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Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syn-
drome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models apply-
ing a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods 
throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence 
on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face 
validity of experimental models developed with respect to animals’ age, sex, strain differences and specific methodological as-
pects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identi-
fication and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying 
mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitiza-
tion based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission 
or stress-related analgesic response. 
(J Neurogastroenterol Motil 2011;17:213-234)
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Introduction
Alterations of visceral sensation such as enhanced perception 

of physiological or experimental visceral stimuli along with hy-
pervigilance to those, are at the origin of visceral hypersensitivity, 

a phenomenon commonly considered to play a major role in the 
pathophysiology of irritable bowel syndrome (IBS).1-7 Epidemio-
logical studies have implicated stress of psychosocial, physical or 
immune origin as a trigger of first onset or exacerbation of IBS 
symptoms.8-10 Early adverse life events in the form of emotional, 
sexual, or physical abuse are major predisposing factors for the 
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development of IBS later in life.11,12 Childhood trauma, especially 
in genetically predisposed individuals, is thought to induce per-
sistent changes in the brain arousal response system that impacts 
on the neuroendocrine hypothalamic-pituitary-adrenal (HPA) 
axis.12 In adult IBS patients, acute stress episodes, chronic social 
stress, anxiety disorders, and maladaptive coping style determine 
the illness experience, health care-seeking behavior as well as 
treatment outcome.12,13 Stress-related psychosocial factors such as 
somatization, neuroticism, and hypochondriasis are also im-
portant predictors in the development of post-infectious IBS.14,15 
Emotional or physical stressors may cause disturbances at every 
levels of the brain-gut axis including the central, autonomic and 
enteric nervous systems and affect regulation of visceral percep-
tion and emotional response to visceral events.16

Over the past 15 years, various animal models have been de-
veloped to get insight into the underlying mechanisms of visceral 
hypersensitivity and the influence of stress on visceral pain 
pathways.1,17-20 While in humans the evaluation of visceral sensi-
tivity is predominantly based on the conscious perception to gut 
distension, the measurement of this subjective response cannot be 
performed in animal studies. Objective evaluation of responses to 
visceral stimulation in clinical studies includes the assessment of 
reflex activity (eg, a somatic nociceptive cutaneo-muscular flexion 
reflex can be inhibited by painful visceral stimulation) or evoked 
central processes (eg, changes in activation of the anterior cingu-
lated cortex involved in pain inhibition).21,22 Indeed, during the 
last decade functional imaging techniques have been applied suc-
cessfully to examine the human brain response to noxious visceral 
stimuli.23 In experimental animals, the pattern of brain and spinal 
circuitries activated by various stressors and colorectal distension 
(CRD) under basal or hypersensitive state have been early on 
mapped in a number of studies using the induction of the Fos 
protein expression as a direct marker of neuronal cell activation 
and double immunohistochemical labeling to identify the pheno-
type of Fos positive spinal and supraspinal neurons.24-31 Recently, 
preliminary reports applied imaging techniques to get insight into 
brain circuit activated by visceral stimulation in rodents. 
Similarity in some regional brain activation induced by CRD 
have been found when comparing Fos expression and functional 
magnetic resonance imaging.32 In addition this comparative 
study indicates that both methods are complementary as Fos im-
munohistochemistry provides a higher spacial resolution over 
imaging while imaging displays a higher sensitivity to detect a 
large number of brain area. Development of imaging in conscious 
animals with removal of additional stress linked with conditions 

of functional imaging monitoring will enable bridging the gap 
between the multidimensional nature of human pain experience 
and preclinical studies.33

In this review we will outline some of the most relevant pre-
clinical models that have been developed, comment on their con-
tribution to our understanding of stress modulation of visceral 
pain mechanisms, and assess the clinical relevance of these pre-
clinical studies to unravel potential molecular targets to alleviate 
visceral pain symptoms in IBS.

Stress Pathways: Corticotropin 
Releasing Factor Signaling as 
an End Point Effector

First coined by the endocrinologist Hans Selye, the term 
“stress” defines the physiological adaptive responses to real or 
perceived emotional or physical threats (“stressors”) to the organ-
ism homeostasis.34 When exposed to an acute threatening chal-
lenge, the body engages a “fight or flight” response35 driven by 
sympathetic activation leading to rapid heart rate and respiration, 
increased arousal, alertness, and inhibition of acutely non adap-
tive vegetative functions (feeding, digestion, growth and re-
production).34 Concurrently, a negative feedback is activated to 
terminate the stress response and bring the body back to a state of 
homeostasis or eustasis,36 that engages neural, neuroendocrine 
and immune components, a process called allostasis37 or “stability 
through changes”.37,38 However, persistence or chronicity of the 
stressors can overload this adaptive system which then becomes 
defective or excessive. The organism is no longer brought back to 
basal homeostasis leading to a state of allostatic load37,39 or 
“cacostasis.”36 This state lies at the origin of a variety of stress-re-
lated diseases that develop in the context of a vulnerable genetic, 
epigenetic and/or constitutional background.36 The pathogenesis 
of stress-induced disorders affects the whole body, including the 
viscera of which the gastrointestinal (GI) tract is a sensitive 
target.36,40

Over the past decades, important components of the 
stress-activated pathways whereby the brain translates stimuli in-
to final integrated bodily response have been identified through 
the characterization of corticotropin releasing factor (CRF) sig-
naling system. This is composed of the 41 amino acid peptide 
CRF, and related peptides, urocortin 1, urocortin 2 and urocortin 
3 along with the CRF receptors CRF1 and CRF2 and their var-
iants which display specific affinity for CRF and related 
agonists.41 The development of selective CRF receptor antago-
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nists has also largely contributed to delineate the role of activation 
of CRF receptor subtypes in the stress response.42,43 In particular 
convergent reports indicate that the activation of CRF1 receptor 
underlies the multiple faceted components of the stress 
response.40,44,45 CRF/CRF1 signaling plays a primary neuro-
endocrine role in stimulating the HPA axis leading to the release 
of adrenocorticotropic hormone and corticosterone in rodents 
and cortisol in humans.43,46 In addition the CRF signaling system 
also acts as a neurotransmitter/neuromodulator to coordinate the 
behavioral, immune, and visceral efferent limbs of the stress 
response.44,45,47-49 It does so via the activation of the locus co-
eruleus and its noradrenergic projections to the forebrain which 
contribute to arousal, alertness as well as the modulation of fore-
brain, hindbrain and spinal sites regulating the autonomic nerv-
ous system activity leading to the stimulation of the sympathetic 
nervous system and release of catecholamines,50-52 and sacral par-
asympathetic activity while decreasing vagal efferent output53-55 

that influences immune and visceral function.56,57 In addition the 
brain CRF/CRF1 signaling pathway is involved in stress-related 
induction of anxiety/depression44,45,58 and alterations of colonic 
motor and visceral pain while both central and peripheral CRF2 
receptor activation may exert a counteracting influence.59-63 

Moreover recent experimental and clinical studies point to an 
equally important contribution of the peripheral CRF/CRF1 sig-
naling locally expressed in the gut to the GI stress response.19,64

Visceral Pain Pathways
Pain perception in peripheral tissues depends on the signal 

transmission from the site of pain origin to the CNS. Nociceptors 
(receptors activated by noxious stimuli)65 located in 2 sets of pri-
mary small afferent fibers (C and Aδ afferents) innervating the 
viscera that project to distinct regions in the CNS,66 are the pri-
mary pathways of pain transmission. From the esophagus to the 
transverse colon, the GI tract innervation is provided by vagal af-
ferent fibers originating in the nodose ganglia and projecting cen-
trally to the nucleus of the solitary tract. Pelvic nerve afferent fi-
bers, which originate in the lumbosacral dorsal root ganglia, and 
project centrally to the lumbar 6 - sacral segments of the spinal 
cord innervate the remaining part of the large bowel (descending 
and sigmoid colon, rectum). The entire GI tract is also in-
nervated by afferent fibers contained in the splanchnic nerves 
projecting to the thoracic 5 - lumbar 2 segments of the spinal 
cord.67 Even though visceral afferents constitute only 10% of all 
afferents, they are able to monitor changes in the gut milieu and 

participate in the transmission of visceral sensory information.68,69 
Of note, vagal afferents do not encode painful stimuli however, 
changes in their activity can modulate nociceptive processing in 
the spinal cord and the brain.68,70,71

Upon entering the dorsal horn, visceral primary afferents 
carried out by the pelvic and splanchnic nerves terminate in spinal 
cord laminae I, II, V and X72  converges onto spinal neurons in the 
lumbosacral segments and thoracolumbar segments respectively. 
Lumbosacral segments process reflex responses to acute visceral 
pain, while thoracolumbar segments’ involvement in normal vis-
ceral sensation is uncertain,73 however, both segments process in-
flammatory stimuli.73 Subpopulations of neurons within the dor-
sal horn project to discrete nuclei within the thalamus (ie, ventral 
posterior lateral thalamus) as well as other structures in the brain 
stem (parabrachial nucleus, periaqueductal gray, nucleus tractus 
solitarius). From the thalamus, the information is conveyed to 
cortical areas involved in sensory processing (such as the somato-
sensory cortex) or those involved in processing emotional or af-
fective information (such as the anterior cingulate gyrus and in-
sular cortex).65,74

In addition to the ascending system, which enables pain per-
ception described above, other neural circuits originating from 
supraspinal sites can influence nociceptive activity in the spinal 
cord and in primary afferents, a system referred to as descending 
pathways.75 There are 2 types of descending control pathways: in-
hibitory, which produce analgesia (periaqueductal gray, locus co-
eruleus) and facilitatory which produce hyperalgesia (rostroven-
tral medulla and OFF and ON cells).76,77

Visceral Pain Monitoring in Rodents
The primary readout and the standard assay for the measure-

ment of visceral pain in rodents consists in the monitoring of ab-
dominal muscles contraction or visceromotor response (VMR) to 
controlled isobaric distensions of the distal colon by an inflatable 
balloon.78 The VMR can directly be assessed as electromyo-
graphic (EMG) signals monitored via surgically-implanted re-
cording electrodes in external or internal abdominal muscle 
which are either externalized through the skin (abdomen, 
neck)79-81 or connected to radiotelemetric implants in the abdomi-
nal cavity.82,83 Although the method is of significant value in the 
field of visceral pain study, it has experimental shortfalls such as 
damage to EMG electrodes, loss of signal and electrical interfer-
ences which is of particular concerns in chronic experimental 
settings. Additionally, EMG surgery involves skin and/or mus-
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Figure 1. Differential influence of intermittent repeated stress on visceral response to colorectal distension (CRD) in rodents with or without surgical
procedure for recording visceral pain (Adapted from Larauche et al19,88). (A) Original and rectified representative electromyographic (EMG) and 
intraluminal colonic pressure (ICP) traces recorded simultaneously on the same mouse in response to CRD (45 mmHg, 10 seconds). When both raw
EMG (upper line) and ICP (second line to the bottom) signals are analyzed in Spike 2 by computing “DC Remove” 1 second to exclude all slow events
＞ 2 seconds (ie, colonic smooth muscle contractions) and “root mean square amplitude” to extract the area under the curve of the signal, the resulting 
EMG and phasic ICP signals (middle lines) present a significant overlap. (B) Mice were equipped with EMG electrodes or not and exposed to water
avoidance stress for 1 hour per day for 10 days tested with ICP for visceromotor response (VMR) to CRD. (C) Intraperitoneal injection of the selective
corticotropin releasing factor receptor subtype 1 agonist, cortagine-induced visceral hypersensitivity in C57BL/6 mice tested with ICP for VMR to 
CRD. Data are expressed as mean ± SEM, n = 10-14 per group as specified in graph legends. *P＜0.05 compared with baseline, **P ＜ 0.05 vs
vehicle. 

cle incision depending on the technique used (subcutaneous ab-
dominal electrodes or intraperitoneal cannula) and chronic im-
plantation of a foreign body. Even though no data are available in 
the literature in relation to the impact of chronic EMG electrodes 
placed into the abdominal wall, such intervention could induce a 
host-tissue response with local micro-inflammation (neutrophils, 
lymphocytes and macrophages) as it has been shown for other 
types of implants in the skin and peritoneum.84,85 A recent report 

suggests that the preconditions of animals (EMG surgery, and 
post-surgical delivery of antibiotic and single housing) has con-
siderable impact on their visceral pain responses, particularly in 
the context of stress studies.86 Other approaches consist of re-
cording manometric changes in the pressure of the balloon in-
serted into the distal colon86,87 or changes in pressure inside the 
colonic lumen.19,88 These 2 later techniques present the advantage 
of being minimally invasive as they do not require surgery and 
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Figure 2. Animal models of stress-induced modulation of visceral sensitivity throughout the lifespan (Modified from Mayer et al9). Experimental 
stress models have been developed that target different periods throughout the lifespan of animals to assess the vulnerability, trigger and perpetuation
influences of stress on visceral sensitivity. During early life, trauma due to maternal neglect (neonatal maternal separation stress) or injury (neonatal 
chronic colonic inflammation or pain) can enhance the susceptibility of individuals to develop altered visceral pain responses at adulthood. During 
adulthood, life-threatening stressors (post-traumatic stress disorder model), psychosocial stressors (acute and chronic stress) or physical stressors 
(intestinal infection or inflammation, antibiotic administration and surgery) have all clearly been established as triggering factors to the development
of visceral hypersensitivity in rats and mice. Lastly, the use of specific strains of rodents known to exhibit various levels of anxiety, depression or stress
hyper-responsiveness (Wistar-Kyoto and Flinders Sensitive Line) help mimic the influence of perpetuating factors on symptoms of visceral pain. WAS,
water avoidance stress; PRS, partial restraint stress; PTSD, post-traumatic stress disorder; DSS, dextran sodium sulfate.

post-surgical treatments such as antibiotic, analgesics which can 
affect the visceral pain responses and still remain an objective and 
sensitive measure of abdominal contractions (Fig. 1). However, 
they require the animals to be partially restrained in Bollman cag-
es, a context to which they need to be habituated and which by it-
self may bring a component of stress. 

Behavioral approaches such as operant behavioral assays78 
have also been used in early studies and capitalized on the learn-
ing and fear behaviors of animals in response to painful CRD. 
Visual monitoring of the abdominal withdrawal reflex89 has also 
been applied in a few studies, and while having the great advant-

age of being one of the less invasive technique employed to date, it 
is a very subjective method. Indirect endpoints such as Fos or ex-
tracellular signal-regulated protein kinase induction in the 
CNS,29,62,90-92 and functional brain imaging of integrated brain 
responses to nociceptive stimuli33,93 have also been utilized in 
some studies. These approaches allow for direct assessment of the 
neuronal circuitries recruited by the visceral pain stimulus and, in 
the case of functional brain imaging is very similar to the mon-
itoring of CRD responses in healthy and IBS human subjects. 
Unfortunately, in animals these brain mapping techniques re-
quire euthanasia and limit the assessment to specific time points. 
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However, as more stringent brain imaging approaches are devel-
oped in rodents, they will open new venues to parallel human 
studies.94

Experimental Stress Models 
and Visceral Pain

By convention, stressors are categorized in exteroceptive 
(psychological or neurogenic) and interoceptive (physical or sys-
temic) classes95,96 and both have been used in animal models to 
investigate the relationship between stress and visceral pain.97 
Dual visceral pain responses: hyperalgesia and analgesia have 
been described in rodents exposed to exteroceptive stressors. 
Though only recently investigated, the analgesic response bears 
very relevant implications in the understanding of visceral 
pain-associated pathologies (detailed in section “Stress-induced 
visceral analgesia: how does it help us to model and understand 
visceral hypersensitivity?”) In contrast, interoceptive stressors 
have been most consistently associated with the development of 
stress-induced hyperalgesia. 

Stress modulates visceral pain in IBS patients as well as in 
healthy subjects,9,98 therefore experimental animal models, in-
volving exposure to various clinically relevant stressors have been 
developed to recapture features of IBS symptoms, of which hy-
peralgesia to sigmoid distensions is a hallmark.99,100 Moreover 
clinical studies have stratified that the stress-related modulation 
of IBS symptoms9 may be occurring through (1) permanent en-
hancement of stress responsiveness, (2) transient symptom ex-
acerbation and/or (3) symptom perpetuation. Consequently exist-
ing experimental stress models target different periods through-
out the lifespan of animals to assess the vulnerability, the trigger 
and perpetuating factors determining stress influence on visceral 
hypersensitivity (Fig. 2).

Stress in the Perinatal Period: Genetic/
Epigenetic Factors

Twin studies in IBS patients showed higher (but relatively 
low) concordance rates in monozygotic than dizygotic twins sug-
gesting that although genetic factors are not dominant, they play a 
role in the occurrence of IBS.101 There is also a growing literature 
reporting the association between functional genetic poly-
morphisms and IBS at the level of serotonin transporter gene 
(associated with diarrhea in female IBS patients), or α2-adrenor-
eceptor gene (associated with constipation), and more recently, 
additional gene polymorphisms have been unraveled supporting 

the potential permissive role of genetics in IBS pathophysio-
logy.102-105 Of interest, it has been postulated that epigenetic fac-
tors related to heritable changes in gene expression that occur 
without alteration in gene sequence, determine the manner in 
which gene activity may be altered either transiently or perma-
nently in response to environmental challenges.106 Such epi-
genetic modifications could account for symptoms persistence, 
familial clustering and the transgenerational impact of IBS. 
However, experimental studies have not dwelled on strain differ-
ences in terms of stress responsiveness, anxiety and depression in 
rodents,107-110 to assess and compare how genetic predisposition 
together with perinatal (maternal prenatal stress) or early life 
stressors (neonatal maternal separation stress) could affect viscer-
al pain responses at adulthood in the context of epigenetic 
modifications. There is only one preliminary report suggesting 
that strain may determine the duration of the visceral hyperalgesia 
in response to chronic heterotypic stress (detailed in section 
“Stress in the adult period: trigger factors, Psychosocial stres-
sors”). The influence of genes on the vulnerability of rodents to 
exhibit visceral hypersensitivity has however been assessed in re-
lation with anxiety behavior at adulthood in rat strains with differ-
ent anxiety/depression backgrounds110 (detailed in section 
“Genetic models of anxiety & depression”).

Stress in the Early-life Period: Vulnerability/ 
Trigger Factors

Early life events and childhood trauma by biopsychosocial 
factors (neglect, abuse, loss of caregiver or life threatening sit-
uation) enhance the vulnerability of individuals later in life to de-
velop affective disorders (depression, anxiety and emotional dis-
tress) and put them at a greater risk for developing IBS.12,99 In 
the context of epigenetic modifications, experimental studies 
showed that early developmental trauma decreases glucocorticoid 
receptor expression by hypermethylation of a key regulatory com-
ponent and consequently affects the feedback regulation the 
HPA-axis with impact on the endocrine/behavioral adaptation 
and the susceptibility to stress-related disorders.112 In addition, 
experimental studies indicate that the newborn’s gut through 
stress-related changes in intestinal permeability may be exposed 
to a variety of factors resulting in mucosal inflammation and tis-
sue irritation which could have long-term consequences at adult-
hood even though no longitudinal clinical studies exist showing 
that gut irritation in early life is a risk factor for IBS development 
at adulthood.97 Moreover, postnatal microbial colonization has 
been also suggested as a potential factor programming the 
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HPA-axis response to stress in mice.113

An experimental model commonly used as a stress model to 
mimic early stress/childhood trauma is the neonatal maternal sep-
aration in rodents. This is achieved by isolating pups from the 
dam for 2-3 hours/day during the first 2 weeks after birth from 
postnatal day (PND) 1-2 to PND 14.17,114-116 At adulthood, rats 
previously subjected to neonatal maternal separation exhibit vis-
ceral hypersensitivity to CRD under basal conditions which is 
further exacerbated by exposure to the acute psychological stres-
sor in the form of water avoidance stress (WAS) consisting in 
placing rodents on a small platform surrounded by water for 
1h.117,118 Other models used repeated intermittent colonic irrita-
tion during the neonatal period (PND 8-21) either in the form of 
daily noxious CRD (60 mmHg-60 seconds distension twice sep-
arated by 30-minute period of rest) or by performing daily intra-
colonic injection of mustard oil (5%), increases pain behavior to 
CRD from postnatal week 5 up to postnatal week 12.89,119 
Likewise, an acute somatic injury (saline or carrageenan in-
jections into the hind paw) performed during the critical period 
of postnatal development, ie, before PND 14, produces visceral 
analgesia to CRD in adult rats.120

Based on these studies and the extensive amount of evidence 
originating from somatic pain studies,121,122 it appears that neo-
natal insults either acute or repeated, somatic vs visceral occur-
ring during the development of the organism contribute to in-
duce a state of visceral hypersensitivity in adulthood which may 
reflect long-term changes in visceral sensory processing.120

Stress in the Adult Period: Trigger Factors
Psychosocial stressors

Psychosocial stressors (eg, threat to social status, social es-
teem, respect and/or acceptance within a group; threat to 
self-worth) activate stress circuits within the emotional motor sys-
tem and induce neuroendocrine response (CRF and cortisol) and 
autonomic response (norepinephrine and epinephrine) that result 
in the modulation of gut sensory, motor and immune function as 
well as intestinal permeability.9 In experimental studies, the 2 
main acute stressors that are prominently used in visceral pain 
studies are WAS for 1 hour and partial restraint stress for 2 
hours, a stressor with stronger psychological component than 
WAS, which entails taping the forelimb of rats in order to prevent 
their movements.123-125 Exposure of male Wistar rats to WAS for 
1 hour leads to the development of a delayed visceral hyperalgesia 
to CRD, appearing 24 hours after the end of the stress,126 while 
exposure to partial restraint stress, induces an immediate hyper-

algesia to CRD in male127 and female Wistar rats.115

However, in the context of clinical studies in which daily 
chronic stress predicts the intensity and severity of subsequent 
symptoms in IBS patients,4-6,99,128,129 a variety of chronic stress 
models divided in 2 categories have been recently developed in 
adult rodents. The first category consists in exposing animals re-
peatedly (over a few days to weeks) but intermittently (once or 
twice per day) to 1 or different stressors, with the aim of mimick-
ing the daily exposure to psychosocial stress that humans can en-
counter through their personal and professional interactions. The 
second category consists in continuous exposure to stressors as 
part of change in internal state, for instance inflammation, or ex-
ternal milieu, for instance single housing, or social crowding  
which mimics the effect of social milieu in humans or using ge-
netic rodent strains that have constitutive stress hyper-reactivity 
(Wistar Kyoto, Flinders Sensitive Line). In particular, repeated 
intermittent exposure to WAS is one of the first “chronic” stress 
model to have been adapted to the study of visceral hyper-
sensitivity81 and is presently widely used.88,130,131 Initial studies in 
which the visceral pain response was monitored using EMG re-
cording that entails surgical implantation of electrodes, male 
Wistar rats exposed to 10 consecutive days of WAS for 1 hour 
daily developed visceral hypersensitivity to CRD lasting up to 30 
days after the end of the last session of WAS.81,130 In our labo-
ratories however, we found that when naïve male and female 
Wistar rats were exposed to a similar WAS schedule and their 
VMR was monitored by intraluminal colonic solid-state man-
ometry, a technique that does not require surgery, animals devel-
oped visceral analgesia to CRD.132 Similar results have been ob-
tained in C57BL/6 mice88 and analgesic vs hyperalgesic re-
sponses were established to be dependent upon preconditions 
(surgery and single housing) associated with the method of re-
cording of VMR (Fig. 1).88,133 Therefore, the impact of repeated 
mild stress such as 1-hour exposure to WAS on visceral pain re-
sponse to CRD is largely influenced by the basal state conditions 
of the animals before applying the repeated stressor (detailed in 
section “Stress-induced visceral analgesia: how does it help us to 
model and understand visceral hypersensitivity?” and refer-
ence88). Repeated exposure to unpredictable sound stress has also 
been recently shown to provide a model of delayed visceral hyper-
algesia in male Sprague-Dawley rats.134

Because habituation can occur in response to repeated ex-
posure to an homotypic stressor,135,136 heterotypic stress models 
with different and alternating modalities to induce stress have 
been recently developed. However male Wistar rats exposed ran-
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domly to a combination of cold restraint stress (45 minutes), 
WAS (1 hour) or forced swimming (20 minutes), 1 stressor per 
day for 9 consecutive days develop visceral hypersensitivity only 
at 8 hours but not at 24 hours or 7 days after the end of the last 
stressor.137 Interestingly however, the same regimen of alternat-
ing stressors in a different strain of rats, Sprague-Dawley, led to a 
sustained visceral hypersensitivity lasting up to 2 weeks after the 
end of the stressor (S. Sarna and J. Winston, pers. comm.), sug-
gesting that the strain and therefore genetic background of the 
animals, affects the visceral pain responses to repeated inter-
mittent exposure to different stressors.
Life-threatening stressors

Retrospective clinical studies indicate that living through or 
seeing a traumatic event, such as war, environmental disasters, 
rape, physical abuse or a bad accident in adulthood can lead to 
post-traumatic stress disorder (PTSD).138-144 There is evidence 
of increased prevalence of GI symptoms, in particular IBS in 
PTSD sufferers including war veterans.138-142 Additionally, pa-
tients with IBS who have experienced traumatic events may be at 
higher risk for other co-morbid psychiatric disorders than IBS 
patients without a trauma history.141

In adult rats, treatment with a relatively short-lasting session 
of shocks or a social confrontation with a predator or aggressive 
conspecific animals induces long-lasting (weeks-months) con-
ditioned fear-responses to trauma-related cues, and a generalized 
behavioral sensitization to novel stressful stimuli that persists or 
grows stronger over time.145-148 Repetitive balloon distention of 
the distal colon causes increased cardiovascular ‘pseudoaffective’ 
reflexes in pre-shocked rats compared to controls, 2 weeks after a 
single session of foot shocks.145-148 Of note, female rats appear to 
show a different pattern of sensitized behavioral responsiveness to 
the same challenge, possibly pointing to sex-related alterations in 
the neuronal substrates involved.149

Interoceptive stressors

In approximately 10% of patients with IBS, the onset of 
symptoms began with an intestinal infectious illness.150 Bile salt 
malabsorption resulting from infectious damage with organisms 
such as Salmonella and Campylobacter within the terminal ileum 
and right colon may also underlie some forms of post-infectious 
IBS.151 Inflammation, antibiotic treatments, bladder infection 
and surgery may also contribute to the symptoms in some 
patients. Below are described some experimental models of inter-
oceptive stressors that have been used to mimic these clinical 
conditions.

Post-infectious irritable bowel syndrome model. Pro-

spective studies have shown that 3% to 36% of enteric infections 
lead to persistent new IBS symptoms depending on the infecting 
organism. In addition, the co-existence of adverse psychological 
factors at time of infection is also an important determinant to the 
susceptibility to develop post-infectious IBS.152 Other risk factors 
include female sex and some psychological characteristics such as 
anxiety, depression and somatization.152 While viral gastro-
enteritis seems to have only short-term effects, bacterial enteritis 
and protozoan and helminth infestations are followed by pro-
longed post-infectious IBS.152 The vast majority of human 
post-inflammatory hypersensitivity symptoms are observed after 
bacterial infection (Campylobacter, Shigella, Salmonella or Escheri-
chia coli infections).

In preclinical models, long-lasting visceral hyperalgesia has 
been observed in mice after transient intestinal inflammation in-
duced by Trichinella spiralis infestation153,154 or in rats infested by 
Nippostrongylus brasiliensis.155 Recently, however, it was found that 
male C57BL/6 mice infected with Citrobacter rodentium, an at-
taching-effacing murine enteropathogen similar in its mecha-
nisms of infection to enteropathogenic Escherichia coli, do not 
spontaneously develop visceral hypersensitivity symptoms as-
sessed by the increase in EMG response to CRD156 unless ex-
posed to a stressor (WAS, 1 hr/day for 9 days) during the time of 
infection (S. Vanner and N. Cenac, pers. comm.).

Post-inflammatory irritable bowel syndrome model. 
Despite some controversies on the origin of the symptoms,157,158 
“IBS-like” symptoms appear to be common in patients in re-
mission from ulcerative colitis.15,159 In rats, chemical irritants ap-
plied to the colon such as acetic acid,160 mustard oil161,162 and zy-
mosan163,164 evoke short-term hyperalgesia associated with trans-
mural tissue damage/colonic inflammation. Intracolonic trini-
trobenzene sulfonic acid induces a severe colonic transmural in-
flammation and visceral hypersensitivity that develops at 4-5 days 
with the disappearance of symptoms by 14 days.165,166 Interestin-
gly, in 24% of rats there is reoccurrence of visceral hyperalgesia 
16 weeks after the induction of inflammation, while there is no 
evidence of microscopic inflammation in rat colonic tissues at this 
time point.166,167 In a similar manner, daily intracolonic in-
stillation of bile acid deoxycholic acid for 3 days induces a mild, 
transient colonic inflammation within 3 days of administration 
that resolves within 3 weeks in adult male Sprague-Dawley rats. 
In this model, a persistent visceral hyperalgesia starts after 1 week 
of bile acid administration which lasts up to 4 weeks.168

Mild non-specific colitis and acute dextran sodium sulfate 
(DSS, 5% in drinking water for 5 days)-induced colitis have been 
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associated with increased responsiveness to CRD on days 5 or 60 
after the induction of colitis in male Balb/c mice while chronic 
colitis induced by DSS (3 cycles of 5% DSS for 5 days/cycle and 
15 days of normal drinking water in between each cycle) has 
not.167 These results are in contrast with another study showing 
that 4% DSS in drinking water for 5-7 days-induced colitis but 
failed to cause the development of visceral hypersensitivity in re-
sponse to CRD in C57BL/6 or Balb/c mice when tested on days 
5, 12, 16, 20, 30, 40 or 51 after the induction of colitis.170 These 
disparate findings suggest that inflammation alone may not al-
ways lead to visceral hypersensitivity and that the type of in-
flammatory insult and severity determine whether this will result 
in the development of postinflammatory hypersensitivity. The in-
teraction between colonic inflammation and the development of 
visceral pain has to be substantiated in future investigations.166

Antibiotics. Patients treated with antibiotics for non-GI 
complaints are 3 times more likely to report functional bowel 
symptoms. Antibiotic use disrupts the intestinal microbiota, fra-
gilizes the host’s intestinal homeostasis and integrity of intestinal 
defenses,171 and has been associated with IBS.172 In support of 
this hypothesis, administration to Balb/c mice of an oral combina-
tion of non-absorbable antibiotics (neomycin, bacitracin and pi-
maricin) which disturbed the commensal intestinal microflora re-
sults in visceral hypersensitivity to CRD in these animals.173 
Paradoxically, clinical studies support that specific antibiotics 
(rifaximin or neomycin) are an effective treatment option in 
non-constipated IBS patients, over a 3-month period174,175 or 
even longer,176 thereby confirming the role of dysbiosis in devel-
oping IBS symptoms.177

Surgery and somato-visceral convergence. Despite con-
troversies, studies suggest that IBS is associated with an increased 
risk of abdominal and pelvic surgeries.178 Surgical procedure as 
both a visceral and psychological stressor can initiate a series of 
events that either disturb GI function and interactions within the 
brain-gut axis and/or alter gut microbiota, which consequently 
may lead to generation of IBS symptoms.179 Hind paw (plantar) 
incision or injection of low pH (4.0) sterile saline in the gastro-
cnemius muscle of adult male Sprague-Dawley rats induce a sig-
nificant visceral hyperalgesia to CRD that lasts up to 2 weeks af-
ter the somatic injury occurred.180,181 As a model of postsurgical 
pain, the plantar incision model is particularly relevant because 
surgical procedures are relatively common and possible visceral 
hypersensitivity may also thus be a relatively common post-
surgical event.179 The impact of somato-visceral convergence has 
to be considered in experimental models of visceral pain where 

animals are surgically equipped within the abdominal wall with 
EMG electrodes84 (detailed in section “Stress-induced visceral 
analgesia: how does it help us to model and understand visceral 
hypersensitivity?).

Viscero-visceral interactions: neonatal cystitis. A sig-
nificant overlap is observed between IBS and urinary symptoms, 
in particular those resulting from interstitial cystitis (IC).182 Like 
IBS, IC predominantly affects female patients (90%) and shows a 
high comorbidity rate with psychological disorders. By analogy to 
IBS, an increased number of mast cells have been found in blad-
der biopsies in IC.183 Recurrent urinary tract infections during 
childhood correlate with the development of chronic pelvic pain, 
a condition that often overlaps with IBS.184 In an animal model of 
bowel-bladder cross-sensitization, acute bladder chemical irrita-
tion causes a significant decrease in colorectal sensory thresholds 
to CRD.185 Very recently, the induction of neonatal cystitis in fe-
male Sprague-Dawley rats at PND 14 was shown to result in co-
lonic hypersensitivity to CRD during adulthood,186 supporting a 
potential key role for viscero-visceral convergence in IBS and co-
morbid disorders such as IC and chronic pelvic pain.182

Stress in the Adult Period: Perpetuating Fac-
tors

There is a strong overlap between IBS and psychiatric dis-
orders, as established by the high percentage (54% to even 94%) 
of IBS patients meeting the criteria for at least 1 primary psychi-
atric disorder, most notably mood and anxiety disorders.182 

Although comorbid psychiatric disorders seem to be not directly 
connected with the occurrence of IBS, they strongly influence 
how the symptoms are experienced, the individual illness behav-
ior, and ultimately the outcome. The influence of cognitive as-
pects as well as motivational and emotional components on the 
processing of sensory information is mediated by extensive neu-
ro-anatomical network with a pivotal role of the insular and ante-
rior cingulate cortices.9,187,188 Autonomic dysfunction, in partic-
ular decreased parasympathetic activity and increased sym-
pathetic outflow observed in psychiatric disorders as well as in 
IBS,16,189,190 has been also suggested to have a relevant impact on 
the neurally mediated regulation of colonic sensory-motor and 
immune function.191 The neuroimmune cross-talk involving the 
stress-induced changes in vagal nerve activity and/or sensitization 
of mast-cells seems to play a critical role in altering visceral sensi-
tivity and intestinal barrier.192

Genetic models of anxiety and depression

In a comparative study using 3 strains of rats known to have 
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varying levels of baseline anxiety, the high-anxiety Wistar-Kyoto 
rats had increased VMR to CRD compared to low-anxiety 
Sprague-Dawley and Fisher-344 animals suggesting a direct link 
between anxiety and visceral hypersensitivity.111 In addition, 
compared to low-anxiety strains of rats, the sensitivity of 
high-anxiety rats was highly exacerbated by peripheral sensitiza-
tion of the colon with a small dose of acetic acid.111 Of note, 
Wistar-Kyoto rats are also considered as a model of depres-
sion,193,194 as are rats from the Flinders Sensitive Line which ex-
hibit increased cholinergic sensitivity compared to control rats of 
the Flinders Resistant Line.195,196 Similarly to Wistar-Kyoto rats, 
Flinders Sensitive Line rats exhibit increased VMR to CRD as 
well as a blunted corticosterone response to acute noise stress 
compared to Flinders Resistant Line, suggesting a link between 
depression, HPA axis dysfunction and visceral hyperalgesia.197

Genetic models of chronic stress

Genetic models that blocked chronically the stress pathways 
by deleting CRF1 receptors showed a decrease in anxiety and co-
lonic sensitivity to CRD.198 Conversely, genetic models of chron-
ic stress relying on the over-expression of CRF stress system in 
mice199 are available and could be useful to study IBS-like mani-
festations, but the visceral sensitivity of these transgenic animals 
has not been assessed yet. However, as CRF over-expressing 
mice display phenotypes of Cushing’s syndrome,200 new promis-
ing genetic models with more selective conditional and/or re-
gion-targeted genetic manipulations including RNAi gene si-
lencing technology to modify CRF-related genes are con-
tinuously developed.201-206 These models will be suitable to ex-
plore specific stress circuitries in the context of targeted chronic 
CRF expression/deletion and the impact on visceral pain modu-
lation which so far is lagging behind.

Stress-Induced Visceral Analgesia: 
How Does It Help Us to Model and 
Understand Visceral Hypersensitivity?

While extensively described in somatic pain field,207 to date 
activation of descending inhibitory pathways in stress-related vis-
ceral responses has received less attention. Opioids have been im-
plicated in descending inhibition of visceral sensitivity following 
an acute stress as evidenced by the fact that naloxone unmasked 
WAS-induced hyperalgesia to CRD in normal Long-Evans rats 
and exacerbated the pain response to CRD in maternally-sepa-
rated rats.117 In another study, a non-opioid, neurotensin-depen-
dent visceral analgesic response was observed 6 hours after ex-

posure to an acute session of WAS in Sprague-Dawley rats, with 
males exhibiting stronger analgesia than females as well as in 
wild-type but not in neurotensin knock-out mice.208 In another 
experimental model, a daily short period (15 minutes) of separa-
tion from PND 2 to 14, decreased VMR to CRD performed im-
mediately after WAS and prevented the development of hyper-
algesia 24 hours after WAS in adult male Long-Evans rats.209 
These data suggest a potential upregulation of endogenous 
pain-modulatory systems by this short maternal separation 
stress.209 Similar findings in adult rats have been recently re-
ported, such that Wistar rats handled daily for 9 days develop vis-
ceral hypoalgesia in response to CRD that becomes significant 7 
days after the last handling.137

These studies point to the type of stress itself contributing to 
the differential recruitment of those descending inhibitory 
pathways. However, importantly, we recently demonstrated that 
mice that had undergone surgery for the placement of EMG 
electrodes on abdominal wall and were subsequently single 
housed to avoid deterioration of implanted electrodes by 
cage-mate, developed visceral hyperalgesia in response to re-
peated WAS (1 hr/day, 10 days) while mice tested for visceral 
pain using the non-invasive solid-state intraluminal pressure re-
cording and kept group housed developed a strong visceral an-
algesia under otherwise similar conditions of repeated inter-
mittent WAS.88 As mentioned before surgery per se is known to 
induce a long lasting visceral hyperalgesia and recent reports sug-
gest that previous injury or exposure to opioids in male rats can 
switch stress influence on pain responses from analgesia to 
hyperalgesia.210 Collectively these data demonstrate that the state 
of the animal tested (naïve vs exposed to surgery), its social envi-
ronment (group housing vs single housing, cage enrichment or 
not), the handling performed by the investigator, the methods 
used to record VMRs (EMG requiring surgery and antibiotic 
post surgery vs manometry not requiring surgery/antibiotic), as 
well as the sex of animals can significantly affect the response to 
exteroceptive stressors. Therefore these preconditions should be 
carefully detailed in describing the experimental conditions and 
taken into consideration in the design, conduct and inter-
pretations of the data when investigating the influence of stress on 
visceral sensitivity in experimental animals.

Based on recent clinical findings demonstrating that IBS pa-
tients have compromised engagement of the inhibitory descend-
ing pain modulation systems,21,211,214 gaining a deeper under-
standing of the mechanisms involved in the expression of 
stress-induced visceral analgesia or lack thereof are promising 
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avenues to be explored and may lead to new therapeutic targets 
for IBS. Therefore the use of non-invasive methods of monitor-
ing VMR that alleviates the surgical, antibiotic and housing im-
pacts on repeated stress modulation of visceral pain represents a 
step forward to gain insight into the underlying mechanisms in 
particular the neural substrates and neurochemistry of stress-re-
lated analgesia as established in the somatic field.207

Sex Differences in Stress-Induced 
Alterations of Visceral Sensitivity

Women are more susceptible to stress-related disorders 
which is consistent with female predominance in IBS patients 
(women to men ratio about 2:1).215,216 Sex differences in the stress 
response and stress-induced pain modulation have been docu-
mented in a number of human studies.217 Clinical trials have also 
revealed important sex-related differences in therapeutic efficacy 
of some serotonergic drugs used in IBS treatment (eg, alosetron, 
5-HT3 receptor antagonist) suggesting a conceivable link be-
tween estrogens and serotonergic mechanisms in the modulation 
of stress-related visceral hypersensitivity.218,219 Contrasting with 
this clinical evidence, most of the preclinical studies assessing 
stress-related alterations in visceral sensitivity have been con-
ducted in male rodents.208,220 However, the few studies per-
formed in female indicate that sex hormones have a significant ef-
fect on visceral sensitivity in rodents.220-224 Therefore, addressing 
the influence of sex and sex hormones in the modulation of vis-
ceral pain by stress appears critical to develop novel therapies rel-
evant to sex difference in IBS.216,225

Mechanisms Involved in Stress-Induced 
Modulation of Visceral Pain

Maladaptive neuroplastic changes leading to persistent in-
creased perception and responsiveness to noxious stimuli, or re-
sponse to normally non-noxious stimuli are key for the expression 
of pathological pain (hyperalgesia and allodynia). Such neuro-
plastic changes can occur in primary afferent terminals (peripher-
al sensitization) but also in the spinal cord (central sensitization) 
and in the brain (supraspinal pain modulation) or in descending 
pathways that modulate spinal nociceptive transmission. Such al-
terations in the processing of sensory information are all consid-
ered as possible mechanisms of visceral hypersensitivity in IBS 
patients.66,226

Peripheral Sensitization: Corticotropin 
Releasing Factor System, Mast Cells, 
Gut Microbiota and Ion Channels

Several reports in both humans and rodents have well docu-
mented the key role played by the peripheral CRF signaling, via 
CRF1 receptors, in the development and expression of visceral 
pain.19,60,227-231 Stress and peripheral administration of CRF in-
duce mast cells degranulation in the colon in experimental ani-
mals and humans,232,233 which contributes to the development of 
visceral hypersensitivity (Fig. 1) via the release of several pre-
formed or newly generated mediators118,234-237 (histamine, tryp-
tase, prostaglandin E2, nerve growth factor) that can stimulate or 
sensitize sensory afferents66,238 by activating a number of ion 
channels widely expressed in colonic afferents239-242 such as 
N-methyl-D-aspartate receptor,242 proteinase-activated recep-
tor,236 and transient receptor potential vanilloid 1243-245 to name a 
few.

Stress can also disrupt the intestinal epithelial barrier thereby 
increasing the penetration of soluble factors (antigens) into the 
lamina propria, leading to nociceptors sensitization,235,246 a phe-
nomenon which appears as a prerequisite for the development of 
visceral hypersensitivity in both humans and rodents.246-248 

Alterations of epithelial permeability following stress involves the 
activation of the peripheral CRF system and may249-253 or may not 
be dependent from mast cell activation238,253 in a time-dependent 
manner. In addition to inducing a leaky epithelial barrier, stress 
can also change the composition of the intestinal and fecal micro-
biota of rodents.254-256 This can in turn have significant impact on 
the host and affect behavior, visceral sensitivity and inflammatory 
susceptibility.257-261

Spinal Cord Plasticity and Glia Activation: 
Central Processing of Peripheral Pain 
Perception

Once peripheral sensitization has occurred, it activates the re-
lease of mediators in the spinal cord including growth fac-
tors262,263 (nerve growth factor or brain-derived neurotrophic fac-
tor) and upregulates some key ion channels and receptors such as 
acid-sensing ion channels 1A and neurokinin 1 receptor264-267 

contributing to the phenomenon of spinal sensitization which has 
been associated with visceral hypersensitivity.

Very recently, spinal cord glia activation has been suggested 
as being another potential mechanism through which spinal sen-
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sitization may occur in response to stress linked to the develop-
ment and maintenance of visceral hypersensitivity.268-270 Candi-
date molecules involved in glia activation signaling include neu-
rotransmitters such as susbstance P or glutamate, but also puri-
nergic agents, opioids, chemokines and glucocorticoids (for re-
view see reference268). Glutamate uptake through spinal gluta-
mate transporters is critical for maintaining normal sensory trans-
mission under physiologic conditions.271,272 A potential deficiency 
in glutamate reuptake by astrocytes associated with the activation 
of spinal cord glia273 has been recently suggested to play a role in 
the spinal sensitization and the development of visceral hyper-
sensitivity in rats.274 Together, these data strongly support the 
concept that transmission of visceral nociceptive signals may be 
enhanced in various conditions of spinal microglia activation.275

Supraspinal Pain Modulation: A Fine-tuning 
between Pain Facilitation and Inhibition

Various supraspinal sites are involved in the modulation of 
visceral pain signals. Rectosigmoid distension in humans acti-
vates sensory (insula and somatosensory cortex), and limbic and 
paralimbic regions (including anterior cingulate cortex, amygdala 
and locus coeruleus).276 Many of these brain regions were also 
found to be significantly activated by CRD in rats.25-27,33,277

The anterior cingulate cortex mediates key emotional-aver-
sive aspects of pain and may also have a mnemonic role in which it 
allows transient storage of information during pain pro-
cessing.189,278 Wistar-Kyoto rats, high-anxiety rats exhibiting vis-
ceral hypersensitivity111 have greater prefrontal cortex activation 
in response to CRD compared to Sprague-Dawley.91 Another 
key limbic system structure that has been implicated in the affec-
tive component of pain is the central amygdala. It is involved in 
the processing of visceral information, attention, emotion and in-
tegrating the physical and psychological components of the stress 
response.279 It has also been found to contribute to visceral hyper-
sensitivity in rats.280-283 Of relevance in the context of stress re-
sponse, the CRF gene expression in the amygdaloid nucleus is 
upregulated in a mouse model of visceral pain and such a re-
sponse is attenuated under conditions of anesthesia.283,284 Like-
wise, the locus coeruleus is a well established target of stress that 
expresses CRF1 receptors, receives CRF innervation from near-
by Barrington nucleus and increases firing in response to CRD 
that is mediated by CRF1 receptor activation as shown by the use 
of CRF receptor antagonists and the responsiveness of LC neu-
rons to both CRD and to central injection of CRF.53,285-290 
Therefore these limbic and pontine sites are well positioned to co-

ordinate gut-brain interaction with visceral information from the 
gut impacting on cortical and limbic activities under conditions of 
stress-CRF1 signaling activation which may modulate the viscer-
al pain responses.60,76,291

Thalamic relay nuclei have a key role in gating, filtering and 
processing sensory information en route to the cerebral cortex 
and are subject to similar activity-induced plasticity processes as 
the spinal cord.292-294 Upregulation of CRF1 receptor in the tha-
lamus is associated with visceral hyperalgesia in the rat model of 
neonatal maternal separation stress.275 Lastly, spinal visceral noci-
ceptive reflexes are subject to facilitatory modulation from the 
rostroventral medulla, providing the basis for a mechanism by 
which visceral sensations can be enhanced from supraspinal 
sites295,296 under stress conditions associated with development of 
visceral hyperalgesia.297 Compromised engagement of descend-
ing pain inhibitory pathways as observed in maternally-stressed 
rats may also contribute to increase the visceral pain responses in 
those animals.117

Therapeutic Implications-Treatment 
Targeting Stress Reduction in 
Irritable Bowel Syndrome

The modulatory role of stress-related brain-gut interactions 
in the IBS pathophysiology, in particular neuroimmune modu-
lation associated with psychological factors and emotional 
state16,189 has been confirmed by the encouraging outcome of 
non-pharmacologic and pharmacologic treatment modalities 
aimed at reducing stress perception.298-300 A broad range of evi-
dence-based mind-body interventions including psychotherapy, 
cognitive behavioral therapy, hypnotherapy, relaxation exercises 
or mindfulness mediation has been shown to amend stress coping 
strategies, both at a cognitive level (catastrophic or self-defeating 
thoughts) and at a behavioral level (problem solving, especially 
interpersonal problems).300,301 The symptomatic improvement 
appears to result from the modulation of stress response, the auto-
nomic nervous system balance restoration, and changes in the 
brain activation pattern in response to visceral stimuli. In addition 
to psychological mind-body approaches, clinical trials confirm 
the effectiveness of centrally-targeted pharmacological inter-
ventions such as with antidepressants, and anxiolytics, or combi-
nation of drugs from both groups in the treatment of chronic pain 
disorders.299,302,303 Many other pharmacological agents with anx-
iolytic and/or antidepressant properties, such as serotonergic and 
opioidergic agents, cannabinoid receptor 1 (CB1) and somatosta-
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tin receptors agonists, CRF1, tachykinin and cholecystokinin re-
ceptors antagonists, have been recently shown to modulate 
stress-induced visceral hyperalgesia in animal models (for de-
tailed review see reference304). Preliminary data suggest that anx-
iolytic activity of γ-aminobutyric acid-ergic agents (gabapentin) 
and α2δ ligand (pregabalin) may be also efficient in reducing 
central sensitization in hyperalgesia in clinical setting305 as shown 
in experimental models.306 New centrally acting agents providing 
analgesic effects include dextofisopam (2,3-benzodoazepine re-
ceptor modulator) and quetiapine (atypical antipsychotic ag-
ent).307

Recent developments showing the critical interdependence 
between the composition and stability of the microbiota and GI 
sensory-motor function indicate a novel approach to IBS treat-
ment with a use of probiotics, prebiotics and antibiotics.260,308 

Specific modulation of the enteric microbiota in the context of 
neuroimmune interactions within the brain-gut axis opens a new 
promising strategy for stress-related disorders, particularly in the 
aspects of comorbidity in functional GI disorders such as IBS.257

However, some of the encouraging data from animal models 
concerning efficiency in alleviating stress-induced visceral hyper-
sensitivity of such agents as CRF1 receptor antagonist,309 
CB1/CB2 receptor antagonist310 or somatostatin receptor agonist 
(octreotide),311 are yet to be confirmed in clinical trials, especially 
with regard to global symptoms improvement and well-being. 
For example, CRF1 receptor antagonists are being investigated 
in Phase II/III clinical trials for depression, anxiety and IBS.42 In 
fact, a recent clinical trial confirmed CRF1 receptor antagonist ef-
ficacy in an anxiety model in healthy participants (7.5% CO2 
model).312 Some observed discrepancies between preclinical 
models and clinical trials may result from limited correlation be-
tween readout from animal studies being based on pseu-
doaffective reflex responses or unlearned behaviors and symp-
toms in IBS patients reflecting subjective pain experience highly 
modulated by cortical influences.1 As discussed in this review, the 
methods used to monitor visceral sensitivity in rodents by induc-
ing some bias in the observed responses could also potentially 
contribute to the lack of clinical translation of some drugs. 

Amelioration of animal models of visceral pain, in their con-
struct and face validity, particularly through the development of 
non-invasive methods to monitor visceral sensitivity together with 
a recently emerging algorithm of drug screening based on phar-
macological brain imaging techniques opens promising venues in 
establishing an adequate approach in identifying effective treat-
ment for IBS symptoms as well as IBS-related quality of life 

impairment. 
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