) Recall (%) Annotated entries (%) Average MeSH annotation per entry

Annotator 32.96 1.83 9311 (99.9%) 5.3

MetaMap 35.37 2.45 9315 (99.9%) 8.1

User Submitted 97.58 0.59 203 (2.2%) 1.5
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Table 2

Comparison of precision and recall of annotations between for Annotator and MetaMap when considering user
submitted MeSH annotation as gold standard.

Method Precision (%) Recall (%)

Annotator 20.97 79.48

MetaMap 15.66 79.44
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