
Comparative Medicine
Copyright 2011
by the American Association for Laboratory Animal Science

Vol 61, No  4
August 2011

Pages 346–355

346

Human osteoarthritis is a painful joint disease characterized 
by cartilage degradation and changes in bone and ligaments. The 
etiology is unknown and thought to be influenced by aging, ge-
netics, trauma, and obesity.2,5,36 As a result, current osteoarthritis 
treatment options mostly target pain management; no disease-
modifying therapeutic agents are available at present.2,36

The role of synovial changes and particularly inflammation in 
human osteoarthritis is unclear, and the disease generally is con-
sidered to exhibit only local intermittent synovial inflammation. 
However, inflammatory cytokines including IL6 and C reactive 
protein frequently are elevated in both synovial fluids and serum, 
and their correlation with osteoarthritis severity has been reported 
in patients with the disease.24,27 However, in addition to factors 
such as these cytokines, which typically are elevated in response 
to acute inflammation or adiposity, markers reflective of oxidative 
stress and low-grade inflammation are needed. Recently, receptor 
for advanced glycation endproducts (RAGE), a cell receptor in-
volved in innate immunity and amplification of inflammation, has 
emerged as such a marker due to its elevation in many inflamma-
tory conditions, such as atherosclerosis, diabetes, and rheumatoid 
arthritis.4,14,32,37 Similarly, its 3 unrelated ligands have inflammatory 
properties and include advanced glycation endproducts (AGE; 

nonenzymatic glycation products formed during oxidative stress), 
S100A4 (a member of the calcium-binding S100–calgranulin family 
of proteins), and high-mobility group box chromosomal protein 1 
(HMGB1 or amphoterin; a nonhistone DNA chromatin-associated 
protein with inflammatory properties).20,21,30,32,37,40,41 All of these pro-
teins are increased in human osteoarthritic joints, enhance oxida-
tive stress, and result in production of matrix metalloproteases and 
cytokines from human joint cells in vitro.12,16,17,25,39,47

Currently, the majority of experimental testing for osteoarthritis 
is performed in surgically or chemically induced animal models. 
How well these models reflect human osteoarthritis is contro-
versial.2,36 Therefore, clinically relevant and cost-effective animal 
models that mimic human osteoarthritis pathology are needed to 
evaluate new osteoarthritis drugs. In contrast to joint-injury–in-
duced osteoarthritis models, STR/ort mice develop osteoarthritis 
spontaneously and exhibit human-like cartilage lesions at ap-
proximately 12 to 20 wk.26 The etiology of osteoarthritis devel-
opment in these mice is unclear despite extensive genetic and 
microarray analyses.1,19,46 Osteoarthritis develops in male STR/ort 
mice preferentially but is not dependent on sex hormones.19,44 In 
addition, STR/ort mice are heavier than most laboratory strains 
on standard diet, although no correlation between obesity and 
joint changes has been shown.1,19,46 STR/ort mice show a tendency 
for patella displacement as potential disease-inducing damage, 
but whether this luxation is a primary or secondary event is un-
known.26,45 So far, detailed joint analyses of arthritic STR/ort mice 
have demonstrated increased levels of matrix metalloproteases; 
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ture, 70 °C; 12:12-h light:dark cycle; relative humidity, 30% to 70%) 
containing standard irradiated bedding and were provided irra-
diated rodent chow (Lab Diet 5053, PMI Nutrition International, 
St Louis, MO) and water ad libitum. Animals were weighed and 
observed for joint swelling and mobility once monthly. Mice were 
euthanized by CO2 asphyxiation at 20 or 40 wk of age (STR/ort, 
n = 8 or 9; CBA, n = 5 or 6). Blood was collected under isoflurane 
anesthesia from the retroorbital sinus, allowed to clot, and spun 
at 1000 × g for 10 min; serum was frozen at −80 °C until analysis. 
Stifle joints were collected for histologic analysis. The study was 
approved by the Genzyme Institutional Animal Care and Use 
Committee and conducted in accordance with humane guidelines 
for animal care. The animals underwent regular surveillance to 
ensure that they remained uninfected with a standard panel of 
mouse pathogens.

Histology. Stifle joints were fixed in 10% normal buffered for-
malin, followed by decalcification in formic acid. Joints were 

inflammatory cytokines IL1α, IL1β, and IL6; and oxidative stress 
in areas of osteoarthritis lesions, similar to findings in human 
osteoarthritis.1,2,9,10,15,26,33 Synovial proliferation is generally mild, 
similar to what is seen with the human disease, with little syno-
vial inflammatory infiltrate reported.26

The objective of the current study was to examine whether 
newly identified markers of low-grade inflammation in human 
osteoarthritis are increased in the joints of STR/ort mice and con-
tribute to spontaneous development of osteoarthritis. In addition, 
we evaluated serum cytokine levels and their correlation with 
cartilage damage to better understand potential systemic con-
tributors to the osteoarthritis in these mice.

Materials and Methods
Animal experiment. Male STR/ort and CBA mice (Harlan Labo-

ratories, Indianapolis, IN) were housed in cages (room tempera-

Figure 1. Analysis of STR/ort and CBA mice. (A) Body weights during the study. Values represent group mean ± 1 SD (STR/ort, n = 8 or 9; CBA, n = 5 
or 6) (B) Histologic scoring of cartilage surface at 20 and 40 wk based on sections stained with hematoxylin and eosin (H & E). The scatter plot shows 
scores for each mouse (filled circles) and for the group median (black line). A similar pattern was seen for sections stained with toluidine blue (T. blue; 
not shown; STR/ort, n = 8; CBA, n = 2 to 5). (C) Representative images from 20- and 40-wk mice of the location shown in the diagram. Arrows indicate 
articular cartilage degeneration, which mostly was present on the medial tibial plateau. Magnification, 100×.
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Figure 2. Immunolocalization of inflammatory markers in the joint synovium and cartilage at 20 wk of age. (A) Synovial and (B) tibial articular car-
tilage staining with RAGE, AGE, S100A4, and HMGB1 in CBA mice (left panel) and STR/ort mice (middle panel). Immunohistochemistry of STR/
ort joints with appropriate isotype control antibodies also is shown (right panel). See Methods for details. Arrows point to positive cells. S, synovium. 
Magnification, 600×.
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Figure 3. Immunohistochemical analysis of inflammatory markers in the joint periosteum at 20 wk of age. (A) RAGE, AGE, S100A4, and HMGB1 
staining at the lateral tibial side of CBA (left panel) and STR/ort (middle panel) joints and STR/ort joints with isotype control antibodies (right panel). 
Magnification, 600×. (B) Colocalization of RAGE staining with CD68 and cathepsin K in periosteal osteoclasts. Arrows, osteoclasts. Magnification, 600×. 
bn, bone; m, muscle; P, periosteum. (C) Quantitation of osteoclasts in the joint periosteum. CD68-positive cells at the femoral and tibial periosteum 
were counted. Data points represent group mean ± 1 SD (STR/ort, n = 8; CBA, n = 5). Significance was assessed by using a 2-tailed Student t test (*, P 
< 0.05; +, P < 0.01; †, P < 0.001).
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embedded in paraffin, and 5-µm sections were stained with he-
matoxylin and eosin or toluidine blue. Joint morphology was 
scored by a board-certified veterinary pathologist according to a 
published system.10

Immunohistochemisty. Sections were digested with 0.4 U/mL 
chondroitinase and 0.4 U/mL keratinase (Sigma Aldrich, St Louis, 
MO) at 37 °C for 1 h, followed by treating with pepsin (Dako, 
Carpinteria, CA) in 0.2 N HCl to block endogenous alkaline phos-
phatase activity (for detection by alkaline phosphatase activity) 
or by treating with 3% hydrogen peroxide (Sigma Aldrich) in 
methanol (JT Baker, Phillipsburg, NJ) to block the endogenous 
hydrogen peroxide activity (for detection by peroxidase activity). 
Nonspecific binding was blocked by using serum from the same 
host species as for the secondary antibodies, followed by incuba-
tion at 4 °C overnight with primary antibodies: RAGE (2.5 mg/
mL; Santa Cruz Biotechnology, Santa Cruz, CA), S100A4 (2 mg/
mL; MBL/Cyclex, Woburn, MA; confirmed to not detect other 
S100 proteins), AGE (2 mg/mL; TransGenic, Kobe, Japan; detects 
N′-carboxymethyllysine–protein adduct), HMGB1 (2.5 mg/mL; 
Sigma Aldrich), cathepsin K (Santa Cruz Biotechnology), and 
CD68 (AbD Serotec, Raleigh, NC). Matching isotype antibodies 
were used as negative controls. Sections were incubated with bio-
tinylated secondary antibodies for 30 min at 25 °C, followed by 
incubation with alkaline phosphatase- or horseradish peroxidase-
conjugated biotin antibody (Vector Laboratories, Burlingame, 
CA) for 30 min at 25 °C. Color was revealed by using Vector Red 
(Vector Laboratories) for alkaline-phosphatase conjugates (that is, 
detection of AGE, S100A4, and HMGB1) and diaminobenzimide 
substrate (Dako) for horseradish peroxidase conjugates (RAGE 
detection), followed by staining with hematoxylin (Dako). Paral-
lel samples were run simultaneously for each antigen to avoid 
experimental variation. Numbers of positive cells and intensity of 
staining were scored by a board-certified veterinary pathologist 
in a blinded manner. For numbers of positive cells, the scoring 
scheme was: 0, no stained cells per 40× high-power field; 1, 1 to 5 
stained cells; 2, 6 to 10 stained cells; 3, 11 to 20 stained cells; and 
4, 21 or more stained cells. The intensity of staining was scored 
as: 0, no staining; 1, slight staining; 2, moderate staining; 3, strong 
staining; and 4, very bright staining.

Mouse serum cytokine analysis. Cytokine levels (IL1α, IL1β, IL2, 
IL3, IL4, IL5, IL6, IL9, IL10, IL13, IL17, IL12p70, INFγ, GM–CSF, 
KC [murine IL8 homolog], MIP1β, RANTES, and TNFα) were 
measured in duplicate by using a mouse 21plex bead assay (Bea-
dlyte, Upstate, Temecula, CA) according to the manufacturer’s 
instructions.

Statistical analyses. Immunohistochemical scores and osteo-
clast quantitation were compared by using the 2-tailed, unequal 
variance Student t test (Microsoft Excel, Redmond, WA). The sig-
nificance of R2 values was analyzed by using the Spearman non-
parametric test (SAS 9.1, SAS Institute, Cary, NC). ANOVA and 
Wilcoxon 2-sample tests (SAS Software) were used to compare 
cytokine levels. P values less than 0.05 were considered to be sta-
tistically significant in all analyses.

Results
Pathology of mouse stifle joints. None of the mice exhibited any 

visual joint swelling, reduced mobility, or pain during the study. 
However, STR/ort mice had increased bodyweight compared 
with that of CBA mice (Figure 1 A). Histologic analysis and scor-

ing of the stifle joints showed that at 20 wk, 62% of male STR/ort 
mice had signs of osteoarthritis; the incidence further increased 
to 75% by 40 wk (Figure 1 B and C). Histologic changes were de-
tected in articular cartilage of medial tibial plateau and varied 
from mild focal superficial fibrillations (score, 1) to erosions that 
extended to subchondral bone (score, 4). Fibrillations frequently 
were accompanied by loss of chondrocytes and decreased carti-
lage proteoglycan staining. In addition, joints had mild chronic 
synovitis with predominantly lymphocyte and macrophage infil-
tration as well as moderate synovial hyperplasia. More severely 
affected joints exhibited degeneration of ligaments, focal degen-
eration of the medial meniscus, and osteophyte formation. No 
histologic signs of osteoarthritis were present in the joints of age-
matched CBA mice, similar to previous reports;9,15,33,35,46 therefore, 
these mice were used as osteoarthritis-negative controls for sub-
sequent analyses.

Immunohistochemical analysis of inflammatory markers in 
mouse stifle joints. Joints from STR/ort and CBA mice were 
analyzed at 20 wk (Figure 2). Synovial lining cells around the 
cruciate ligament and medial and lateral sides were positive for 
RAGE and AGE, whereas HMGB1 staining was present mainly 
in mononuclear cells (Figure 2 A; similar to CD68-positive cells, 
not shown). In articular cartilage, AGE and RAGE showed in-
tracellular staining, whereas HMGB1 exhibited intracellular and 
occasionally extracellular staining within chondrocyte lacunae 
and surrounding matrix (Figure 2 B). Little S100A4 staining was 
detected in STR/ort mice. In CBA mice, there was little detection 
of any of these markers.

In the periosteum, RAGE was present in osteoclasts of STR/ort 
joints (confirmed by colocalization with cathepsin K and CD68 
staining, both common osteoclast markers; Figure 3 A and B).
 AGE and HMGB1 showed strong signals that localized to mul-
tiple cell types; no staining for S100A4 was observed. There was 
a striking increase in the number of CD68-positive osteoclasts 
(particularly in the lateral tibial periosteum) in the periosteum of 
STR/ort mice compared with CBA mice (Figure 3 C).

Staining intensity and number of positive cells for all mark-
ers except S100A4 showed consistent and significant increases 
in STR/ort mice (Figure 4). In particular, HMGB1 levels in the 
cartilage, synovium, ligaments, and meniscus exhibited strong 
correlation with cartilage histopathologic scores (Table 1). These 
scores also correlated with AGE levels detected in synovium, liga-
ments, and meniscus, whereas only RAGE levels in the synovium 
were associated with cartilage damage.

Serum cytokine analysis. Eight (IL1β, IL3, IL4, IL5, IL10, 
IL12p70, IFNγ, and MIP1β) of the 21 serum cytokines analyzed 
were elevated approximately 2-fold in STR/ort compared with 
age-matched CBA mice at 20 wk (Table 2). These 8 cytokines re-
mained elevated at 40 wk, and additional cytokines showing in-
creased levels at the 40-wk mark included RANTES, IL1α, IL2, 
IL9, IL17, and IL12p40. Compared with their levels in 20-wk-old 
STR/ort mice, RANTES, IL1α, IL1β, IL9, IL17, GM–CSF, and KC 
were significantly higher in 40-wk-old STR/ort mice (P < 0.05). 
The use of age-matched CBA mice proved appropriate, given 
that the majority of the cytokines analyzed increased with age in 
CBA mice even though their levels were always lower than those 
in STR/ort mice.

At 20 wk, histopathology scores of osteoarthritic cartilage at 20 
wk were correlated most closely (P < 0.01) with IL12p70, IL3, IL4, 
MIP1b, IL5, and IL10 levels, indicating that increases in these cy-
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Figure 4. Summary of immunohistochemical analysis (IHC) for inflammatory markers in knee joints. The staining in each mouse for RAGE, AGE, 
S100A4, and HMGB1 was scored for the (A) number of positive cells and (B) intensity of IHC staining in STR/ort and CBA joints. See Methods for 
details. Data points are shown as group mean ± 1 SD (n = 8 for STR/ort and n = 4 for CBA mice). Significance by 2-tailed Student t test (*, P < 0.05; +, 
P < 0.01; †, P < 0.001).
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Table 1. P values of comparison of immunohistochemical staining 
(IHC) intensity with cartilage histopathology scores

Compared with score for

IHC score 
Hematoxylin and 

eosin Toluidine blue

Cartilage RAGE 0.0834 0.0473

AGE 0.2287 0.0770
S100A4 0.7707 0.7098
HMGB1 0.0146 0.0006

Synovium RAGE 0.0266 0.0732
AGE 0.0327 0.0019

S100A4 0.2732 0.4158
HMGB1 0.0032 0.0003

Ligament RAGE 0.5503 0.2447
AGE 0.0474 0.0024

S100A4 0.6836 0.3612
HMGB1 0.0018 0.0010

Meniscus RAGE 0.1240 0.0635
AGE 0.0162 0.0031

S100A4 0.8647 0.8067
HMGB1 0.0070 0.0006

r2 values were determined from scoring cartilage histology (hematoxylin 
and eosin, Figure 1 B, or toluidine blue) at 20 wk compared with 
immunohistochemical staining intensity scores for RAGE, AGE, S100A4, 
and HMGB1 in the cartilage, synovium, ligaments, or meniscus (Figure 
4 B). P values were determined by Spearman nonparametric test; 
significant (P < 0.05) differences are shown in bold. In the periosteum, 
histologic and immunohistochemical scorings showed no correlation 
(data not shown).

tokines coincided with the appearance of cartilage changes (Table 
3). All of these cytokines were elevated at both 20 and 40 wk in 
STR/ort mice compared with CBA mice.

Discussion
Multiple factors are involved in the development of osteoar-

thritis, but the early initiating factors are particularly poorly 
understood. We assessed joints from the mouse spontaneous os-
teoarthritis model, STR/ort, for the presence of oxidative and in-
flammatory markers at early stages of osteoarthritis, when about 
62% of animals showed histologic changes in the joints. Our re-
sults showed that the inflammation marker HMGB1 and oxida-
tive stress marker AGE both were increased strongly in STR/ort 
joints but were absent in joints from the osteoarthritis-resistant 
CBA mouse strain. Systemic inflammation was also evident in 
STR/ort mice in that multiple inflammatory cytokines were up-
regulated, and their levels correlated with changes in knee joints. 
Therefore, these data support the presence of both local and sys-
temic inflammation in STR/ort mice, similar to findings during 
human osteoarthritis.

The role of inflammation in the development of osteoarthritis 
is controversial. Compared with rheumatoid arthritis, osteoar-

thritis shows only mild synovial inflammation. However, mono-
nuclear cell infiltrates and inflammatory cytokines are detected 
in the synovium of human patients with early osteoarthritis,5 a 
finding supported by a recent study in human patients, in which 
synovitis was a predictive factor for increased cartilage damage.3 
Furthermore, a marker of low-grade inflammation and innate 
immunity activation, RAGE, has been detected in arthritic joints 
including human osteoarthritis cartilage, rheumatoid arthritis 
synovium, and synovial fluids.8,17,25,40,41 Consistent with the hu-
man data, our results showed widespread localization and ex-
pression of RAGE in STR/ort mice compared with CBA mice. 
Although the number of RAGE-positive cells sometimes was not 
increased in STR/ort joints, RAGE staining intensity was always 
increased in the cartilage and synovium of these samples. This 
finding likely reflects increased RAGE expression in response to 
ligand stimulation, which has been shown to provide a positive 
transcriptional feedback in environments with increased levels of 
RAGE ligands.37

RAGE ligands and the inflammation markers AGE, HMGB1, 
and S100A4 also have been reported in cartilage and synovium 
from arthritic patients.20,21,30,39,41,47 We detected AGE and HMGB1 
in multiple locations (cartilage, synovium, meniscus, ligaments, 
and periosteum) in joints of STR/ort mice, whereas S100A4 (de-
tected with an antibody free of crossreactivity to other related 
S100 proteins) was present at low levels only, contradictory to 
results reported for human osteoarthritis cartilage.47 The colocal-
ization of RAGE and its ligands AGE and HMGB1 in hyperplastic 
synovium suggests the role of synovial RAGE activation in en-
hanced inflammation and production of matrix metalloproteases, 
leading to cartilage degradation. This notion was supported by 
the correlation of increased synovial levels of RAGE, AGE, and 
HMGB1 levels with changes in cartilage histopathology.

The role of increased levels of AGE and HMGB1 in STR/ort 
joints is unknown. Oxidative stress, potentially caused by me-
chanical stress (that is, by patellar displacement in these mice45), 
is increased in the joints of STR/ort mice, as shown by their el-
evated levels of 3-nitrotyrosine, a marker of oxidative stress,33 and 
may initiate intracellular accumulation of AGE.12,32 AGE genera-
tion was clearly an early event, in that all STR/ort mice had sig-
nificantly increased AGE levels, but this glycation product could 
not be detected in the joints of CBA mice. AGE has been shown to 
cause permanent modification of intracellular proteins, cell death, 
and amplification of inflammatory pathways.12,16,39 We also noted 
that STR/ort mice had increased concentrations of HMGB1, as 
has been reported in human osteoarthritis.17,40 HMGB1 is a nonhis-
tone nuclear protein with inflammatory cytokine-like properties 
when secreted by macrophages or released from dying cells.30,31,41 
Intraarticular administration of HMGB1 induces synovial in-
flammation in mice.31 We detected HMGB1 in macrophage-like 
synoviocytes in STR/ort mice, and our preliminary in vitro ex-
periments confirmed the increased proinflammatory phenotype 
of HMGB1-stimulated human monocytic cells (data not shown). 
Furthermore, HMGB1 levels in STR/ort cartilage positively cor-
related with cartilage histopathology.

Bone remodeling is part of osteoarthritis pathology, and our 
results showed that STR/ort mice have an increased number of 
periosteal osteoclasts. Additional studies are required to deter-
mine whether the increased levels of RAGE, AGE, and HMGB1 
in STR/ort periosteum led to the increased osteoclast number and 
whether they stimulated bone resorption in these mice. However, 
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inflammatory diseases and associated with adiposity,22,24,27 de-
spite the 22% higher weight of STR/ort mice compared with CBA 
strain. This outcome may be due to lack of positive correlation 
between STR/ort body weight and the severity of osteoarthri-
tis in knee joints, indicating that increased body weight is not 
a cause for osteoarthritis in these mice.19,26,35,38 Furthermore, al-
though they weigh more than CBA mice, STR/ort mice weigh 
less than ICR and db/db mice and do not have abnormally large 
fat deposits.43 However, STR/ort mice have altered lipid metabo-
lism, with increased serum cholesterol and triglyceride levels and 
low adiponectin levels.43 Learning whether and how these factors 
contribute to osteoarthritis development will require additional 
studies. Furthermore, although the reason for the increased cy-
tokines in STR/ort mice is currently unclear, they may explain 
the increased incidence of periodontal disease and hepatomas 
reported in these mice, given that both conditions can be aug-
mented by inflammatory conditions.28,29

In summary, our current study has demonstrated widespread 
and strong increases in the inflammatory markers AGE and 
HMGB1 in the joints of STR/ort mice. These changes are similar 
to those in human osteoarthritic joints and may contribute to joint 
destabilization and subsequent development of osteoarthritis. 
The colocalization of AGE and HMGB1with RAGE in hyperplas-
tic synovium points to their roles as early amplifiers of synovial 
inflammation. In addition, STR/ort mice had increased serum 
cytokines, indicating a potential systemic mechanism for disease 
development. Because these mice share several characteristics 

a role of RAGE in bone resorption is supported by the reduced 
number of osteoclasts and increased bone mass in mice lacking 
RAGE.13,48 Similarly, HMGB1 knockout mice have fewer osteo-
clasts, and this protein chemoattracts osteoclasts.30,42 Furthermore, 
AGE can increase osteoclastic activity in diabetic mice.34

Our serum cytokine analyses showed that STR/ort mice ex-
hibited low-grade systemic inflammation, unlike the CBA mouse 
strain which lacked any histologic sign of osteoarthritis.9,15,33,35,46 
Several proinflammatory serum cytokines were elevated in STR/
ort mice, including the macrophage-specific cytokines IL12p70, 
MIP1β, and IL1β, which likely enhance the susceptibility of this 
strain to osteoarthritis.7,22,23 This notion was supported further 
by the correlation between the concentrations of these cytokines 
and the cartilage histopathology scores in our study. Elevated 
serum cytokines (including IL17, IL12p70, and IL5) during spon-
taneous osteoarthritis have been documented in Hartley strain 
guinea pigs.18 The cytokine most increased in both models, IL5, 
has been linked to enhanced innate immunity by stress-induced 
modifications of autologous proteins and lipids11 For example, 
stimulation with oxidation-induced modification of LDL led to 
increased systemic IL5 levels in a mouse atherosclerosis model.6 
Although more research is required to understand the role of IL5 
in osteoarthritis models, changes associated with oxidative stress, 
such as increases in AGE, may act similarly to oxidation-induced 
modification of LDL to activate stress-induced signaling.

In the current study, we did not note consistent increases in 
IL6 and TNFα levels, 2 cytokines commonly increased in chronic 

Table 2. Serum cytokine and chemokine levels in STR/ort and osteoarthritis-resistant CBA mice at 20 and 40 wk of age

20 wk 40 wk

STR/ort CBA P STR/ort CBA P

IL5 37 ± 6 9 ± 2 0.000 45 ± 8 15 ± 12 0.000

RANTES 84 ± 11 66 ± 14 0.154 139 ± 25 80 ± 22 0.000

IL1α 28 ± 6 5 ± 3 0.252 126 ± 62 14 ± 9 0.000

MIP1β 449 ± 51 300 ± 66 0.000 477 ± 27 362 ± 73 0.002

IL1β 242 ± 99 64 ± 17 0.007 317 ± 125 154 ± 89 0.008

IL12p70 361 ± 61 115 ± 123 0.003 419 ± 100 224 ± 182 0.008

IFNγ 46 ± 8 31 ± 9 0.007 55 ± 7 39 ± 15 0.009

IL10 179 ± 55 73 ± 32 0.008 232 ± 67 134 ± 71 0.008

IL3 52 ± 13 22 ± 11 0.002 60 ± 13 39 ± 16 0.011

IL4 17 ± 4 8 ± 4 0.001 19 ± 3 14 ± 5 0.023

IL9† 59 ± 18 105 ± 39 0.019 115 ± 27 67 ± 31 0.001

IL17† 39 ± 4 64 ± 14 0.001 55 ± 11 41 ± 14 0.012

IL2 13 ± 6 6 ± 3 0.093 20 ± 7 12 ± 8 0.016

IL12p40 98 ± 17 75 ± 14 0.143 130 ± 14 104 ± 37 0.011

VEGF 32 ± 11 21 ± 3 0.071 33 ± 5 29 ± 17 0.484

IL6 40 ± 25 18 ± 4 0.298 69 ± 53 29 ± 23 0.056

IL13 321 ± 135 195 ± 111 0.199 474 ± 113 465 ± 240 0.925

GM-CSF 68 ± 21 42 ± 10 0.201 103 ± 14 73 ± 60 0.116

KC 38 ± 13 30 ± 9 0.483 67 ± 10 68 ± 28 0.414

MCP1 110 ± 75 58 ± 11 0.429 166 ± 117 78 ± 60 0.073

TNFα 22 ± 25 10 ± 2 0.546 46 ± 54 17 ± 11 0.136

Cytokine and chemokine levels (pg/mL) were obtained by serum multiplex analysis and are shown as group mean ± 1 SD (STR/ort mice, n = 8 or 9; 
CBA mice, n = 5 or 6).
P values were obtained by nonparametric ANOVA; bolded values indicate factors that were significantly (P < 0.05) higher in STR/ort mice.
IL5, MIP1β, IL1β, IL12p70, IFNγ, IL10, IL3, and IL4 were all significantly (P < 0.05) elevated in STR/ort mice at both 20 and 40 wk, whereas IL9 and IL17 
were significantly (P < 0.05) decreased in 20-wk-old but significantly (P < 0.05) increased in 40-wk-old STR/ort compared with CBA mice.
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with many human osteoarthritis patients, who exhibit low-grade 
inflammation both locally and systemically, the STR/ort strain 
represents a relevant animal model for testing new agents for 
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