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The success of stroke studies in animals depends on the choice 
of the experimental model species. This selection must be rigor-
ous because it is the most important aspect of experiment design. 
An inadequate model may lead to limitations that compromise 
results and analyses. Furthermore, the extrapolation of results 
from animal models to humans can be unreliable.14

Four basic types of animal models are referred to in the medical 
literature: induced, spontaneous, negative, and orphan. The first 
2 types are the most important models. As the name suggests, in 
induced models, a diseased condition is induced experimentally, 
as in the induction of diabetes mellitus.54 Spontaneous models of 
human diseases involve animals that naturally present a disease 
with similar causes and symptoms.54 Several hundred breeds or 
strains of animals have inherited diseases that display similar 
conditions to those in humans and therefore have been character-
ized and maintained.54

Negative models involve a specific disease that inhibits growth, 
such as gonococcal infection in rabbits, and includes animals that 
are unable to react when submitted to a specific condition. The 
most common application of negative models involves studying 
the mechanism of resistance to achieve a clear understanding of 
the physiology.14

Orphan models of disease refer to conditions that occur natu-
rally in nonhuman species but have not yet been described in 
humans. An orphan model is studied when a similar disease is 
identified in humans.54

Stroke
Stroke is a focal neurologic deficit caused by an alteration in 

circulation in the encephalon. In the last decade, this term has 
evolved to include injuries caused by hemodynamic disturbanc-
es and coagulation that cannot be detected in arteries or veins.70 
Stroke is one of the most prevalent pathologies affecting the CNS. 
Recent studies indicate that stroke has become the second most 
common cause of death. Stroke is important for public health 
reasons because it is the main cause of physical and cognitive 
incapacities in developing countries.30,12,33 In 2001, stroke was re-
sponsible for 5.5 million deaths and 15 million nonlethal brain 
injuries worldwide; these figures are projected to increase to 6.3 
million deaths in 2015 and 7.8 million in 2030.46,67 Stroke lethality 
is 11% in women and 8.4% in men and is more prevalent among 
blacks than whites, especially in the younger age groups.45

Of all strokes, 88% are ischemic, 9% involve an intracerebral 
hemorrhage, and 3% involve a subarachnoid hemorrhage. The 
most common type of stroke is atherothrombotic brain infarction, 
which accounts for approximately 61% of all strokes (excluding 
transient ischemic attacks). The second most common type of 
stroke is embolic stroke, at 22%.66 Most stroke survivors develop 
lasting symptoms, such as physical and intellectual limitations, 
leading to high social costs.

Encephalic vascular accident (EVA) is the newest terminology 
used to describe stroke, replacing the previous nomenclature of 
‘cerebrovascular accident.’56 EVA occurs in 4 different forms: 1) 
ischemic and transitory, with decreased blood flow and possible 
recovery after 24 h; 2) ischemic and complete, with neurologic 
deficits caused by a vascular disturbance for one day or more that re-
mains stable; 3) progressive, with intermittent increases in deficits 
caused by embolisms or thrombus and 4) hemorrhagic, with rup-
tured vessels and blood overflow caused by increased intracranial 
pressure. The main risk factors of EVA are hypertension, obesity, 
smoking, sedentary lifestyle, stress, and high cholesterol.1
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Figure 1. Major human arteries and specific clinical symptoms produced after stroke.
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present additional complications, such as diabetes, hypertension, 
or coronary disease. Age is a primary risk factor for stroke pathol-
ogies, and this factor is often overlooked in studies on animals. 
The use of older animals can provide information about stroke-
induced damage and facets of the recovery process that are not 
well-represented in younger animal models.68 For example, one 
study used young and old rats to assess the reduction in blood 
volume due to a cortical infarction after occlusion of the transient 
middle cerebral artery occlusion.31 Several intergroup differences 
emerged, including the total volume of affected tissue, edema 
formation, and functional consequences.31

In 3 databases (Medline, http://www.ncbi.nlm.nih.gov/
pubmed/; Lilacs, http://regional.bvsalud.org; SciELO, http://
www.scielo.br/), mice were the most commonly used animal 
model, followed by rats, rabbits, dogs, swine, and primates. 
Approximately 85% of the articles in Medline and 70.5% of the 
entries in Lilacs used mice as models.14 The success of stroke re-
search requires parallel studies to identify the best animal model 
for each form of EVA. Therefore, detailed anatomic knowledge of 
the encephalic vessels of various species is essential for develop-
ing a reliable and useful model of the pathology.

General Encephalic Vasculature
The brain has undergone many structural evolutionary changes.48 

As the complexity of the nervous system has increased through-
out evolution, the encephalon and arrangement of arterial vessels 
have also been modified, with a correlation between the evolution 
of the CNS and modifications in the arrangement of encephalic 
vessels. The vessels that supply the encephalon constitute the 
circle of Willis. These arteries include the anterior and posterior 
cerebral arteries and the anterior and posterior communicating 
arteries. The vertebral arteries that unite to form the basilar artery 
also are important to the encephalic blood supply.42 A phylogenetic 
study in domestic animals demonstrated the diverse arrange-
ments of the multiple arteries constituting the circle of Willis, but 
these different morphologic features do not necessarily represent 
evolutionary adaptations.60

In lower vertebrates, the internal carotid artery directed blood 
to the encephalic mass through the posterior branch without con-
tribution from the basilar artery.7 In higher vertebrates, 2 pos-
terior branches stemmed from a single and central branch that 
turned into the branch of the basilar artery. Two tiny vertebral 
arteries have been described, running from the bottom upward 
and connecting to the terminal portion of the basilar artery at 
the border between the pons and bulbus.7 In the third phase of 
evolution, the vertebral artery enlarged to feed the basilar artery, 
conducting blood to the internal carotid artery that is used during 
the development of the anterior portion of the brain.7 The basilar 
artery flowed from bottom to top, and its 2 branches increased 
in volume and continued into the corresponding posterior cere-
bral arteries.7 The carotid and basilar arteries are responsible for 
the blood supply to the brain and are connected by the posterior 
branches of the carotid artery, which atrophies to form the poste-
rior communicating artery in each antimere.7

Ontogenetic studies64 have shown that the vasculature develop-
mental process followed the evolution of a complex encephalon.7 
Despite all of the changes that arterial branches have undergone 
during development of the encephalon, their vascular territories 
have remained constant throughout the evolutionary process. 
Encephalic metabolism requires an adequate supply of glucose 

In ischemic EVA, an interruption in cellular oxidative metabo-
lism decreases phosphate and glucose production, liberates neu-
rotransmitters, and decreases levels of calcium and sodium. These 
factors lead to a reduction in neuronal metabolism and mitochon-
drial function, energetic insufficiency, formation of arachidonic 
acid, prostaglandin and leukotrienes, vasoconstriction, plate ag-
gregation and poor microvasculature.15,26,29,44 In hemorrhagic cere-
brovascular accidents or EVA, an expansive, acute lesion forms 
that leads to the destruction, compression, and displacement of 
encephalic structures; a secondary ischemic lesion around the 
hematoma may also occur.15,26,29,44

The pathophysiology of cerebral ischemia has been studied in 
animals with various forms of ischemic lesions. These models 
have shown that metabolic alterations in reperfusion may lead to 
cellular lesions in specific brain regions, depending on the dura-
tion of the ischemia.15,26,29,44 Regional destruction of the brain is fol-
lowed by alterations in motor activity.63 Recovery processes begin 
immediately after the lesion and last for months.63 Even though 
the recovery process begins gradually after development of the 
lesion, the motor function present before the lesion will not nec-
essarily be recovered. However, residual functional mechanisms 
may adapt, demonstrating neuronal plasticity.63

The principal arteries affected by stroke and their clinical 
symptoms are shown in Figure 1.  Clinically, several deficiencies 
are possible, including deficits in motor function, sensitivity, per-
ception, and language skills. Motor deficiencies are characterized 
by paralysis (hemiplegia) or weakness (hemiparesis) on the side 
of the body opposite the lesion. Strokes vary from mild to serious, 
and the consequences can be either temporary or permanent.53

The Use of Animal Models in Stroke Research
The use of animal models in recent years has provided a better 

understanding of the pathophysiologic mechanisms of strokes.60 
Numerous animal species have been used to study strokes.60 Mice 
and rats are the most commonly used species, with a growing use 
of larger species, such as rabbits and even nonhuman primates, to 
better study the disease and its treatments.60

However, the applicability of results obtained for animals to 
the treatment of human diseases has been limited, as occurred 
with neuroprotection.60 Neuroprotection is an intervention, some-
times involving drug administration, that acts directly on the in-
tracellular mechanisms of the ischemic cascade to affect the area 
around the stroke. Neuroprotection may decrease the size of the 
compromised area after an acute ischemic process. Several phar-
macologic agents have been effective in animal models but not in 
humans.21,60

Most variables are tightly controlled in laboratory experiments; 
therefore, they may not reflect factors contributing to strokes in 
the human population as a whole. In the laboratory, animals are 
treated according to a strict protocol after induction of stroke. In 
contrast, a human patient experiencing an ischemic process may 
not notice the symptoms or seek medical assistance promptly. 
Precise and rapid identification of symptoms enables improved 
treatment options and outcomes.68

Another important difference between animal models and 
humans is the rigorous control of the animals used.68 Typically, 
young, healthy, genetically similar animals of the same sex or age 
groups are used, especially in studies involving rodents. Howev-
er, such homogeneity does not exist in the human population. The 
typical stroke patient is elderly, with many risk factors, and may 
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Particularities of Encephalic Vasculature  
in Animal Models

Among various species, the general arrangement of encephalic 
arteries is conserved with some particularities (Figures 2 and 3). 
 In humans, the internal carotid artery provides the major blood 
supply to the encephalon. In dogs, the vertebral artery assumes 
this role. This different model of blood supply with numerous 
intra- and extracranial anastomoses protects the encephalon of 
the dog from the effects of cerebral arterial occlusions. These dif-
ferences of blood supply in the dog encephalon explain the low 
use of this model in ischemia studies.24

The branches of arteries that form the arterial circle of the pig 
encephalon may constitute 2 vascular networks: the basal and 
cortical vascular networks.16 The branches of the cerebral arteries 
have been grouped into 3 classes:16 the arteries at the base of the 
brain nuclei, the ventricular arteries, and the arteries of the convo-
lutions of the cortical gray layer. The initial portion of the anterior 
cerebral artery has small branches that supply the basal ganglia.

The distribution of the internal carotid and vertebral arteries in 
human primates, especially monkeys,64 is similar to that found in 
humans. The anterior cerebral arteries fuse into a unique median 

and oxygen for correct function and therefore a high rate of blood 
flow.

The encephalon has a peculiar vasculature; vessels enter at sev-
eral points and are divided into different circulation territories 
and return to the bilateral carotid arteries and vertebrobasilar 
system. These 2 systems have a mutual anastomosis, which is not 
always functional, through the posterior communicating artery, 
which connects the internal carotid artery (anterior circulation) 
and posterior cerebral artery (posterior circulation).9 In the an-
terior circulation, the internal carotid artery has a larger caliber 
and more distal branches compared with the anterior cerebral, 
middle cerebral, posterior communicating, anterior choroidal, 
and ophthalmic arteries. In the posterior circulation, blood bilat-
erally reaches the brain by way of the vertebral arteries, which 
originate on each side of the posterior inferior cerebellar artery 
and join the groove-level bulbopontine to form the single and 
medial basilar arteries. These arteries run superior and rostral to 
the pons to form the bilateral anterior inferior cerebellar, superior 
cerebellar, and posterior cerebral arteries. By failing to maintain 
a significant level of anaerobic metabolism, the brain is subject to 
injury from brief interruptions in the blood supply.9

Figure 2. (A) Ventral and (B) lateral views of rabbit encephalon injected with latex to show arterial vasculature and (C) a schema of the same vascula-
ture. The origin of the inferior cerebellar artery is the vertebral artery in humans in primates but is the basilar artery (star) in rabbits. Andrade (1983) 
noted that rodents, like rabbits, have a lower anterior cerebellar artery (solid arrow) and superior cerebellar artery (open arrow).
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motic arterial circle at the base of the brain, the interhemispheric 
artery proceeds into the longitudinal fissure of the brain dorsal 
to the genu of the corpus callosum. The collateral branches are 
issued from the medial sides of each cerebral hemisphere from 
the frontal lobe, and the arteries bifurcate at the corpus callosum 
to produce the right and left callosum arteries.17

At the base of the brain of Cebus apella (capuchin), the inferior 
cerebellar and posterior inferior cerebellar arteries supply blood 
to the lower portion of the cerebellum and the lateral surface of 
the bulbus. Before the bifurcation of the basilar artery to the right 
and left superior cerebellar arteries, the superior cerebellar satel-
lites spread to the midbrain, upper stem, and cerebellum.57

branch, which surrounds the genu corporis callosi and bifurcates 
distally. The basilar artery bifurcates into the posterior cerebral ar-
teries, which are connected to the internal carotid posterior com-
municating artery. In adults, the encephalon is supplied by both 
the internal carotid and vertebral arteries, but in embryos, blood 
is supplied only by the internal carotid arteries. The internal ca-
rotid artery branches from the internal ophthalmic artery, which 
pierces the dura mater and stems from 2 terminal branches with 
different calibers. A posterior branch of the small arm, the pos-
terior communicating artery, and the anterior branch all branch 
into the choroidal artery and middle cerebral artery and finish 
as the anterior cerebral artery. In the rostral region of the anasto-

Figure 3. Encephalic regions supplied by the major encephalic arteries and their branches.
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form a closed circuit with 2 distinct sectors: caudal (basilar) and 
carotid (cranial).

The encephalic circulation of carnivores can be classified into  
3 groups:64 one in which the encephalic blood supply is provided 
by the internal carotid arteries, one in which the encephalic blood 

The encephalic arteries of monkeys are represented by  
3 branches of the vascular pedicle:18 the basilar artery, right internal 
carotid artery, and left internal carotid artery. The basilar artery 
results from anastomosis by convergence of the right and left ver-
tebral arteries. The arterial segments belonging to this system 

Figure 4. Major methods of stroke induction in different animal models.
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of endothelin 1 (a powerful vasoconstrictor) affects microves-
sels, causing ischemic lesions. In gray matter, endothelin 1 causes 
small lesions with neuronal and astrocyte losses and a delayed 
macrophagic–microglial response. In white matter, endothelin 1 
causes axonal and oligodendrocyte disruption followed by my-
elin damage and increased astrocyte reactivity.

Embolism caused by injecting different amounts and sizes of 
emboli (microspheres, black beads, silicone rubber cylinders, and 
preformed clots) into the internal carotid artery produced mul-
tiple, unpredictable infarcts.3 These infarcts were mostly cortical, 
with a few in the basal ganglia and caudate nucleus.3 However, 
the subcortical lesions were poorly documented, making their 
relevance to lacunar infarction uncertain.3

Perforating artery occlusion causes small cortical infarcts in 
rats after using forceps or photochemical irradiation to occlude 
a pial artery on the surface of the brain. Perforating artery oc-
clusions mimic lacunar infarction because they show “cavitation 
caused specifically by ischemia of smaller vessels.”47 This type of 
occlusion may result in occlusion of the lenticulostriate artery by 
eosinophilic thrombus accompanied by brain tissue softening, 
necrosis, and cyst formation.27 These lenticulostriate occlusion 
models all produced striatocapsularsized rather than laccunar-
sized lesions.27

Another method involves spontaneous lesion formation  
in transgenic or spontaneously hypertensive stroke-prone  
animals.39

Conclusions
The ideal model for stroke research incorporates several fac-

tors. The ideal model should have a sufficient number of features 
that are similar to those in humans to allow the study of the bio-
logic, behavioral, and physiologic factors of the pathology so that, 
after the induction of the pathologic process, the outcomes can be 
investigated and treated with minimal limitations. The most ap-
plicable animal models for research related to stroke are rodents 
and lagomorphs. These models satisfy all of the basic require-
ments needed to induce, manipulate, and treat diseases that affect 
humans. However, other models should still be explored through 
similar studies.
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