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Abstract
The search for improved molecular cancer diagnostics is a challenge for which systems
approaches show great promise. As is becoming increasingly clear, cancer is a perpetually-
evolving, highly multi-factorial disease. With next generation sequencing providing an ever-
increasing amount of high-throughput data, the need for analytical tools that can provide
meaningful context is critical. Systems approaches have demonstrated an ability to separate
meaningful signal from noise that arises from population heterogeneity, heterogeneity within and
across tumors, and multiple sources of technical variation when sufficient sample sizes are
obtained and standardized measurement technologies are used. The ability to develop clinically
useful molecular cancer diagnostics will be predicated on advancements on two major fronts: 1)
more comprehensive and accurate measurements of multiple endpoints, and 2) more sophisticated
analytical tools that synthesize high-throughput data into meaningful reflections of cellular states.
To this end, systems approaches that have integrated transcriptomic data onto biomolecular
networks have shown promise in their ability to classify tumor subtypes, predict clinical
progression, and inform treatment options. Ultimately, the success of systems approaches will be
measured by their ability to develop molecular cancer diagnostics through distilling complex,
systems-wide information into simple, salient, actionable information.

INTRODUCTION
Since President Nixon’s State of the Union address, where he first announced the National
Cancer Act of 1971 and effectively declared war on cancer, there have been many
important, successes in the treatment and prevention of many cancers (von Eschenbach,
2004). These advances are largely predicated on our increased understanding of cancer
etiology, which have recently been accelerated through genomics-enabled science and
medicine. However, cancer remains one of the most pervasive causes of death worldwide
(Edwards et al., 2010; WHO, 2008), and the enormous difficulty of effectively treating
cancers remains. The challenges of harnessing the exponentially increasing amounts of high-
throughput data must be met to enable the predictive, preventive, personalized, and
participatory medicine envisioned for the future (Hood et al., 2004).

While Knudson’s two-hit model of cancer, in which cancer results from a few accumulated
DNA mutations (Knudson, 1971), has explained some cancers, the last decade has provided
mounting evidence that more sophisticated, multifactorial models are needed to explain the
majority of cancers. Multifactorial models posit that cancer is the result of combined effects
from multiple low-penetrance mutations in combination with environmental factors
(Fletcher & Houlston, 2010; Fodde & Smits, 2002). Multifactorial models have been greatly
informed by our increased ability to assess the individual contributions of the approximately
20,000 human genes (Clamp et al., 2007; Schena et al., 1995). Such analyses have revealed
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highly diverse mutational patterns across patients, ranging from fewer than 1000 to greater
than 100,000 point mutations in sequenced cancer genomes (Durbin et al., 2010; Stratton et
al., 2009). Although high-throughput measurements continue to be generated at an
exponential rate, interpreting such vast amounts of data poses substantial difficulties. The
basis for advances in diagnostic cancer medicine will likely require analytical methods that
can extract easily interpretable molecular disease-state indicators from amidst immense
biological complexity.

A number of clinically used molecular cancer diagnostics have already provided substantial
utility in pre-symptomatic screening, confirmatory diagnosis, and prognosis prediction.
Improving upon these established diagnostic markers will require a more comprehensive and
accurate picture in terms of both measurement and analysis. We will describe several
technical and computational efforts made to overcome these challenges with a focus on
integration of heterogeneous information and a prospective outlook of these approaches.

The promise and challenge of preventative and early diagnostics
The value of early diagnostic markers is highlighted by the observation that treatments tend
to be more effective the earlier they are applied. While methods are improving, many forms
of cancer remain difficult to detect and diagnose. Lung cancer is one such case.
Conventional clinical diagnosis is still dominated by symptomatic assessments followed by
biopsy confirmation. By the time of symptomatic diagnosis, disease has often spread beyond
the initial site of malignancy, which significantly undermines the efficacy of traditional
treatments. For lung cancer, where the five-year survival rate varies from 49% for local
stage disease to 2% for distal metastasis, two thirds of patients are diagnosed at late stages
that are associated with poorer outcomes (Leidinger et al., 2010).

Increasingly, molecular-based cancer diagnostics are aiding standard clinical diagnosis (see
Table 1) (AACC, 2010). While molecular markers are mostly used for confirming diagnosis,
monitoring patient prognosis and assessing disease subtypes after symptoms are present,
other applications for molecular markers are progressively being implemented. These
functions include pre-symptomatic screening, guiding treatment options, monitoring
treatment efficacy and disease progression and identifying disease recurrence after
treatment.

A prime example of a clinically applied molecular cancer diagnostic is the use of estrogen
receptor (ER) and human epidermal growth factor receptor 2 (HER2) markers to help
determine prognosis and guide treatment in breast cancer patients (Slamon et al., 1987;
Slamon et al., 1989). Over two-thirds of all breast tumors are ER positive, and
approximately 25–30% are HER2 positive (Slamon et al., 1989). Tumors that are ER
positive tend to be HER2 negative, and vice versa (Lal et al., 2005). Typically, ER positive
tumors that respond to endocrine therapies tend to be less aggressive, more differentiated,
and associated with a more favorable prognosis (Osborne, 1998). HER2 positive tumors
tend to be less differentiated, more aggressive and are treated with both chemotherapy and
the adjuvant monoclonal antibody Herceptin. The prognostic value of ER, HER2, and, as
later discussed, progesterone receptor (PR) expression is great enough that the American
Society of Clinical Oncology has recommended that all breast tumors be evaluated for the
expression of these proteins (Hicks & Tubbs, 2005; Jones et al., 2010; Lapidus et al., 1998;
Mouridsen et al., 2003; Subramaniam & Isaacs, 2005). Such success stories demonstrate
that molecular markers in cancer can be highly useful for diagnosis and for guiding therapy.

Despite harnessing decades of research and rapidly increasing high-throughput data, very
few newly discovered molecular diagnostic markers demonstrate clinical utility each year.
Broadly, advances in clinically applicable molecular cancer diagnostics are predicated on
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fronts addressing two questions: 1) how well do our measurements represent the
physiologically and medically relevant cellular states and 2) how well can we reconstruct
predictive models of cellular states based on the data to gain greater understanding and
control of the biological mechanisms for improved treatment and reduced side effects?

The Challenge of Representation
A major challenge in the search for clinically robust diagnostic markers is that of attaining
adequate measurements. Like a photographer trying to capture a dynamic scene, we seek to
construct clear representations of cellular states with only limited measurements.
Measurement technologies are faced with two main goals: 1) comprehensive coverage, and
2) accurate representation. While improving consistently, current measurement approaches
cannot measure every cellular component accurately and have substantial sources of
variability. Clinically applicable measurements are further limited by practical
considerations. For example, minimizing patient harm limits the set of biological samples
that can be considered. Invasive measurements from tissues are impractical for
presymptomatic screening and would ideally be avoided even for post-diagnosis disease
monitoring. Bodily fluids are among the few types of samples that represent the dynamic
biochemical state of the body and can be collected through non-invasive means. Thus, the
majority of currently used molecular markers are molecules found in the blood or urine
(Martin et al., 2010). A challenge in biomarker discovery is to find robust indicators of
disease that can also accommodate the practical constraints associated with clinical
utilization.

ComprehensiveCoverage—Cellular states arise from interactions among myriad
functional molecular players. Blood, the most widely used clinical sampling medium,
comprises a highly diverse set of proteins and metabolites that span over nine orders of
magnitude in concentration (Adkins et al., 2002; van Ravenzwaay et al., 2007), making it an
attractive but complex source of health and disease state information. Consequently,
comprehensive representation of cellular phenomena necessitates the detection of a broad
spectrum of molecules with very large dynamic ranges of sensitivity.

The most mature technology for systematic characterization of cellular states today is in
transcriptomics—driven forward by advances in cost and scale of RNA quantification
relative to the moderate advances for more difficult challenges such as protein measurement.
In total, several hundred thousand transcriptomes have been collected in online public
databases such as the Gene Expression Omnibus (Barrett et al., 2009), enabling large-scale
associations of thousands of expression measurements with over a hundred disease classes
(Huang et al., 2010). Microarrays have been widely used because they offer a global picture
of gene transcription (i.e. the transcriptome) in numerous organisms and are relatively easy
to use, enabling collection of many samples for individual studies. Despite their utility,
microarrays have limitations, including measurement constraints of sensitivity, scope, and
dynamic range. Moreover, microarrays are limited in their representation of cellular states as
they are almost exclusively used for mRNA gene expression. Emerging direct sequencing
methods (e.g. RNA-seq) now promise to greatly advance the information about
transcriptomes again (discussed below).

While transcriptomics measurements can provide important information about various
biological processes within cells, it is by no means a complete picture. In fact, mRNA
abundance alone has been found to account for only 25–30% of the protein abundance
variation in a human cancer cell line (Vogel et al., 2010), demonstrating the significance of
post-transcriptional regulation and differential protein degradation rates within the cell. Non-
coding RNAs, epigenetic modifications and alternative splice variants provide further layers

Ma et al. Page 3

Discov Med. Author manuscript; available in PMC 2011 August 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of complexity in the regulation of cellular activities (see Table 2) as well as additional
sources for molecular diagnostics. Examples of non-mRNA markers in Table 2 highlight the
intricate interplay between genes and other molecules that lead to phenotypic changes in
cells. Thus, new experimental approaches that enable standardized, high-throughput, and
global measurements of more biological phenomena—such as has been largely achieved
with DNA and RNA—are clearly key to advancing the field.

Measurement technologies typically only capture static snapshots of cellular states, which
might lead us to miss diagnostic, time-dependent signatures reflecting dynamic changes
within the body. To interrogate the dynamic nature of cellular systems, we need to assemble
time series of individual measurements, akin to compiling a flipbook. This challenge can be
met through large longitudinal studies wherein measurements are made at regular intervals
(Ibrahim et al., 2010), and the patient in effect serves as his or her own control. One
example of this phenomenon in cancer is that change in prostate specific antigen (PSA)
concentration in a patient’s serum over time can be a better diagnostic for prostate cancer
than is the absolute concentration alone (Smith & Catalona, 1994). Another important form
of diagnostic test is measuring dynamic responses in molecular markers to an induced
perturbation, analogous to measuring blood glucose levels after drinking sugar water in
diabetics. Thus comprehensive measurement strategies should explore dynamic changes as
well as static signals, using computational methods to help deduce indicative dynamic
molecular signatures that reflect altered disease states.

Accurate Representation—In addition to being as comprehensive as possible,
measurements must also be correct. Accurate representation of cellular systems facilitates
isolation of cohesive signatures that are applicable across the population. Several sources of
measurement variability interfere with the ability to gather accurate data. While some
sources cannot be avoided, discerning the source of variability is critical to design
effectively robust molecular diagnostics.

Noise arises from both the measurement approach (e.g. instrument used, protocol adopted,
etc.) and from the heterogeneity across the population, known as technical variation and
biological variation, respectively. While biological variation might be addressed with a
better understanding of the underlying biological complexities of the diseased state, accurate
measurement platforms with appropriate measurement procedures help mitigate technical
variation.

Although gene expression microarray technology has demonstrated qualitative consistency
(Shi et al., 2006), microarrays are vulnerable to multiple sources of noise. First, the absolute
expression values from microarrays are sensitive to probe effects, which vary significantly
across platforms (Irizarry et al., 2005). A second vulnerability stems from variation in
sample preparation, measurement, and data preprocessing techniques, which contribute to
sizable inter-laboratory differences (Irizarry et al., 2005; Shi et al., 2006). The variability
across laboratories and microarray platforms stunts the search for robust markers that can be
applied in a broad, clinical setting—making community-wide standards critically important.

A more sensitive alternative for measuring transcriptomes is RNA-seq. Compared to
microarrays, RNA-seq has been shown to be more reproducible on a single sample basis and
more sensitive in detecting differentially expressed genes, allowing the identification of
more subtle biological signals (Marioni et al., 2008). Besides offering the potential for
increased sensitivity and robustness, direct RNA sequencing allows for a broader dynamic
range and provides additional alternative splicing and sequence information, which can be
leveraged for improved diagnosis (see Table 2).
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A second source of data variability stems from population heterogeneity. Gene expression is
a multifactorial function that can be stochastic in nature (Raser & O’Shea, 2005). To this
end, the 1000 Genome Project has already yielded important information about population
variation within the genome (Durbin et al., 2010). Among their important findings, they
reported that each person carries, on average, between 250–300 loss-of-function variants,
50–100 of which have been previously implicated in inherited disorders. The extent of
normal variation within each individual presents a significant challenge in identifying the
causative mutations in cancer. In addition to the cellular heterogeneity of cancer and other
diseases, variation also arises from everyday sources of biochemical fluctuation such as time
of day, diet, and even mood (Lesch, 2004; Raser & O’Shea, 2005; Slatter et al., 2006;
Winrow et al., 2009). The variation is exacerbated in cancer, wherein genomic instability
can cause many ‘passenger’ mutations that do not directly contribute to the disease (Li et al.,
2010). Environmental factors can also contribute significantly to disease (de la Chapelle,
2004). Such outcomes suggest that even when we can probe the complete state of a
genotype, predicting all of the phenotypic implications might remain beyond reach.

Resolving the Image—The search for diagnostic molecular signatures is obstructed by
incomplete coverage and obscured by noise, but piecing together a more complete
representation from incomplete snapshots is facilitated by high-throughput measurements.
The necessary task in molecular diagnostic discovery is to discern the meaningful biological
signals that consistently represent cellular states across the heterogeneous population amidst
the technical and biological variation that pervades the measurements.

The plethora of high-throughput data poses both a help and a challenge to developing a
meaningful representation of cellular systems. The primary challenge comes from the
dangers of multiple hypothesis testing when we typically have vastly more measured
variables (e.g. genes) than we do samples. If not carefully guarded against, the large number
of potential molecular diagnostics measured can confound genuine signals with correlations
that appear by chance, which can mislead rather than enlighten. Increasing sample sizes
greatly improves the resolution for this discernment, facilitating the identification of robust
signatures for increasingly subtle phenotypic differences. To harness this data, we must turn
to machine learning algorithms, which harness the power of statistics and efficient
computation to utilize the data by isolating biologically significant associations. Many
methods exist for deciphering this information. For example, clustering algorithms have
been used to discover molecular subtypes of cancer that are symptomatically
indistinguishable but display significantly different expression profiles and respond
differently to treatments (Bild et al., 2006; Gatza et al., 2010; Sorlie et al., 2001).
Supervised machine learning algorithms such as Support Vector Machine (Ben-Hur et al.,
2008; Liu et al., 2005) or Top Scoring Pair approaches (Geman et al., 2004; Price et al.,
2007) have isolated sets of molecular identifiers that can distinguish phenotypes with high
accuracy.

Ultimately, clinics favor diagnostics that are robust and easily interpreted such that
conclusive diagnoses can be made with minimal chance of mistake. Although diagnostic
signatures composed of large numbers of genes have demonstrated predictive power
(Hedenfalk et al., 2001; van de Vijver et al., 2002), other studies have demonstrated that it is
possible to probe cellular systems by monitoring only a few variables (Hwang et al., 2009;
Osborne et al., 2005). Practical considerations suggest that diagnostics limited to small
numbers of markers that produce quick, unambiguous results will more likely succeed.
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The Challenge of Reconstruction
Our understanding of the complexity of biological systems is ever increasing. Despite
significant experimental and analytical challenges arising from this complexity, systems
approaches have already successfully led to insights into cancer biology and treatment.
Important efforts in sequencing the human genome (Durbin et al., 2010; Lander et al., 2001;
Venter et al., 2001) and individual cancers (Parsons et al., 2008; Sjoblom et al., 2006) mean
that malignant genetic transformations can be studied and modeled in the context of the
entire genome. As is becoming increasingly clear through the results of studies including
The Cancer Genome Atlas Project (Parsons et al., 2008), cancers arise from multiple low-
penetrance mutations, any subset of which lacks a discernable phenotype. Such a
distribution of mutations presents enormous challenges for personalized medicine, because it
means that simple mutation pattern to treatment correlations are not likely to be effective.
Promise lies instead in reconstructing models of the underlying mechanisms based on the
representation of the cellular system provided by measurements. Thus, personalized and
multi-targeted therapies will ultimately be needed for effective treatment. The increasing
emphasis on systems biology approaches that construct and factor in comprehensive
networks will be valuable for relating the multiplicity of genetic perturbations to their effects
on biomolecular network functions. Systems methods that can predict the effects of
modifications are essential to account for diverse molecular causes, where simple correlation
methods cannot account for the effects of diverse and rarely repeating mutation
combinations. Hence, the creation of more complete and accurate networks associated with
human systems is needed to fully realize the potential of network-based biology.

Power of Network-based Context—In modeling the complexity of biological systems,
interactions and associations are often organized into networks. Most networks can be
categorized into two groups: 1) biochemical networks that are directly mechanistic and
typically derived by detailed small-scale experiments and 2) statistical inference networks,
which are generally indirectly extrapolated based on mutual information or significance
associations of high-throughput data (Edelman et al., 2010; Price & Shmulevich, 2007).
Both types of networks can help to inform the reconstruction of cellular models that can aid
in the identification of molecular diagnostics. These networks provide a contextual
framework in which high-through put a data can be integrated to help discern meaningful
signal from noise. In breast cancer, while ER and HER2 status have long-standing clinical
utility, several groups have attempted to further classify tumors using expression array data
along with network analysis (Culhane & Howlin, 2007; Dati et al., 1990; Perou et al., 2000;
Sorlie et al., 2001; Sorlie et al., 2003). In one study, gene expression averaged across
protein-protein interaction subnetworks was found to be more accurate and robust in
discriminating between breast cancer and normal tissue than gene expression alone (Chuang
et al., 2007). In another study, the expression of interacting subnetwork hubs relative to
interacting partners improved the prognosis assessment over examination of gene expression
without the network context (Taylor et al., 2009).

In addition to improved classification, discriminative subnetworks also demonstrated greater
identity overlap across distinct studies, and they have greater enrichment of functionality
associated with cancer-related biological processes than do individual gene classifiers.
While genes known to be associated with breast cancer (e.g. HER-2/neu, Myc, cyclin D1,
etc.) did not display sufficient differential expression across phenotypes to be selected as
individual gene classifiers, these cancer genes were included in several discriminative
subnetworks as hubs that connected differentially expressed genes (Chuang et al., 2007),
suggesting contexts in which known oncogenes can impact the biochemical states of cancer
cells.
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Biochemical and statistical inference subnetworks also create a context that can better link
observed gene expression perturbations with deeper biology. In examining the variability of
expression within biochemical networks in samples taken across different phenotypes,
increasing network-expression variability has been found in several cancers as they progress
to more malignant phenotypes (Eddy et al., 2010). This suggests that certain subnetworks
become less tightly regulated as cancers form and progress (Eddy et al., 2010). In one study,
subnetwork deregulation could distinguish among normal prostate, primary prostate cancer
and metastasizing prostate cancer with greater accuracy than purely expression-based
classification algorithms.

Besides aiding classification and augmenting biological insight into cancer, applying
biochemical and statistical inference network information can also inform treatment
strategies. Understanding network context enables the possibility of treatment through a
greater number of mechanisms and provides insight into whether treatment combinations
redundantly target network nodes in series or synergistically affect network branches in
parallel. Therapeutic agents activating cancer-associated protein-protein interaction
subnetworks have demonstrated significant correlation to inhibition of breast cancer cell line
proliferation (Bild et al., 2006). Study of metabolic reaction subnetworks has also identified
potential therapeutic targets that can disrupt disease processes such as cancer cell
metabolism (Duarte et al., 2007; Resendis-Antonio et al., 2010). These studies suggest that
targeting cancer-associated subnetworks can ultimately inform rational design of multi-drug
treatment regimes, which may be more effective than application of single drugs in isolation
(Gatza et al., 2010). The biological context of networks helps to better interpret the
numerable changes in gene expression data, aiding us to develop diagnostics with improved
outcomes and novel therapeutic strategies.

Network Reconstruction—Genome-scale network reconstructions attempt to synthesize
a global context of cellular functionality. The greatest obstacle to utilizing biochemical and
statistical inference networks is the relative incompleteness of constructed networks.
Genome-scale network reconstructions for humans are emerging in recent years (De Smet &
Marchal, 2010; Duarte et al., 2007; Hyduke & Palsson, 2010; Jerby et al., 2010; Ma et al.,
2007; Oberhardt et al., 2009; Rhodes et al., 2005; Vo et al., 2004; Zhao et al., 2010), with
important implications for the integrated analyses of increasingly abundant genome
sequences and transcriptomics data (see Figure 1). In the absence of more complete
experimentally determined networks, there are multiple statistically inferred network
configurations that would arrive at comparable molecular outputs, a fact that renders brute
force trial and error computationally prohibitive and requires methods to avoid significant
over fitting concerns. Despite these current limitations, significant efforts have been devoted
to facilitate construction of comprehensive networks in cancer (Edelman et al., 2010).
Improving the quality of network information is essential to understanding the complex
ways in which cells go awry in cancer. As might be expected, many sets of interacting genes
are well conserved across organisms. Examining conserved interactions across other
eukaryotes has boosted the construction of human protein-protein interaction networks
(Huang et al., 2007; Rhodes et al., 2005). Remarkably, mutations within these interacting
gene sets can result in dramatically different phenotypes (McGary et al., 2010). For
example, reduced growth in yeast deletion strains under particular conditions parallels
abnormal angiogenesis phenotype in mice, Xenopus and human. These analogous
phenotypes, or phenologs, can help to identify gene-phenotype associations across
organisms. Examining phenolog-associated subnetworks resulted in discovery of
biologically relevant molecular players at a rate 34 times higher than expected, given the
annotation rate (McGary et al., 2010). Identifying phenologs helps to expand the
information base from which non-intuitive associations with possible relevance to cancer
can be discovered.
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Integrating heterogeneous networks can synergistically improve the accuracy and
informative value of networks. For example, incorporating additional measurements of
regulation, such as transcription factor binding (Chromatin Immunoprecipitation or ChIP-
seq) and non-coding RNA regulation will enable a more comprehensive model of regulatory
control (Qiu et al., 2010; Wang et al.). Furthermore, integrating a transcriptional regulatory
network with a metabolic network substantially increases the predictive accuracy of the
metabolic states in microbial systems under multiple conditions (Chandrasekaran & Price,
2010), and can be leveraged to aid more accurate network reconstructions for cell and tissue
types in humans. Such capabilities need to be extended to human cells, which will provide
increasing power to put observed molecular diagnostic changes in biological context—
ultimately leading to better coupling between molecular diagnostics and therapy design.

Context-based diagnostics—Networks provide biological context for gene expression
that aids a more comprehensive and accurate reconstruction of cellular systems. However,
clinical practicality favors small sets of diagnostic markers, which renders exhaustive
characterization of network state infeasible for individual diagnosis. A potential resolution
involves isolating small sets of easily detectable markers whose behavior is most indicative
of relevant subnetwork state. The collective value of these context-dependent markers would
be their ability to identify the disease state within a system better than individual markers.
The coupling of such context-dependent marker sets has been applied to assessing treatment
strategies in breast cancer (Jordan, 1993). As mentioned previously, ER is a diagnostic
marker for breast cancer that also is predictive of the effectiveness of endocrine therapy.
Additionally, progesterone receptor (PR) expression levels in the context of ER provides
significantly better predictions of therapy response than either PR or ER alone (Osborne et
al., 2005). Identifying context dependent markers like ER and PR in collective panels would
help to better account for the many possible low-penetrance alleles and variants believed to
underlie various cancers. Utilizing diagnostic panels of these context-dependent markers
leverages the clearer reconstruction of cellular states provided by network integration,
thereby posing the potential for forming informative and easily interpretable markers for
personalized medicine.

CONCLUSION
Prior to the first full sequencing of the human genome, it was estimated that humans had
between 50,000 and 100,000 genes. We now know there to be around 20,000 genes.
Sequencing of the human genome and follow-up studies revealed unanticipated genomic
complexity within our cellular systems. Although we found significantly fewer genes than
expected, the regulation of those genes has turned out to be far more intricate than
anticipated. Like the process of elucidating the complexity of the human genome, the search
for molecular cancer diagnostics will likely result in similar surprises.

As we continue to grapple with the many levels of biological complexity, our ability to
construct better representations of cellular systems will depend on more accurate and
comprehensive measurement techniques. Our analytical efforts to build better predictive
models that isolate the most meaningful diagnostic molecular markers will undoubtedly also
improve. Collectively, advances in these areas will result in unforeseen levels of complexity,
all of which will reflect the biological and physiological complexity of the body. Our best
test for how well we comprehend this complexity will be in our ability to detect, predict and
ultimately treat disease.

In its own way, human biology has attempted to tackle the same challenges of molecular
cancer diagnostics. Biology’s answer is the immune system. Like molecular diagnostics, the
immune system seeks to identify malignant perturbations as early as possible, in large part,
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by relying on targeted specificity. Though biology has informed our approach to molecular
diagnostic approaches, as it has done for numerous other technological advances, we must
improve upon existing biology if we are to succeed. In some ways, molecular cancer
diagnostics can be seen as the next evolutionary step of our immune system. Though
improving upon the immune system is certainly daunting, systems biology provides us with
an unprecedented bird’s eye view of cellular system organization, which can provide the
necessary context to accomplish this task. The present rate of progress should give us
confidence in our ability to successfully meet the very significant challenges that remain.
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Figure 1.
Human-associated genome-scale information sources available.
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Table 1

Molecular markers used for clinical cancer diagnosis © 2010 by American Association for Clinical Chemistry.
Reprinted with permission from “Tumor Markers” on Lab Tests Online (www.labtestsonline.org). These
markers aid in pre-symptomatic diagnosis, disease progression and recurrence monitoring, and treatment
guiding.

TUMOR MARKERS CANCERS WHAT ELSE? WHEN/HOW USED USUAL SAMPLE

AFP (Alpha-feto protein) Liver, germ cell cancer of
ovaries or testes

Also elevated
during
pregnancy

Help diagnose,
monitor treatment,
and determine
recurrence

Blood

B2M (Beta-2 microglobulin) Multiple myeloma and
lymphomas

Present in many
other
conditions,
including
Crohn’s disease
and hepatitis;
often used to
determine cause
of renal failure

Determine prognosis Blood

CA 15-3 (Cancer antigen 15-3) Breast cancer and others,
including lung, ovarian

Also elevated in
benign breast
conditions;
doctor can use
CA 15-3 or CA
27.29 (two
different assays
for same
marker)

Stage disease,
monitor treatment,
and determine
recurrence

Blood

CA 19-9 (Cancer antigen 19-9) Pancreatic, sometimes colorectal
and bile ducts

Also elevated in
pancreatitis and
inflammatory
bowel disease

Stage disease,
monitor treatment,
and determine
recurrence

Blood

CA-125 (Cancer antigen 125) Ovarian Also elevated
with
endometriosis,
some other
benign diseases
and conditions;
not
recommended
as a general
screen

Help diagnose,
monitor treatment,
and determine
recurrence

Blood

Calcitonin Thyroid medullary carcinoma Also elevated in
pernicious
anemia and
thyroiditis

Help diagnose,
monitor treatment,
and determine
recurrence

Blood

CEA (Carcino-embryonic antigen) Colorectal, lung, breast, thyroid,
pancreatic, liver, cervix, and
bladder

Elevated in
other conditions
such as
hepatitis,
COPD, colitis,
pancreatitis, and
in cigarette
smokers

Monitor treatment
and determine
recurrence

Blood

Chromogranin A (CgA) Neuroendocrine tumors
(carcinoid tumors,
neuroblastoma)

May be most
sensitive tumor
marker for
carcinoid
tumors

To help diagnose and
monitor

Blood

Estrogen receptors Breast Increased in
hormone-
dependent
cancer

Determine prognosis
and guide treatment

Tissue
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TUMOR MARKERS CANCERS WHAT ELSE? WHEN/HOW USED USUAL SAMPLE

hCG (Human chorionic gonadotropin) Testicular and trophoblastic
disease

Elevated in
pregnancy,
testicular failure

Help diagnose,
monitor treatment,
and determine
recurrence

Blood, urine

Her-2/neu Breast Oncogene that
is present in
multiple copies
in 20–30% of
invasive breast
cancer

Determine prognosis
and guide treatment

Tissue

Monoclonal immunoglobulins Multiple myeloma and
Waldenstrom’s
macroglobulinemia

Overproduction
of an
immunoglobulin
or antibody,
usually detected
by protein
electrophoresis

Help diagnose,
monitor treatment,
and determine
recurrence

Blood, urine

Progesterone receptors Breast Increased in
hormone-
dependent
cancer

Determine prognosis
and guide treatment

Tissue

PSA (Prostate specific antigen), total and
free

Prostate Elevated in
benign prostatic
hyperplasia,
prostatitis and
with age

Screen for and help
diagnose, monitor
treatment, and
determine recurrence

Blood

Thyroglobulin Thyroid Used after
thyroid is
removed to
evaluate
treatment

Determine recurrence Blood

Other Tumor Markers Less Widely Used

BTA (Bladder tumor antigen) Bladder Not widely
available, but
gaining
acceptance

Help diagnose and
determine recurrence

Urine

CA 72-4 (Cancer antigen 72-4) Ovarian No evidence
that it is better
than CA-125
but may be
useful when
combined with
it; still being
studied

Help diagnose Blood

Des-gamma-carboxy prothrombin (DCP) Hepatocellular carcinoma (HCC) New test; often
used along with
an imaging
study plus AFP
and/or AFP-
L3% to evaluate
if someone with
chronic liver
disease has
developed HCC

To evaluate risk of
developing HCC; to
evaluate treatment; to
monitor for
recurrence

Blood

EGFR (Her-1) Solid tumors, such as of the lung
(non small cell), head and neck,
colon, pancreas, or breast

Not available in
every laboratory

Guide treatment and
determine prognosis

Tissue

NSE (Neuron-specific enolase) Neuroblastoma, small cell lung
cancer

May be better
than CEA for
following this
particular kind
of lung cancer

Monitor treatment Blood
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TUMOR MARKERS CANCERS WHAT ELSE? WHEN/HOW USED USUAL SAMPLE

NMP22 Bladder Not widely used Help diagnose and
determine recurrence

Urine

Prostate-specific membrane antigen (PSMA) Prostate Not widely
used; levels
increase
normally with
age

Help diagnose Blood

Prostatic acid phosphatase (PAP) Metastatic prostate cancer,
myeloma, lung cancer

Not widely used
anymore;
elevated in
prostatitis and
other conditions

Help diagnose Blood

S-100 Metastatic melanoma Not widely used Help diagnose Blood

Soluble Mesothelin-Related Peptides(SMRP) Mesothelioma Often used in
conjunction
with imaging
tests

To monitor
progression or
recurrence

Blood

TA-90 Metastatic melanoma Not widely
used, being
studied

Help diagnose Blood
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Table 2

Summary of key molecular modulators of cellular activity in cancers.

Molecular Modulators Function in Cancer Potential Diagnostic Examples Measurement Approach References

miRNAs • Inhibits translation
and/or degradation
of gene products
by sequence-
specific binding to
mRNA

• Increases
translation by
recruiting
activating factors

miR-205 correlates with tumor
progression in prostate cancer

RNA-seq (Burchard
et al.,
2010;
Gandellini
et al.,
2010;
Marioni et
al., 2008;
Mitchell et
al., 2008;
Ryan et al.,
2010;
Schaefer et
al., 2010;
Vasudevan
et al.,
2007;
Wang et
al., 2009)

lincRNAs • Induces epigenetic
changes that cause
metastasis and
invasiveness

• Inhibits translation
of gene products

lincRNA HOTAIR contributes
to increased malignancy in
breast cancer

Custom microarrays, RNA-seq (Gupta et
al., 2010;
Huarte et
al., 2010;
Marioni et
al., 2008;
Wang et
al., 2009)

DNA hypermethylations • Silences tumor
suppressor genes

Hypermethylation of GSTP1
promoter as marker for prostate
cancer

MethylC-seq, Reduced
representation bisulfate
sequencing, MeDIP-seq,
MBD-seq, MRE-seq

(Esteller et
al., 2001;
Harris et
al., 2010;
Jones &
Baylin,
2002;
Nakayama
et al.,
2004;
Pomraning
et al.,
2009)

Histone modification • Associates with
DNA
hypermethylations,
silences tumor-
suppressor genes

Dimethylation of lysine 4 and
acetylation of lysine 18 in
histone H3 as marker for
prostate cancer recurrence

Mass Spectrometry (Esteller,
2008;
Richon et
al., 2000;
Vermeulen
et al.,
2010)

SNP • Changes
effectiveness of
the gene product
function

• Modulates the
apoptotic potential
of proapoptotic
proteins

• Alters
translocation
properties of the
gene product

Mutation at P53 codon 72 of the
TP53 gene can differentiate
response to chemotherapy in
head and neck carcinomas

RNA-seq (Grochola
et al.,
2010;
Marioni et
al., 2008;
Ryan et al.,
2010;
Wang et
al., 2009)

Alternative splice variants • Alters cancer-
relevant protein
activity by

Splice variants of POLB,
GPR137, and RUNX2

RNA-seq (Marioni et
al., 2008;
Moore et
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Molecular Modulators Function in Cancer Potential Diagnostic Examples Measurement Approach References
disrupting
functional protein
domains

correlated with breast cancer
presence and tumor staging

al., 2010;
Stickeler et
al., 1999;
Venables
et al.,
2008;
Wang et
al., 2009)
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