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Abstract

Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an
organized and functional society are important issues especially for techno-social development. Addressing these issues of
social networks has recently become possible through large scale data analysis of mobile phone call records, which has
revealed the existence of modular or community structure with many links between nodes of the same community and
relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two
users, and the network topology are found correlated such that intra-community links are stronger compared to the weak
inter-community links. This feature is known as Granovetter’s ‘‘The strength of weak ties’’ hypothesis. In addition to this
inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty,
characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this
paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted
network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends
of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task
handling process. These three mechanisms have been implemented as a network model with local attachment, global
attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of
these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-
type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis
results from mobile phone call dataset.
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Introduction

Human dynamics and social interaction patterns have been a

subject of intensive study in many different fields ranging from

sociology and economics to computer science and statistical

physics constituting what is nowadays called network science [1–

4]. Partially due to the fact that huge amounts of various kinds of

digital data on human dynamics have become available,

explorative and quantitative analysis of these kinds of data has

enabled us to have unprecedented insight into the structure and

dynamics of behavioral, social, and even societal patterns.

Examples of such data consist of email correspondence [5,6],

mobile phone call (MPC) and Short Message (SM) communication

[7–9], online social network services [10,11], and scientific

collaboration [12].

The interaction structure among individuals in such large scale

social data has been investigated by applying the concepts and

methods of complex networks where individuals and their

relationships represent nodes and links, respectively [13–15]. In

many real networks, the link is characterized by a weight

corresponding to the strength or closeness of social relationship

[15,16], which in the case of MPC can be described by the

aggregate number of calls between two individuals [7,17]. It has

turned out that social networks are inhomogeneous and they can

be characterized by modular or community structure [18]: The

whole network is composed of separate communities connected by

bridges, i.e. there are more and stronger links within communities

than between communities, in accordance with Granovetter’s

‘‘The strength of weak ties’’ hypothesis [19], corroborated later in

[7,17]. This weight-topology coupling was successfully reproduced

in the model of weighted networks driven by the cyclic and the

focal closure processes [20]. Here the cyclic closure process refers

to the link formation with one’s next nearest neighbors, i.e. the link

formation with friends of friends. The focal closure refers to the

attribute-related link formation independently of the local

connectivity [21]. It has been shown that these simple processes

can lead to the emergence of complex weight-topology coupling,

where the inhomogeneity of weights is a crucial factor for the

emergence of communities.

In addition to the inhomogeneous community structure of social

networks, the temporal patterns of human dynamics are

inhomogeneous or bursty [6,22,23]. The bursts of rapidly

occurring events of activity are separated by long periods of

inactivity. The bursty dynamics is characterized by the heavy
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tailed distribution of inter-event times t, defined as the time

interval between consecutive events, shows a power-law decay as

P(t)*t{a with a&0:7 or 1 for the MPC [23] or for the email [6],

respectively. Two mechanisms for the origin of burstiness have

been suggested: a) inhomogeneity due to the human circadian and

weekly activity patterns [24,25] and b) inhomogeneity rooted in

the human task execution [6,22]. Although such dynamic

inhomogeneity is obviously affected by the circadian and weekly

patterns, it was claimed that the burstiness turns out to be robust

with respect to the removal of circadian and weekly patterns from

the time series of MPC and SM activities [26]. Here we will

concentrate on considering the dynamic inhomogeneities other

than those due to circadian and weekly patterns, namely due to

those related to individual behavior.

In relation to the inhomogeneity of human task execution,

several priority-based queuing models have been studied [6,22,27–

30]. Each individual is assumed to have a task list of finite size and

select one of tasks under the selection protocol, such as selecting

the task with the largest priority. Most of these models focus on the

waiting time of task, which is defined as the time interval between

the arrival time and the execution time of the task. However, in

some cases, since the arrival times of tasks to the queue are not

given, the waiting times cannot be empirically measured and thus

cannot be directly compared to the empirical inter-event times.

Furthermore, in spite of studying the communication patterns,

such as the email correspondence, the interaction between

individuals has not been properly considered in the models

[6,22]. Some interactive models defined on networks assume that

the underlying networks are binary and fixed [27–30]. However,

in reality both the topology and the weights of social networks co-

evolve according to the individual task executions as well as to

social interaction by cyclic and focal closure mechanisms.

Both the structural inhomogeneity of social interaction and the

dynamical inhomogeneity of human individual behavior affect the

dynamical processes taking place on evolving social networks. For

example it has been shown that the Granovetter-type weight-

topology coupling slows down information spreading [7]. By using

the analogy between link weight and information-bandwidth

information turns out to spread fast and to get trapped within

communities due to the internal strong links (broad bandwidth)

and the weak links (narrow bandwidth) between communities,

respectively. In addition to the effect of Granovetter-type

community structure on information spreading individual bursty

behavior also plays a crucial role in social dynamics. The long

inactive periods represented by large inter-event times, inhibit the

information spreading compared to the randomized null model,

while the bursty periods of short inter-event times do not

necessarily enhance the spreading [23]. Thus both the weight-

topology coupling and the individual bursty dynamics should be

taken into account and implement to a model in order to better

understand the dynamics in the evolving social networks.

The observation of Granovetter-type community structure and

individual bursty dynamics calls for integrating both structural and

dynamical inhomogeneities into single framework or model in

order to better understand the social dynamics with the smallest set

of parameters. Although there are some approaches in integrating

these structural and dynamical properties, the bursty nature of

human behavior has been inherently assumed in these models

[31,32]. Instead, we are interested in the emergence of burstiness

from the intuitive and natural model rules while at the same time

generating the Granovetter-type community structure. In order to

investigate the basic mechanisms responsible for various empirical

observations, we incorporate the task handling process to the

weighted network formation studied by Kumpula et al. [20]. In our

model the weight assigned to a link is interpreted as the aggregate

number of events on that link. Driven by both the cyclic and focal

closure mechanisms a link is created by the first event occurring

between individuals. Once created, the link is maintained by a

series of events on that link, and finally removed by accidental

memory loss of the individual. Each individual may initiate events

or respond to those initiated by others, depending on the protocols

determining the selection and execution of tasks given to

individuals.

Our model can be called co-evolutionary, in the sense that the

task handling process of individuals affects the network evolution

while the network structure constrains the individual behaviors.

One of the typical issues in the co-evolutionary networks is that the

timescale of network evolution competes with that of the

dynamical process on the network [33,34]. In social dynamics

the timescale for social relationship updates (a few weeks or

months) is much larger than communication dynamics taking

place on daily or hourly basis. In our case, since the events are the

building blocks of the structure and the dynamics simultaneously,

the relevant timescales are not explicitly controlled but emerged

from the simple and intuitive rules of our model. In this paper, we

show that by using the models with a few control parameters one

can obtain the Granovetter-type community structure and also

observe the emergence of bursty dynamics characterized by the

heavy tailed inter-event time distribution.

This paper is organized such that we first introduce our two

kinds of co-evolutionary models, the Triad-Interaction-enhanced

model and the Process-Equalized model. Then we present the

results for these models and discuss them in comparison with the

empirical analysis results followed by the conclusions on the

findings in the paper.

Methods

In our model we assume that the network evolves by means of

link creation, link maintenance, and link deletion. Once a link

between two stranger nodes is created by either the cyclic or the

focal closure mechanisms, it is maintained by a series of events on

that link, which we call the neighboring interaction (NI), or it is

deleted by random memory loss. The focal closure mechanism is

implemented by the random pairing of nodes, which is called

global attachment or GA process. The cyclic closure mechanism is

realized when a node interacts with its next nearest neighbor,

which is called local attachment or LA process. While the GA

process involves dyad interaction, the LA process is mediated by

the third node, implying triad interaction. The NI process between

neighboring nodes can happen directly, i.e. as dyad NI, or can be

mediated by their common neighbor, i.e. as triad NI. Let us

assume that only the event like the peer-to-peer phone call is

considered. Then we can implement the triad interaction by

splitting it into dyad interactions such that a node i has a chance to

interact with j at time step t only when both i and j have interacted

with the third node k recently, no more than, say, 2 time steps

before, see fig. 1. In the following we propose two kinds of models.

In the first kind the triad interaction takes place prior to the dyad

interaction. We call this as Triad-Interaction-enhanced model (TI

model in short). The TI model is a direct extension of the weighted

network model by Kumpula et al. [20], where the dyad NI process

is analogous with Barabási’s task execution model [6]. In the

second kind all the three processes (LA, GA, and NI) are

considered equally and the framework of interacting and non-

interacting tasks is adopted from [27], as the variant of Barabási’s

task execution model. We call this as Process-Equalized model (PE

model in short).

Bursts and Communities in Evolving Networks
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Now let us consider an undirected weighted network with N
nodes. A weight of a link between nodes i and j, denoted by wij ,

can be interpreted as the aggregate number of events between

them. The number of neighbors of node i is defined as the degree

ki. The time step of the most recent event between node i and

node j is denoted by tij . Initially all nodes are set to be isolated, i.e.

the initial network is without links.

Triad-Interaction-enhanced model
In the TI model the dynamics at each time step t consists of the

following three stages:

1) Triad Interaction (LA and triad NI). For each pair of

nodes i and j satisfying ftik,tjkg~ft{2,t{1g with a third node k,

we check whether i and j are connected. If they are connected, an

event between i and j occurs, i.e. wij?wijz1, corresponding to

the triad NI process. Otherwise, the event between i and j
occurred with probability p

LA
leads to wij~1, implying a link

creation by the LA process. These LA and triad NI processes are

responsible for the community formation and weight

reinforcement, respectively.

2) Dyad Interaction (GA and dyad NI). Every node not

involved in the previous stage selects a target node to make an

event. If isolated, the node selects the target node from the whole

population at random, preparing for the GA process. If non-

isolated, the node selects the target node either from the whole

population or from its neighbors with probabilities p
GA

or 1{p
GA

,

respectively. In other words, all nodes are free to find new

neighbors while the non-isolated nodes are also responsible for

maintaining links to the existing neighbors, the degree of which is

controlled by p
GA

. In the case of selecting the target from its

neighbors, preparing for the dyad NI process, the probability of

the node i selecting its neighboring node j is proportional to the

weight between them, wij . Thus there is preference for the strong

links. Targeting j by i is denoted by i?j. The analogy between the

target selection from the population or from the neighbors and the

task selection from the task list will be discussed later.

The nodes having selected their targets make events with targets

in a random order only when both the node and its target are not

yet involved in any other event at this time step. If the node i and

its target j were not connected, the event leads to a link creation

between them, i.e. the realization of the GA process. Otherwise,

the event between them results in wij?wijz1, implying the dyad

NI process.

3) Memory Loss. With probability p
ML

, each node, i,
becomes isolated and a stranger to all its neighbors j as wij~0.

This completes the time step t.

Through all the above stages it has been assumed that the target

has no choice to reject the event initiated by some other node. We

term this the OR protocol [28] in a sense that it is enough for at

least one of two nodes to initiate and make an event between them.

Hence we call this version as the TI-OR model. Alternatively we

can assume that an event can occur only in the reciprocal case, i.e.

i?j and j?i, which implies the AND protocol. It should be noted

that for example a mobile phone user can reject a call from his/

her friend by some reason. Here we will consider an TI-AND

model, where the AND protocol is applied only to the dyad NI

process.

Process-Equalized model
In the TI model, since the triad interaction is executed prior to

the dyad interaction, one can not control the intensity of the triad

interaction. Therefore we have devised the PE model where we

consider the triad interaction on the equal footing with the dyad

interactions, i.e. the LA, GA, and NI processes are equally

considered. In this case we incorporate the task execution process

with interacting and non-interacting tasks [27], as described next.

Each node has the task list with one interacting task and one

non-interacting task, denoted by I -task and O-task, respectively.

The I-task represents the task requiring simultaneous interaction

of two nodes, such as a phone call by a caller to a receiver, while

the O-task represents some other task not requiring the

simultaneity such as shopping, watching TV, etc. We count the

inter-event times only for I -tasks, which settles down the issue of

realistically interpreting the waiting time, as mentioned in [27].

The priorities of tasks are randomly drawn from the uniform

distribution.

In this model the dynamics takes place such that at each time

step t, every node selected in a random order goes through the

stages 1) and 2). Then the stage 3) is performed:

1) Task and Target Selection. The node selects the task

with larger priority. Only when it is I -task, this node, which we call

a root node i, selects its target node either

N from the whole population with probability p
GA

, i.e. the GA

process, or

N from its next nearest neighbors with probability p
LA

, i.e. the LA

process, or

N from its neighbors with probability 1{p
GA

{p
LA

, i.e. the NI

process.

For the LA process, the next nearest neighbor of the root node is

defined as the node j satisfying ftik,tjkg~ft{2,t{1g with

another node k. If the number of next nearest neighbors is more

than 1, one of them is selected at random. For the NI process, the

probability to target one of the root node’s neighbors j is

proportional to the weight wij , as in the TI model.

2) Task Execution. Only when the target node has not been

involved in any event at this time, the event between the root node

and the target node occurs, implying that the OR protocol is used.

After this execution the priority of the I -task for the root node is

replaced by the new random number while j9s task list is not

updated, implying that the target node did not execute its I -task

but simply responded to the root node.

3) Memory Loss. Each node becomes isolated with proba-

bility p
ML

, by which the time step t is completed.

Figure 1. Schematic representation of local and global
attachments of the model. Vertical lines represent the time lines
of users. Horizontal solid and dashed lines represent events occurred
and to be occurred between nodes, respectively. The number of events
on a link defines the weight of the link. A. Local Attachment (LA): The
node i has a chance to interact with node j at time step t only when
there exists a temporal path connecting i and j through their common
neighbor k within time window ½t{2,t{1�. B. Global Attachment (GA):
The isolated node l has a chance to interact with a randomly chosen
node m.
doi:10.1371/journal.pone.0022687.g001
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Definitions of network properties
We calculate various network properties for the numerically

obtained networks. Given the weight distribution P(w), the

cumulative weight distribution is defined by

Pc(w):
ð?

w

P(w’)dw’: ð1Þ

For each non-isolated node i, the number of next nearest

neighbors, the individual clustering coefficient, and the strength

are defined by

knn,i:
1

ki

X
j[Li

kj , ð2Þ

ci:
2ei

ki(ki{1)
, ð3Þ

si:
X
j[Li

wij , ð4Þ

respectively. Here Li denotes the set of neighbors and ei denotes

the number of links among the node i9s neighbors. The averages of

the above quantities over the nodes with the same degree k define

the average number of next nearest neighbors knn(k), the local

clustering coefficient c(k), and the average strength s(k),
respectively. In addition, to test the Granovetter-type community

structure the overlap is defined for each link connecting nodes i
and j as follows:

Oij:
jLi\Lj j
jLi|Lj j

, ð5Þ

i.e. the fraction of the common neighbors over all neighbors of i
and j. The average over the links with the same weight w defines

the average overlap O(w). For the dynamics we measure the inter-

event time distributions P(t).

Results and Discussion

The empirical analysis of mobile phone call data from a single

operator in one European country for the first four months in 2007

[17,23] shows that c(k)*k{dc with dc&1, s(k)*kds with ds&1.

It also shows an increasing behavior of knn(k), implying the

assortativity, and an increasing behavior of O(w) with slight

decrease for very large w values, where the increasing part implies

the Granovetter-type community structure. Moreover, it was

found that P(t)*t{a with a&0:7. In addition the average degree

SkT turned out to be around 3:0 and the average clustering

coefficient ScT around 0:13 when the new year’s day of 2007 is

excluded. It should be noted that the average degree of the mobile

phone call network extracted from the single operator dataset

might be underestimated compared to the full mobile phone call

network composed by many operators. Therefore, we assume that

the overall average degree of the whole social network is larger

than 3, i.e. around 10. In this paper we consider the results to be

relevant and comparable with reality, when SkT&10.

For the numerical simulations of the models described above we

set the initial values as N~5|104 and p
ML

~10{3 for all the cases

considered. The simulations of these models are found to become

stationary at about t~3|103, after which the numerical results

are collected for 5|104 time steps.

Triad-Interaction-enhanced model
For both the TI-OR and TI-AND models, we find that the

cumulative weight distributions are broad but do not follow

power-law behavior for the various values of p
LA

and p
GA

as in the

empirical analysis, see figs. 2 and 3. The similar behavior is found

for degree and strength distributions (not shown). It turns out that

as the empirical results, the networks are assortative and have the

Granovetter-type community structure, characterized by the

increasing behavior of knn(k) for k§2 and O(w), respectively.

Here most nodes with k~1 are supposed to be connected to

randomly chosen nodes by the GA process, implying that

knn(1)&SkT. The sample networks shown in fig. 4 A–D also

confirm the emergence of Granovetter-type community structure,

such that the communities of internal strong links are connected

by weak links. In addition, for the TI-OR model with p
LA

~0:1 we

observe a slightly decreasing behavior of O(w) for large w values,

implying the existence of smaller but stronger communities. The

decreasing behavior of the overlap was observed in the empirical

analysis but not in the previous model studies [20].

Based on the above observations it seems that a node is a

member of a few strong triangles and connected to some other

nodes outside its own triangles. This explains our finding of dc&2,

different from the empirical result. It is because if the degree of a

node increases mainly by means of the GA process, the number of

links between neighbors remains while the number of all possible

links grows as k2, resulting in c(k)*k{2. We also find ds&0
differently from the empirical value, which we will discuss later in

relation to the dynamics.

In order to confirm the Granovetter-type community structure

of networks, we perform the link percolation analysis. If links

within communities are strong whereas links between them are

weak as found in the empirical studies [7,17], the network should

disintegrate faster when the weak links are removed first than

when the strong links are removed first. Note that as shown in fig. 4

the links with weight 1 form an apparently random network as

backgrounds for the community structure. Thus we apply the link

percolation to the giant components of networks without links with

w~1 and denote its size by N ’. By removing links in an ascending

or descending order of weights, we measure the remaining fraction

of the giant component RGC , the susceptibility x, and the average

clustering ScT as a function of the fraction of removed links, f .

Here the susceptibility is defined as x~
P

nss
2=N ’, where ns

denotes the number of clusters with size s and the giant

component is excluded from the summation. For the weak-link-

first-removal cases we find the sudden disintegration of networks at

the finite value of f , i.e. fc~0:62 (0:21) for TI-OR (TI-AND)

model. When the strong links are removed first, there is an

apparent transition at the larger value of fc~0:87 (0:81) for TI-

OR (TI-AND) model as shown in fig. 5 A and C. For the weak-

link-first-removal cases the values of f maximizing ScT, denoted

by fmax, are quite close to those of fc. When using the overlap

instead of the weight for the link percolation, almost the same

behavior is observed in fig. 5 B and D because O(w) turns out to

be the monotonically increasing function of w in our model.

For the temporal dynamics the inter-event time distributions are

characterized by the power-law with an exponential cutoff, i.e.

P(t)*t{a exp ({t=tc), where the scaling regimes span over

about one decade, see figs. 2 E and 3 E. In case of TI-OR model,

a&2:5 or 1:2 when p
LA

~0:013 or 0:1, respectively. In the case of

TI-AND model, when p
LA

~0:07 or 0:4, we find a&0:8 or 0:6,

Bursts and Communities in Evolving Networks
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respectively, both of which are close to the empirical value 0:7 of

MPC dataset within error bars. In all cases, the values of a are

smaller for larger values of p
LA

but are barely affected by the value

of p
GA

. The values of tc turn out to be larger for larger values of

p
LA

and for smaller values of p
GA

. The maximum value of tc is

around 50.

To figure out what are the possible underlying mechanism for

these findings, we first identify the triangular chain interaction

(TCI) among three neighboring nodes, say i, j, and k: Both the

event between nodes i and j at time step t{2 and the event

between nodes j and k at time t{1 lead to an event between

nodes i and k at time t, again leading to another event between

nodes i and j at time tz1 and so on, unless interrupted either by

the events from/to nodes outside the triangle or by a random

memory loss of nodes in the triangle. Since the TCI is exclusive

due to the priority of the triad interaction including the LA

process, the LA process enhanced by the large value of p
LA

inhibits

the interruption by the events from/to nodes outside the triangle,

including the GA process, and thus making the community

structure more compact in turn resulting in a smaller average

degree. In case of TI-OR model with p
GA

~0:1, SkT&10:1 or 4:2
for p

LA
~0:013 or 0:1, respectively. While the compact community

structure enhances the TCI again, explaining the observed peaks

of P(t) at t~1 and 2, it can also make some neighbors of the TCI

nodes wait for long time to interact with the TCI nodes. Hence,

the larger value of p
LA

gives rise to larger fluctuation in the inter-

event times, implying a smaller value of the power-law exponent a
and a larger value of the cutoff tc, as observed. Based on this

argument, the effect of p
LA

dominates over that of p
GA

, so that the

value of p
GA

barely affects the scaling of inter-event time

distributions but it controls the value of tc. The larger value of

p
GA

allows nodes to choose a random target and thus interrupt the

inter-event times of targets more frequently, leading to a smaller

value of tc. The numerical results in the case of the TI-AND

model can be explained by the same arguments, except for the

observed values of a less than those found in the case of the TI-OR

model. Note that in general the AND protocol inhibits the

possibility of events.

The heavy tailed distribution of inter-event times, i.e. bursty

dynamics, was not expected but it emerged from the model.

Analogously with the task execution model suggested by Barabási

[6], the dyad NI process can be interpreted such that a node i has

the task list with size ki and it selects one of neighbors (tasks) j with

probability proportional to the priority of the task, i.e. the weight

wij in our model. The degree ki also varies depending on the link

creation and deletion processes. A node having been isolated by

 

Figure 2. TI-OR model. A. The cumulative weight distribution Pc(w). B. The average number of next nearest neighbors knn(k). C. The average
overlap O(w). D. The local clustering coefficient c(k). E. The inter-event time distribution P(t). F. The average strength s(k). Results are averaged over
50 realizations for networks with N~5|104 and p

ML
~10{3 . We obtain SkT&10:1 and ScT&0:08 for p

LA
~0:013 and p

GA
~0:1. The cases with

p
LA

~0:1 and/or with p
GA

~0:07 are also plotted for comparison.
doi:10.1371/journal.pone.0022687.g002
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the memory loss tries to interact with strangers. Once being

connected to some other node by the GA process, its degree

increases partly by means of the LA process but it will not diverge.

The degree mostly fluctuates and sometimes remains unchanged

for long periods of time. And the node finally becomes isolated

again by the memory loss. Thus, the whole life-cycle of a node is

assumed to consist of two types of periods, i.e. one with fixed-size

and the other with variable-size task list. The periods of fixed-size

task list, i.e. fixed degrees, are up to several hundred time steps,

which are much larger than the observed tc. This implies the

natural separation of timescales between network change and

dynamics on the network, which is consistent with everyday

experience of mobile phone usage. Due to the timescale separation

the inter-event time distribution for the whole period can be

represented by the superposition of those for fixed-size period and

for variable-size period. Thus, to understand the effect of size

variability on the scaling behavior of bursty dynamics, we refer to

the previous works studied in the different kinds of models, such as

by Vázquez et al. [22]. When the task list has a variable (fixed) size

in the Barabási model, the power-law exponent for the waiting

time distribution turns out to be 3=2 (2). According to the

argument that the distribution of the inter-event times derived

from the waiting times has the same power-law exponent as that of

the waiting times, one can expect the similar values of exponent

from our model. However, this is not the case with our model, so

we leave this for the more rigorous analysis in the future.

Finally, the apparent overall independence of the average

strength s(k) on k for large values of k is attributed to the fact that

once the node is a member of the TCI, its activity becomes

effectively independent of its degree due to the exclusive property

of TCI. We observe even the decreasing behaviors of s(k) for the

larger k values in the TI-AND model, i.e. the AND protocol based

interaction with too many neighbors can make nodes failing to

interact with any neighbors.

Process-Equalized model
The TI models show the expected behaviors of Granovetter-

type community structure and the heavy tailed inter-event time

distribution but they do not yield the expected behavior of the

local clustering coefficient and average strength of the nodes. This

is mainly due to too strong effect of the triad interaction and that is

why we need to consider the PE model for modeling improvement

and comparison with empirical results.

With the PE model we find that the cumulative weight

distributions Pc(w) are broad, that the overlap O(w) increases

with w, i.e. showing Granovetter-type community structure, that

 

 

Figure 3. TI-AND model. A. The cumulative weight distribution Pc(w). B. The average number of next nearest neighbors knn(k). C. The average
overlap O(w). D. The local clustering coefficient c(k). E. The inter-event time distribution P(t). F. The average strength s(k). Results are averaged over
50 realizations for networks with N~5|104 and p

ML
~10{3 . We obtain SkT&9:6 and ScT&0:13 for p

LA
~0:07 and p

GA
~0:1. The cases with p

LA
~0:4

and/or with p
GA

~0:04 are also plotted for comparison.
doi:10.1371/journal.pone.0022687.g003
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the average number of next nearest neighbor knn(k) increases with

k, i.e. showing the network being assortativity for k§2, and that

c(k)*k{dc with dc&1 and s(k)*kds with ds&1, as shown in

fig. 6. All these results are consistent with the empirical analysis on

real data. Based on the sample networks in fig. 4 E and F, it is

evident that the TCI becomes weaker and less exclusive than in

the case of the above TI models. Therefore, as the degree of a

node increases, the neighbors of that node have the increasing

chance to interact with each other, resulting in c(k)*k{1.

In fig. 5 E and F we show the results of the link percolation

analysis, done to confirm Granovetter-type community structure.

We find that when the weak links are removed first, the

percolation transition occurs at fc~0:86. On the other hand

when the strong links are removed first, a transition is observed at

fc~0:91, implying that the strong links play the role of bridges

between communities. This is also evident in the sample networks

in fig. 4 E and F. The curve of the average clustering coefficient

ScT turns out to be flat for a wide range of f values. Similar

Figure 4. Snowball samples of networks [36]. A, B. TI-OR model. C, D. TI-AND model. E, F. PE model. For each model, we plot the sample
network starting from a random node (left panel) and the one without the links with w~1 (right panel) for clear visualization. The color of links
ranges from blue for weak links through yellow for intermediate links to red for strong links.
doi:10.1371/journal.pone.0022687.g004
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behaviors are also observed when the overlap is used instead of the

weight in the link percolation analysis. For the weak-link-first-

removal we find fc~0:79 and fmax~0:55, where yet another kink

in the curve of RGC is observed. This implies that the network goes

through two abrupt changes, first at fmax and then at fc.

Here we also observe the heavy tailed distributions of inter-

event times with exponential cutoffs following a power law

behavior with the exponent of a&1:1. The task execution model

for each node would result in a~1 as in the case of Barabási’s

queuing model if only initiating the I-tasks are counted as the

relevant events and if the neighbors of the node always respond to

that node. However, the nodes are supposed to interact with each

other such that by initiating I -tasks some root nodes can interrupt

the inactive periods of their target nodes, which in general

decreases the inter-event times. On the other hand, if the target is

already involved in another event so that the trials by the root

nodes fail, the inter-event times of corresponding root nodes would

increase up to the points of next successful events occurring. The

observed value of a&1:1 indicates that any of the mentioned

factors did not affect much the scaling behavior of the

distributions. The values of tc are largely or barely affected by

the value of p
GA

or p
LA

, respectively, in an anti-correlated way. The

maximum value of tc is around 270.

The observation of the average strength s(k)*k behavior can be

explained by considering the dynamics where the OR protocol is

adopted. In this case the nodes with many neighbors might receive

more calls from their neighbors than those with few neighbors do,

while the chance to make calls is the same for any node.

Conclusions
We have studied the emergence of Granovetter-type commu-

nity structure, characterized by the increasing behavior of overlap

 

 

  

 

 

  

 

 

 
  

 

 

  

 

 

 
  

 

 

  

 

 

 
  

 

 

  

 

 

 
  

 

 

  

 

 

 
  

 

 

  

 

 

Figure 5. Link percolation analysis. A, B. TI-OR model. C, D. TI-AND model. E, F. PE model. As the link strength, we use the weight (left panel)
and the overlap (right panel). For each panel, we calculate the fraction of giant component RGC , susceptibility x, and clustering coefficient ScT (inset)
as a function of the fraction of removed links, f . Results are averaged over 50 realizations for networks originally with SkT&10 for each model.
doi:10.1371/journal.pone.0022687.g005
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as a function of the link weight, and the heavy tailed inter-event

time distributions, i.e. bursty dynamics, in a single framework of

simultaneously evolving weighted network model. By incorporat-

ing simple and intuitive task execution models for human

dynamics into the weighted network model reproducing the

Granovetter-type community structure of social systems, we

successfully observe the qualitatively same behaviors as observed

in the empirical networks based on the mobile phone call (MPC)

dataset. In addition, we have found that the exclusive triangular

chain interaction (TCI) identified in the TI models plays the

central role both in community structure formation and bursty

dynamics. For the existence of TCI we have the evidence from the

empirical study on the dynamic motifs of MPC communication

[35]. The numerical results from TI-OR and TI-AND models are

qualitatively the same except for the power-law exponent a of

inter-event time distributions. The values of a from TI-AND

model turn out to be closer to the empirical value 0:7 for the MPC,

implying that the AND protocol is necessary to properly model the

MPC communication. Furthermore, in the PE model, by relaxing

the exclusive property of TCI to some extent we could obtain

more realistic results at least for the network structure. The scaling

behavior of inter-event time distributions seems to be mainly

affected by the incorporated framework of interacting and non-

interacting tasks, which should be made clear in the future.

Finally we believe that building simple empirical-observation-

based models, like our TI- and PE-models, by incorporating the

process of human task execution by priority-based queuing with

the basic processes of friendship-network formation by cyclic and

focal closure mechanisms enable us to better understand the

underlying mechanisms of real co-evolutionary networks. Further-

more, these models enable us to explore the social dynamics in

these networks as done differently by Karsai et al. [23] with the

susceptible-infected (SI) dynamics for the mobile phone call

communication. Moreover, the scaling properties and finite-size

scaling of real networks are usually not so informative but can be

considered and made more informative by means of simple but

still quite realistic models, where one can control the system size

and other parameters as well.
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Figure 6. PE model. A. The cumulative weight distribution Pc(w). B. The average number of next nearest neighbors knn(k). C. The average overlap
O(w). D. The local clustering coefficient c(k). E. The inter-event time distribution P(t). F. The average strength s(k). Results are averaged over 50
realizations for networks with N~5|104 and p

ML
~10{3 . We obtain SkT&9:9 and ScT&0:11 for p

LA
~0:07 and p

GA
~0:02. The cases with p

LA
~0:2

and/or with p
GA

~0:01 are also plotted for comparison.
doi:10.1371/journal.pone.0022687.g006
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