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Mutations in CDON, Encoding a Hedgehog Receptor,
Result in Holoprosencephaly and Defective
Interactions with Other Hedgehog Receptors

Gyu-Un Bae,1,2,4,6 Sabina Domené,3,4,7 Erich Roessler,3 Karen Schachter,1,8 Jong-Sun Kang,2,5,*
Maximilian Muenke,3,5,* and Robert S. Krauss1,5

Holoprosencephaly (HPE), a common human congenital anomaly defined by a failure to delineate the midline of the forebrain and/or

midface, is associated with diminished Sonic hedgehog (SHH)-pathway activity in development of these structures. SHH signaling is

regulated by a network of ligand-binding factors, including the primary receptor PTCH1 and the putative coreceptors, CDON (also called

CDO), BOC, and GAS1. Although binding of SHH to these receptors promotes pathway activity, it is not known whether interactions

between these receptors are important. We report here identification of missense CDON mutations in human HPE. These mutations

diminish CDON’s ability to support SHH-dependent gene expression in cell-based signaling assays. The mutations occur outside the

SHH-binding domain of CDON, and the encoded variant CDON proteins do not display defects in binding to SHH. In contrast,

wild-type CDON associates with PTCH1 and GAS1, but the variants do so inefficiently, in a manner that parallels their activity in

cell-based assays. Our findings argue that CDONmust associate with both ligand and other hedgehog-receptor components, particularly

PTCH1, for signaling to occur and that disruption of the latter interactions is a mechanism of HPE.
Introduction

Holoprosencephaly (HPE [MIM 236100]) comprises a clin-

ical spectrum of related malformations of the brain and

face that reflect gradations of disrupted developmental

midline patterning.1 HPE occurs with a remarkably high

frequency, in at least one in every 250 conceptions.2 Path-

ogenic causes include environmental factors, such as

teratogens, and genetic factors, including clinically

distinct syndromes, micro- and macro-cytogenetic alter-

ations, and single gene mutations in at least nine genes.3

Single gene mutations are always heterozygous and, where

tested, result in loss of function.3 The genetic heteroge-

neity of the HPE spectrum of disorders is considerable, as

is the variable expressivity of pathogenic mutations, even

within the same family. To a large extent, the molecular

basis of this variability is unknown. However, the best

understood mechanisms for HPE-like malformations are

defects in various components of the Sonic hedgehog

(SHH [MIM 600725])-signaling pathway.3,4

The binding of SHH to its primary receptor PTCH1 (MIM

601309) activates a signal transduction cascade that culmi-

nates in expression of pathway target genes via the GLI

family of transcription factors.5,6 Among the direct target

genes are PTCH1 and GLI1 (MIM 165220) themselves.5,6

Additional membrane-associated SHH-binding proteins

exist, some of which appear to serve as coreceptors with
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PTCH1. For example, the related IgSF proteins CDON

(MIM 608707) and BOC (MIM 608708) and the GPI-linked

factor GAS1 (MIM 139185) each interact directly with

SHH7–12 and individually associate with PTCH1.13

Although binding of SHH to these receptors promotes

pathway activity, it is not known whether interactions

between the receptors are important.

Cdon�/� mice display HPE with strain-specific severity

and have phenotypes ranging from severe to mild depend-

ing on the genetic background.14,15 Although Boc�/� mice

do not have HPE and Gas1�/� mice have mild HPE,

Cdon�/�;Boc�/� and Cdon�/�;Gas1�/� double mutants

display more severe forms of HPE than any single mutant,

suggesting that these factors may cooperate to promote

SHH-mediated patterning of the rostroventral mid-

ine.16,17 Because the mouse-strain-dependent variability

in penetrance and expressivity of HPE phenotypes in

Cdon�/� mice resembles the variability seen in human

HPE, CDON is a strong candidate to be an HPE-associated

factor. We report here the identification of missense

CDON mutations in human HPE. The mutations result in

diminished activity in SHH-signaling assays, consistent

with a significant role for this coreceptor in HPE pathogen-

esis. Furthermore, we find that CDON associates with

PTCH1 and GAS1, but the HPE-associated variants do so

inefficiently in a manner that parallels their activity in

cell-based assays. These results argue that CDON must
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associate with other hedgehog-receptor components for

signaling to occur and that disruption of such interactions

is a mechanism of HPE.
Material and Methods

Human DNA Samples and SNP Detection
We studied 282 unrelated individuals diagnosed with HPE spec-

trum disorders and 96 commercially available anonymous normal

controls. Genomic DNA was extracted from peripheral blood or

transformed lymphoblast cell lines by standard methods. All indi-

viduals with HPE were recruited into a National Human Genome

Research Institute institutional-review-board-approved research

protocol in accordance with their ethical guidelines and supervi-

sion. All probands and available parents were studied for relevant

coding-region alterations and their inheritance in the four genes

most commonly screened in HPE (SHH, ZIC2, SIX3, and TGIF)

by bidirectional Big Dye version 3.1 terminator cycle sequencing

on an ABI 3100 instrument (Applied Biosystems, Foster City,

CA) as described.18

Mutation detection for CDON was performed by PCR-based

denaturing high performance liquid chromatograhy (dHPLC)

analysis followed by direct sequencing. PCR amplification, dHPLC

analysis employing WAVE and WAVEMAKER (Transgenomic,

Omaha, NE), amplicon purification with the QIAGEN PCR purifi-

cation kit (QIAGEN, Valencia, CA), and DNA sequencing with the

Big Dye version 3.1 terminator cycle sequencing on an ABI 3100

instrument were performed according to the manufacturers’

instructions, essentially as previously described.19 We then

compared our research findings to those described in publicly

available databases (dbSNP and 1000 Genomes) as summarized

in Table S1, available online.

For this study we used the reference sequence NM_016952.4

comprising 19 coding exons of human CDON. PCR was performed

with primer pairs and conditions listed in Table S2. In brief, we per-

formed amplificationof genomicDNA in 35 ml reactionvolumes by

using 60–100 ng of genomic DNA, 200 mM dNTP, 20 pmol of each

primer, 13 PCR buffer (Invitrogen, Carlsbad, CA), 0.53 enhancer

(Invitrogen), 1.5 mM MgSO4 (Invitrogen), and 2.5 U of AmpliTaq

(Applied Biosystems). All reactions were performed in a PTC-225

thermocycler (MJ Research, Waltham, MA). PCR-cycling parame-

terswere (1) 95�Cfor 4min; (2) 50 cycles of 95�Cfor 30 s, an anneal-

ing temperature (Table S2) for 30 s, and 72�C for 1 min; and (3)

a final step of 72�C for 7 min. After amplification, PCR products

were denatured at 96�C for 1min, followed by gradual reannealing

to 65�C over a period of 30 min to form homo- and/or heterodu-

plexes. Products were automatically loaded on a DNA sep column

and eluted according to the manufacturer’s instructions at a flow

rate of 1.5 ml/min with a mixture of buffer A (0.1 mM TEAA) and

buffer B (0.1mMTEAA and 25%acetonitrile); the amount of buffer

Bwas increased 10%perminute for 2.5min. Sampleswere detected

by anultravioletC system.Wedetermined the oven temperature(s)

for optimal heteroduplex separation under partial DNA denatur-

ation for each amplified fragment by using the WAVEMaker

software (version4.1) and adjusted empirically. Because the dHPLC

approach is based on the differential retention of homo- and

heteroduplex DNA fragments by ion-pair chromatography under

conditions of partial heat denaturation, optimal discrimination

of double-stranded combinations depends on the temperature at

which partial denaturation of heteroduplexes occur. Most ampli-

cons were composed of different melting domains; thus more
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than one elution temperature was needed to detect the variants.

The data profiles of all samples were analyzed by visual inspection,

and those with clear or suggestive variant peaks were sequenced

with the same primers as used for PCR. The dHPLC screening

method detects at least 96% of the sequence variation of a test

amplicon20 but is not as specific as Sanger sequencing for allele

discrimination.
Cell-Culture and Expression Vectors
C2C12, 293T, Cos7, RD, and 10T1/2 cells were cultured as previ-

ously described.21,22 Mouse embryo fibroblast lines derived from

Cdon�/� mice were derived and cultured with standard proto-

cols.23 For SHH-signaling assays, cells were reverse transfected

with plasmids diluted in Opti-MEM with Lipofectamine 2000

(Invitrogen) in individual wells of 6-well plates. Cells were added

to 80%–90% confluence; transfection efficiency was 80%–90%.

Plasmids were either previously published expression vectors

encoding rat CDON,24 human BOC,25 human PTCH1,26 and

mouse Cdon siRNA15 or a mouse GAS1 expression vector; the

mouse Gas1 cDNA was cloned by RT-PCR. Vectors encoding rat

CDON variants were constructed by PCR mutagenesis27 with

pBabePuro-rCDON as a template and were verified by sequencing

(primers used are described in Table S4). Vectors encoding CDON-

Fc and CDON proteins with specific ectodomain deletions were

described previously.25,28
Immunoblot Analysis and Immunoprecipitation
Immunoblot analyses were carried out as previously described.29

Briefly, cells were lysed in lysis buffer (10 mM Tris-HCl [pH 7.2],

150 mM NaCl, 1% Triton X-100, and 1 mM EDTA) containing

Complete Protease Inhibitor Cocktail (Roche Diagnostics),

followed by SDS-PAGE. Primary antibodies used in this study

were anti-CDON, anti-BOC, anti-GAS1 (R&D Systems), anti-

b-tubulin (Zymed), anti-flag (Sigma Aldrich), anti-human Fc

region of IgG (Jackson Immunoresearch), and anti-PTCH1 (Santa

Cruz). Coimmunoprecipitations were performed as described

previously.29 Quantification of coimmunoprecipitations was per-

formed with Image-Gauge software (Fuji Film, Tokyo, Japan).

Results are expressed as mean 5 standard deviation (SD) from at

least three independent experiments and analyzed by Student’s

t test using SPSS (version 12.0; SPSS, Chicago, IL, USA).
RNA Extraction and Quantitative RT-PCR
For analysis of Ptch1 and Gli1 mRNA levels after SHH treatment,

10T1/2 cells orCdon�/�mouse embryonic fibroblasts (MEFs) trans-

fected with the indicated expression vectors were grown in Dul-

becco modified Eagle medium (DMEM) containing 10% fetal

bovine serum. Twenty-four hours after transfection, near

confluent cultures were changed to DMEM plus 2% horse serum

and treated with recombinant SHH (R&D Systems) (400 ng/ml)

for 24 hr. Total RNA was extracted using easy-Blue reagent

(iNtRON Biotechnology, Kyunggi-do, South Korea). The cDNAs

were reverse-transcribed from one mg of total RNA with oligo-dT

primer and SuperScript II reverse transcriptase (Invitrogen). PCR

reactions were performed with 5% of the reverse transcription

(RT) reaction, 250 nM of each primer, and SYBR Premix Ex Taq

polymerase (Takara). PCR reactions were performed on an ABI

PRISM 7000 Sequence Detection System (Applied Biosystems).

Expression levels of Gapdh were used to normalize the expression

levels of each sample. Primer sequences used were as described

previously.15
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Table 1. Clinical and Molecular Findings of Individuals with CDON Mutations

Patient Number CDON Variation Amino Acid Inheritance Clinical Findings

5410 c.2051C>G p.Thr684Ser maternal; both parents tested aborted fetus, referred for HPE findings.

7190 c.2065C>G p.Pro689Ala unknown; parents unavailable agenesis of the corpus callosum,
hypotelorism, growth hormone deficiency,
global developmental delay; dark, thick
eyebrows with synophrys.

5308 c.2071G>A p.Val691Met maternal by clinical history;
parents not available

suspected autosomal dominant HPE,
microcephaly, developmental delay; half-sib
died at two months of semi-lobar HPE and
biliary atresia.

6864 c.2339T>A p.Val780Glu unknown; mother negative,
father unavailable

HPE-like, midline cyst of falx cerebri.

5288 c.2368A>G p.Thr790Ala de novo; both parents tested agenesis of the corpus callosum, alobar HPE,
hypotelorism, mild proptosis, median cleft
lip/palate, absent columella, cryptorchidism.
at autopsy: incomplete separation of the
frontal lobes, absent pituitary, adrenal
atrophy, absent corpus callosum, optic tracts
with single cerebral artery. hepatic
cholestasis and polysplenia noted.

7321 c.2818A>C p.Ser940Arg unknown; mother negative,
father unavailable

alobar HPE findings.
Determination of CDON Protein Half-Lives
We transfected Cdon�/� MEFs with expression vectors encoding

wild-type (WT)CDONandCDONvariants by using Lipofectamine

2000. Forty-eight hours after transfection, cells were treated with

10 mM cycloheximide and harvested at various time points there-

after. Cell lysates were analyzed by immunoblotting for CDON,

and, as a loading control, b-actin. CDON levels were quantified

by densitometry with ImageJ software, normalized to actin levels,

and compared to untreated samples. Half-lives reported are aver-

ages of three experiments. Data were analyzed by Student’s t test.

SHH-N::AP Cell-Surface-Binding Assays
Experiments were performed as previously described.11 In brief,

Cos7 cells were transfected with expression vectors for WT

CDON or CDON variants with Lipofectamine 2000. Forty-eight

hours after transfection, cells were washed with PBS and incubated

with increasing concentrations of ShhN::AP for 90 min at room

temperature. Cells were washed extensively with PBS, fixed with

PFA, and bound AP activity was measured with AP yellow liquid

substrate (Sigma). Saturation binding curves and Scatchard anal-

yses were performed with GraphPad Prism software. Experiments

were performed at least three times and Kd values were determined

by fitting each data set to the one-site-specific binding model by

nonlinear regression.
Results

We analyzed 282 unrelated individuals with HPE spectrum

disorders and 96 anonymous controls for sequence varia-

tions of CDON. A total of 44 distinct sequence variations

were identified within the amplicons tested (Tables S1

and S2), of which 24 were not previously described; one

variant was also seen in a cohort with a different

anomaly.30 We chose to focus on the rare variants that

were not detected in public databases or in our anonymous
The Americ
control cohort. Six heterozygous missense mutants found

only in HPE cases were chosen for further study: (1)

c.2051C>G (p.Thr684Ser), (2) c.2065C>G (p.Pro689Ala),

(3) c.2071G>A(p.Val691Met), (4) c.2339T>A(p.Val780Glu),

(5) c.2368A>G (p.Thr790Ala), and (6) c.2818A>C

(p.Ser940Arg) (see the clinical summary in Table 1 and

Figure 1A). Although information on parental genotypes

was limited, at least onemutationwas a denovo occurrence

in the affected individual (p.Thr790Ala; Table 1).

To assess the functional consequences of the six HPE-

associated CDON mutations, we engineered equivalent

mutations into a rat Cdon cDNA and performed cell-based

assays (the corresponding human and rat mutations and

their positions within CDON are shown in Figure 1A).

Expression of WT CDON in Cdon�/� MEFs conferred

SHH-dependent induction of the endogenous Ptch1 and

Gli1 (Figures 1A and 1C). Expression of the p.Pro686Ala,

p.Val777Glu, p.Ile787Ala, and p.Ser937Arg variants failed

to support induction of Ptch1 and Gli1 in this system,

revealing them to be defective in ligand-initiated pathway

activity; in contrast, the p.Thr681Ser and p.Val688Met

variants were as active as WT CDON in this assay (Figures

1B–1D). Similar results were obtained with 10T1/2 cells,

except that the p.Ile787Ala substitution was only partially

defective (Figure S1). p.Thr681Ser may correspond to a

rare human SNP;30 p.Val688Met may also be a rare,

benign variant, or it may affect CDON function in a way

not revealed by this assay. The ability of the defective

variants to promote SHH signaling was dose dependent,

because transfection of 2.5 times the amount of plasmid

used in Figure 1B–1D and Figure S1 revealed that when

expressed at this level, the p.Val777Glu, p.Ile787Ala, and

p.Ser937Arg substitutions possessed 35%–75% the activity

of WT CDON in Cdon�/� MEFs; p.Pro686Ala was still
an Journal of Human Genetics 89, 231–240, August 12, 2011 233



Figure 1. CDON HPE Variants Do Not Support
SHH-Dependent Gene Expression
(A) Schematic diagram of CDON and the location
of HPE-associated variants. The missense CDON
variants from human HPE cases (hCDON) and
the corresponding residues engineered into a rat
Cdon (rCDON) cDNA are shown at the right.
The p.Thr684Ser and p.Thr681Ser (T684S and
T681S), p.Pro689Ala and p.Pro686Ala (P689A
and P686A), and p.Val691Met and p.Val688Met
(V691M and V688M) variants are in the linker
region between Fn repeats 1 and 2. The
p.Val780Glu and p.Val777Glu (V780E and
V777E) and the p.Thr790Ala and p.Ile787Ala
(T790A and I787A) variants are in Fn repeat 2.
The p.Ser940Arg and p.Ser937Arg (S940R and
S937R) variants are in the linker region between
Fn repeat 3 and the transmembrane (TM) region.
SHH binds to Fn repeat 3.
(B and C) qRT-PCR analysis of Ptch1 (B) and Gli1
(C) expression in Cdon�/� MEFs transfected with
2 mg of the indicated CDON vectors plus or minus
treatment with SHH. Expression was normalized
to Gapdh.
(D) qRT-PCR analysis of expression of CDON
variants in Cdon�/� MEFs from same lysates
analyzed in (B and C).
Error bars represent the means of triplicate deter-
minations 5SD. **p < 0.01 as compared to wild-
type CDON.
largely inactive even at the higher dose (Figure 2). Again,

similar results were seen with 10T1/2 cells (Figure S2).

Therefore, these mutations appear to be loss-of-function

but not null. We also analyzed this cohort for changes

in the four genes most commonly studied in HPE18

(SHH, SIX3 [MIM 603714], ZIC2 [MIM 603073],and TGIF

[MIM 602630]), and of those individuals withCDONmuta-

tions, only one had a mutation in these genes (Table S3);

our study subject with the p.Val691Met variation

(p.Val688Met in the rat construct that behaved normally

in functional assays) had an alanine tract expansion in
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ZIC2 that is most likely a pathological alteration.31,32

Therefore, the four individuals with loss-of-function

CDON mutations did not harbor additional mutations in

the genes most often associated with HPE.

To begin to address the molecular properties of the

HPE-associated variant CDON proteins, their half-

lives and ability to bind SHH were quantified. The half-

lives of WT CDON and the p.Thr681Ser, p.Pro686Ala,

p.Val688Met, and p.Ile787Ala variants were all ~2 hr,

whereas the half-lives of p.Val777Glu and p.Ser937Arg

were ~34% shorter than that (Table 2). Furthermore,
Figure 2. Overexpression Reveals Partial Loss
of Function in Some CDON Variants
(A and B) qRT-PCR analysis of Ptch1 (A) and Gli1
(B) expression in Cdon�/� MEFs transfected with
5 mg of the indicated CDON vectors plus or minus
treatment with SHH. Expression was normalized
to Gapdh. Error bars represent the means of tripli-
cate determinations5SD. **p< 0.01, *p< 0.05 as
compared to WT CDON.
(C) Immunoblot analysis of CDON expression in
10T1/2 cells under the conditions used in
(A and B).
CDON variants are designated as in Figure 1.
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Table 2. Properties of HPE-Associated CDON Variants

CDON Variant Half-Life (hr)
Dissociation Constant (Kd)
for ShhN::AP (nM)

WT CDON 2.03 5 0.23 5.52 5 1.13

p.Thr681Ser 2.22 5 0.21 3.12 5 1.16

p.Pro686Ala 2.22 5 0.51 3.14 5 1.18

p.Val688Met 2.89 5 0.65 2.03 5 0.19

p.Val777Glu 1.36 5 0.21a 9.26 5 3.16

p.Ile787Ala 2.23 5 0.47 1.54 5 0.63

p.Ser937Arg 1.34 5 0.21a 4.05 5 1.71

a p < 0.05.
when the CDON variants were immunoprecipitated under

conditions of limited proteolysis, p.Val777Glu and

p.Ser937Arg revealed distinct products not seen with WT

CDON or the variants with a normal half-life (Figure S3).

These results suggest that p.Val777Glu and p.Ser937Arg

have an altered conformation that may partially destabi-

lize them and contribute to their loss of function.

To determine the ability of CDON HPE variants to bind

SHH ligand, a soluble SHH-N::AP fusion protein (consisting

of theN-terminal portion of SHHwith alkaline phosphatase

fused to its carboxy terminus) was used in saturation

binding experimentswith cells that expressedWTor variant

forms of CDON. Dissociation constants (Kd) for binding of

SHH-N::AP to WT CDON and all variants were in the low

nanomolar range (Table 2 and Figure S4), similar to the find-

ings inaprevious report.11Moreover, thevariation inKd that

existed among the CDON variants did not correlate with

their abilities to promote SHH-initiated induction of Ptch1

orGli1 inCdon�/�MEFs or 10T1/2 cells as shown in Figure 2

and Figure S2 (R ¼ 0.17–0.24; Figure S5). This is consistent

with the fact that none of the mutations occurred in Fn(3),

the SHH-binding repeat of CDON11,12 (Figure 1A), and indi-

cates that the variants’ defective ability to support SHH-

dependent gene expression is unlikely to be due to dimin-

ished ability to associate with ligand.

Because the CDON HPE variants were not defective in

binding to SHH, we assessed their ability to bind other

components of the signal reception machinery, including

PTCH1, BOC, GAS1, and WT CDON itself, in coimmuno-

precipitation experiments. CDON and PTCH1 coimmuno-

precipitated both endogenously and in transfectants

(Figure 3A and Figure S6). Three of the four variants

defective in promoting SHH signaling (p.Pro686Ala,

p.Val777Glu, and p.Ser937Arg) displayed significantly

diminished ability to coprecipitate with PTCH1 (Figures

3A and 3B). These experiments require a level of trans-

fected vector similar to that used in the Cdon�/�-MEF-

based and 10T1/2-cell-based functional assays shown in

Figure 2 and Figure S2, where partial loss of function of

the HPE-associated variants was observed. In contrast to

the lack of correlation with SHH binding, the diminished
The Americ
activities of the variants in these assays correlated very

well with their reduced level of binding to PTCH1 (R ¼
0.88–0.99, p ¼ 0.008–< 0.001; Figure S5). CDON has also

been shown to interact with itself and with BOC,25,33 but

the CDON HPE variants did not display any defect in

binding to WT CDON (Figure S7) and only p.Pro686Ala

showed decreased ability to associate with BOC in coim-

munoprecipitations (Figures 3C and 3D).

CDON has not previously been shown to associate with

GAS1. Endogenous GAS1 coimmunoprecipitated with

endogenous CDON and the presence of GAS1 in the

precipitate was strongly diminished by depletion of

CDON by RNAi, indicating the specificity of the interac-

tion (Figure 3E and Figure S8). GAS1 also coimmunopreci-

pitated with BOC (Figure S8). The amount of GAS1 that

coprecipitated with CDON was not significantly altered

by pretreatment of the cells with SHH-N (Figure S8). Coim-

munoprecipitation was also observed when GAS1 was

ectopically coexpressed with the CDON or BOC ectodo-

mains in 293T cells (Figure S8). The ability of HPE-associ-

ated CDON variants to interact with GAS1 was therefore

assessed in cotransfectants. Three of the four variants

defective in promoting SHH signaling (p.Pro686Ala,

p.Ile787Ala, and p.Ser937Arg) displayed significantly

diminished ability to coprecipitate GAS1 (Figures 3F and

3G), and the reduction in GAS1 binding correlated with

their reduction in activity in the Cdon�/�-MEF-based and

10T1/2-cell-based assays (R ¼ 0.73–0.90, p ¼ 0.06–0.005;

Figure S5), though not as strongly as PTCH1 binding did.

If the diminished binding to GAS1 (and to BOC for

p.Pro686Ala) was critical to the CDON variants’ loss of

function, these receptors might be predicted to synergize

to promote SHH ligand-dependent pathway activity.

However, coexpression of combinations of any two or all

three coreceptors in Cdon�/� MEFs or 10T1/2 cells revealed

largely additive effects (Figure 4 and Figure S9). Further-

more, expression of CDON HPE variants did not inhibit

the activity of GAS1 plus BOC to stimulate SHH-dependent

induction of Gli1 or Ptch1 in 10T1/2 cells or in Cdon�/�

MEFs, suggesting that these variants do not possess a domi-

nant inhibitory activity toward WT (endogenous) CDON

or the other coreceptors (Figure 4 and Figure S9).

CDON binds to PTCH1 via both the Fn(1) and Fn(2)

repeats in its ectodomain.13 So that we could determine

the specific CDON ectodomain repeat(s) involved in

binding to BOC, GAS1, and CDON itself, cells were co-

transfected to express a series of secreted CDON extracel-

lular region-Fc fusion proteins and either BOC, GAS1, or

WT CDON. The CDON-Fc proteins were pulled down

and immunoblotted for Fc and either BOC, GAS1, or

CDON. In these experiments, we found that Fn(2) bound

to GAS1; Fn(2) and, to a lesser extent, Fn(3) bound to

BOC; and full-length CDON associated efficiently with

a CDON-Fc construct containing all three Fn repeats but

more weakly with the individual Fn(2) and Fn(3) repeat

constructs (Figures 5A–5D). Fn(3), which is necessary

and sufficient for binding SHH, is required for CDON
an Journal of Human Genetics 89, 231–240, August 12, 2011 235



Figure 3. CDON Variants Display Dimin-
ished Interaction with Other SHH-Binding
Proteins
(A) Cos7 cells were transfected with an
expression vector encoding flag-tagged
PTCH1 (þ) or a control vector (�) and
expression vectors encoding CDON, the
indicated CDON variants, or a control
vector (pBp) as indicated. Lysates were
immunoprecipitated with antibodies to
flag epitope and immunoblotted with
antibodies to flag or CDON. Lysates were
also blotted as a control.
(B) Results from three independent experi-
ments were quantified for the amount of
CDON that immunoprecipitated with
PTCH1.
(C) 293T cells were transfected with an
expression vector encoding BOC (þ) or
a control vector (�) and expression vectors
encoding CDON, the indicated CDON
variants, or a control vector (pBp) as indi-
cated. Lysates were immunoprecipitated
with antibodies to the CDON intracellular
region and immunoblotted with anti-
bodies to CDON or BOC. Lysates were
also blotted as a control.
(D) Results from three independent exper-
iments were quantified for the amount
of BOC that immunoprecipitated with
CDON.
(E) 10T1/2 or C2C12 cell lysates were
immunoprecipitated with antibodies to
CDON and immunoblotted with anti-
bodies to CDON and GAS1. Lysates were
immunoblotted as a control.
(F) 293T cells were transfected with an
expression vector encoding GAS1 (þ) or
a control vector (�) and expression vectors
encoding CDON, the indicated CDON
variants, or a control vector (pBp) as indi-
cated. Lysates were immunoprecipitated
with antibodies to the CDON intracellular

region and immunoblotted with antibodies to CDON or GAS1. Lysates were also blotted as a control.
(G) Results from three independent experiments were quantified for the amount of GAS1 that immunoprecipitated with CDON.
CDON variants are designated as in Figure 1. Error bars represent the means of triplicate determinations 5SD. **p < 0.01, *p < 0.05 as
compared to wild-type CDON.
activity.11,12 We investigated the requirements of Fn(1)

and Fn(2), involved in CDON binding to PTCH1 and

GAS1, through use of CDON deletion mutants that lacked

either or both domains. Removal of Fn(1) reduced CDON’s

ability to promote SHH-dependent induction of Gli1 and

Ptch1 in Cdon�/� MEFs by less than 50%, whereas loss of

Fn(2) reduced activity by ~70% and removal of both

Fn(1) and Fn(2) reduced activity by ~85% (Figures 5E–

5G). These results indicate that the Fn repeats that interact

with PTCH1 and other SHH receptors, particularly Fn(2),

are important for CDON function.

Discussion

We report here the identification of CDON mutations in

individualswithHPE. TheHPE spectrumofdefects is charac-

terized by a very broad range of phenotypic severity. Studies

with Cdon mutant mice recapitulate these characteristics
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because these animals display HPE with strain-dependent

severity.14,15 The CDON mutations identified are typical of

those generally associated with HPE in that they are hetero-

zygous and result in a loss of ability to promote SHH

signaling. Additionally, at least one such mutation was

a de novo occurrence in the affected individual (Table 1).

Taken together, these results argue persuasively that CDON

mutations are important contributing factors to HPE.

Defects in the SHH pathway are the most common

known cause of HPE, and our analysis of HPE-associated

CDON mutations provides insight into mechanisms of

hedgehog signaling. The mutations reported here did not

occur in Fn(3), the CDON ectodomain repeat that binds

directly to SHH, and they did not result in obvious defects

in ability to confer cell-surface binding of a recombinant

form of SHH. In contrast, we find that these CDON vari-

ants associated inefficiently with two other proteins that

bind SHH to the cell-surface, the primary receptor PTCH1
2, 2011



Figure 4. CDON, BOC, and GAS1 Have Roughly Additive Activity in Promoting SHH-Dependent Gene Expression
(A and B) qRT-PCR analysis of Ptch1 and Gli1 expression in Cdon�/� MEFs transfected with 2 mg of the indicated CDON, BOC, and GAS1
expression vectors plus or minus treatment with SHH. Expression was normalized to Gapdh.
(C) qRT-PCR analysis of expression of CDON variants in Cdon�/� MEFs from same RNA samples analyzed in (A and B).
(D) Immunoblot analysis of CDON, BOC, and GAS1 expression inCdon�/�MEFs transfected with 5 mg of CDON, BOC, and GAS1 expres-
sion vectors.
CDON variants are designated as in Figure 1. Error bars represent the means of triplicate determinations5SD. **p< 0.01 as compared to
wild-type CDON.
and the coreceptor GAS1, in a manner that paralleled their

diminished activity in SHH-signaling assays. This was

specific as the variants associated normally with two

different SHH coreceptors, BOC and WT CDON itself

(the one exception was a decrease in the ability of the

p.Pro686Ala substitution to associate with BOC). These

results indicate that interaction between proteins that

bind SHH to the cell-surface is an important aspect of

SHH signal reception.

Studies with mice carrying mutations in Cdon, Boc, and

Gas1, singly or in combination, lead to the conclusion

that: (1) these factors have both specific and overlapping

functions; (2) no single factor is essential for hedgehog-

pathway activity; and (3) they are collectively required

for hedgehog-pathway function in that combined loss

of all three factors results in a nearly complete loss of

pathway activity in the early embryo.16,17,34 Furthermore,

a SHH point mutant that binds PTCH1 but not CDON,

BOC, or GAS1 is unable to activate hedgehog-pathway

signaling.13 These studies are consistent with a model

whereby SHHmust engage PTCH1 and at least one of these

coreceptors to activate signaling. However, whether the

coreceptors need to interact with PTCH1 and/or each other

has not been addressed. The selectively reduced ability of

the HPE-associated CDON variants to interact with

PTCH1 and GAS1 argues that interactions between SHH

receptors are important for signaling. Taken together, the
The Americ
results are consistent with the notion that CDON (and

presumably BOC and GAS1) must associate with both

ligand and other hedgehog-receptor components, particu-

larly PTCH1, for signaling to occur. The fact that mice

lacking any two of CDON, BOC, or GAS1 still display

a significant, though very obviously diminished, level of

SHH-dependent embryonic patterning argues that these

factors share at least some redundant or compensatory

activity.16,17,34 Our finding that these three factors func-

tion largely additively to promote SHH signaling in trans-

fectants is consistent with this conclusion. The diminished

binding to PTCH1 displayed by the HPE-associated CDON

variants is therefore likely to be a more important func-

tional defect than diminished binding to GAS1 in their

loss of activity, though the latter may also contribute.

In summary, it is concluded that mutation-induced

disruption of interactions between components of the

hedgehog-reception machinery is a mechanism of HPE.

Supplemental Data

Supplemental Data include nine figures and four tables and can be

found with this article online at http://www.cell.com/AJHG/.
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