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Abstract

Watershed urbanization leads to dramatic changes in draining streams, with urban streams receiving a high frequency of
scouring flows, together with the nutrient, contaminant, and thermal pollution associated with urbanization. These changes
are known to cause significant losses of sensitive insect and fish species from urban streams, yet little is known about how
these changes affect the composition and function of stream microbial communities. Over the course of two years, we
repeatedly sampled sediments from eight central North Carolina streams affected to varying degrees by watershed
urbanization. For each stream and sampling date, we characterized both overall and denitrifying bacterial communities and
measured denitrification potentials. Denitrification is an ecologically important process, mediated by denitrifying bacteria
that use nitrate and organic carbon as substrates. Differences in overall and denitrifying bacterial community composition
were strongly associated with the gradient in urbanization. Denitrification potentials, which varied widely, were not
significantly associated with substrate supply. By incorporating information on the community composition of denitrifying
bacteria together with substrate supply in a linear mixed-effects model, we explained 45% of the variation in denitrification
potential (p-value,0.001). Our results suggest that (1) the composition of stream bacterial communities change in response
to watershed urbanization and (2) such changes may have important consequences for critical ecosystem functions such as
denitrification.
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Introduction

Streams occupy low lying points in landscapes and are thus

strongly affected by the detrimental impacts of watershed

urbanization (reviewed by [1]). An extensive body of research

has documented significant losses of sensitive insect and fish

species from streams in response to urbanization (reviewed by [2]).

In contrast, relatively little is known about how urbanization

affects bacterial community composition in streams [3]. Given that

bacteria mediate many of the biogeochemical transformations

underpinning ecosystem functioning [4], changes to the compo-

sition of stream bacterial communities in response to urbanization

have the potential to alter ecosystem functioning in streams [5].

There are reasons to expect watershed urbanization to alter

bacterial community composition in streams – urban streams are

highly stressful environments that receive severe and frequent

physical disturbance through scouring flows, together with

increased stream water temperatures and contaminant (e.g., heavy

metals) and nutrient inputs [1,6]. Physical disturbance, as well as

thermal and chemical changes, have been found to strongly

regulate bacterial community composition in streams (reviewed by

[7]) and terrestrial systems [5,8,9]. We therefore expected

watershed urbanization to cause substantial changes to the

composition of stream bacterial communities. In the single

published study on this topic to date, Lear et al. found that

bacterial community composition in stream biofilms was signifi-

cantly different between streams in urban versus rural watersheds

[10].

It is less clear how urbanization might affect the composition

and function of bacterial functional groups (i.e., groups whose

members all share the ability to perform a particular function).

One particularly important functional group and function in

streams is denitrifying bacteria (denitrifiers) and denitrification.

Denitrification is the transformation of nitrate to nitrogen gas and

is one of the few ways to permanently remove nitrate from surface

waters. The global supply of nitrate has more than doubled over

the last century [11], particularly in urban streams [1,12], leading

to serious water quality and human health problems [13–15].

Denitrification by stream denitrifiers can play a key role in

mitigating nitrogen pollution by preventing nitrate from entering

downstream ecosystems [12,16,17]. Our goal in the study was to

examine whether watershed urbanization affects the composition

of overall bacterial communities and the composition and function

of denitrifier communities in streams.

Most denitrifiers are facultative anaerobes, using oxygen as the

electron acceptor for organic matter oxidation whenever available

and nitrate as the next best alternative electron acceptor under

hypoxic or anoxic conditions. Denitrification is thus expected to be

highest in habitats with low dissolved oxygen and high nitrate and

organic carbon substrate supply. Urban streams tend to have low
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oxygen and high substrate concentrations [1], making them

seemingly ideal places for denitrification. Urbanization, however,

affects more than just oxygen and substrate concentrations; it also

imposes many stressors on stream inhabitants, such as contami-

nation, high temperatures, and hydrologic disturbances [1]. These

stressors may drive changes in denitrifier community composition

[18] that could, in turn, lead to altered denitrification rates [19].

We propose two mechanisms by which watershed urbanization

could affect stream denitrification. The first mechanism focuses on

direct effects of urbanization on denitrification through changes to

nitrate and organic carbon concentrations. The second mecha-

nism focuses on indirect effects of urbanization on denitrification

through changes to denitrifier community composition (Fig. 1). To

compare the relative importance of the two mechanisms, we

examined both denitrifier community composition and substrate

concentrations as potential controls of denitrification potential in

streams affected to varying degrees by watershed urbanization.

Methods

Study streams
We surveyed microbial communities and measured denitrifica-

tion potentials in eight study streams located in the Raleigh-

Durham area in the Piedmont region of North Carolina (USA)

(Table 1). We selected the study streams to represent a gradient of

watershed urbanization, with percent impervious cover (% IC)

ranging from 1 to 39%. Watershed land cover metrics were

calculated based on the 2001 National Land Cover Dataset and

the associated Impervious Surface Cover dataset, both from the

United States Geological Survey Seamless Server. Within each

study stream, we established a permanent study reach from which

to collect samples during the course of the research effort (June

2008 to July 2009). Further details on the physical conditions (e.g.,

total degree-days, hydrologic flashiness, etc.) and the macroinver-

tebrate communities at each site can be found in [20,21].

Sediment collection
We collected sediments from streams on four sediment sampling

dates – sampling date 1 (June 2008), 2 (December 2008), 3 (June

2009), and 4 (July 2009). All streams were open to public access

and did not require permits for collecting sediments. Mud Creek

and Lower Mud were dry on sampling date 4, so sediments were

not collected from those streams on that date. To collect

sediments, we randomly selected five points along each ,100 m

study reach. We then demarcated a 2 m segment of streambed

(i.e., entire wetted width) upstream and downstream of each

selected point and used PVC corers (6.35 cm diameter) to take

multiple sediment cores in each sampling area until a total volume

of at least 4,024 cm3 was collected. Sediment cores ranged from 1

to 12 inches in vertical depth, depending on the depth of the

stream bedrock. Sediment cores were sieved (2 mm opening) and

composited in the field, resulting in a single composited sample

from each site on each date. Sediment subsamples for molecular

analyses and denitrification potentials were kept on ice for

transport to the laboratory and then stored at 280uC and 4uC,

respectively. Denitrification potentials were measured within

48 hours of sample collection. It is worth noting that streamwater

temperatures are nearly always above 4uC in these streams, so

denitrification potentials may have been negatively affected by the

sudden temperature change associated with transport and storage

conditions. Although not ideal in some respects, it was important

to keep samples cool to minimize changes to bacterial abundances

following sampling.

Water chemistry
We collected streamwater samples from each site on the same

day of sediment sampling and at least once per month from June

2008 to July 2009. Samples were field filtered through Whatman

GF/F filters (Whatman, Piscataway, NJ, USA) and kept on ice for

transport to the laboratory. All samples were stored at 4uC and

analyzed for nitrate and total organic carbon (TOC). We

measured nitrate with an ion chromatograph equipped with an

AS18 anion column and KOH eluent generator (Dionex,

Sunnyvale, CA, USA). We measured TOC as non-purgeable

organic carbon with a TOC analyzer (TOC-V CPH, Shidmadzu

Corporation, Kyoto, Japan). For all statistical analyses of nitrate

and TOC concentrations, we used all available measurements

from the month of each sediment sampling date to calculate a

mean value for that particular site and sediment sampling date.

Sediment heavy metals
While pharmaceuticals, herbicides, and other toxic chemicals

can also contaminate urban streams, we chose to focus primarily

on heavy metals as an indicator of overall contamination intensity,

because previous work has documented denitrifier community

shifts in response to heavy metal contamination [22] and heavy

metal concentrations are relatively easy to measure. We measured

the concentration of nine heavy metals, including silver (Ag),

aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr),

copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), in sediments

collected in June 2009.

To measure heavy metal concentrations, sediments were re-

sieved (1 mm opening), dried at 60uC for 48 hours, and then

weighed out into three replicate 1 g subsamples per site per date

for digestion (EPA method 3050B) [23]. Digestion involved adding

10 mL of 50% nitric acid, heated at 95uC, followed by another

5 mL of nitric acid (also heated to 95uC) to each sample. 10 mL of

hydrogen peroxide were then added before filtering (Whatman

#41). Digested samples were analyzed for trace metals by

inductively coupled plasma-mass spectrometry (Perkin-Elmer Elan

6000 ICP-MS, Perkin-Elmer, Waltham, MA, USA). For every 35

samples analyzed, we also processed three replicates of certified

reference materials STSD-3 (NRC, Ottawa, Canada) and two

method blanks.

To correct for differences in organic carbon content among

sediment samples, we standardized all heavy metal concentrations

Figure 1. Conceptual diagram describing two causal mecha-
nisms through which watershed urbanization might alter
denitrification rates in streams. The first mechanism (pathway A)
focuses on the direct effect of urbanization on denitrification through
changes to nitrate and organic carbon concentrations. The second
mechanism (pathway B) focuses on the indirect effect of urbanization
on denitrification through changes to denitrifier community composi-
tion.
doi:10.1371/journal.pone.0022972.g001
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using ash-free dry mass (AFDM). AFDM is the amount of dry

mass of a sediment sample that is organic and can, therefore, be

combusted. To determine AFDM values, we weighed out three

replicate 5 g subsamples per site per date, dried at 60uC for

48 hours, weighed to get dry mass, combusted at 400uC for

4 hours, and weighed again to get combusted mass [24]. The

difference between dry and combusted mass, divided by dry mass

is AFDM. Standardization is necessary for comparing concentra-

tions of substances, like heavy metals and organic pollutants, in

sediments that vary in their physio-chemical properties. While

there are many normalizers available, organic carbon content is

often used for standardizing heavy metal concentrations [25,26].

In addition to the concentrations of individual heavy metals, we

also calculated an additional metric (total metals) to represent the

cumulative heavy metal load in sediments by categorizing each

heavy metal concentration into a quintile category (i.e., 1 to 5) and

then summing quintile values across all nine measured heavy

metals for each site. Quintile values give equal weight to all metals,

as opposed to a simple sum of concentrations, which would weigh

metals with the highest concentrations (that may not be the most

toxic) most heavily.

Sediment bacterial community composition
The focus of this study was on assessing variability in

community composition among sites, rather than within each site.

We therefore extracted DNA from sediment subsamples taken

from field composited (per site and sampling date) sediment cores.

Extractions were done using PowerSoil kits (MoBio Laboratories,

Carlsbad, CA, USA), according to manufacturer instructions.

Samples collected on sampling dates 1 and 2 were extracted in

triplicate, while those collected on sampling dates 3 and 4 were

extracted in duplicate. We used extractions from sampling dates 3

and 4 to characterize overall bacterial communities and

extractions from sampling dates 1, 2, 3, and 4 to characterize

denitrifier communities.

We amplified bacterial 16S rRNA genes with the bacterial

primer set 8F (59-AGAGTTTGATCCTGGCTCAG, HEX

labeled) [27] and 1389R (59- ACGGGCGGTGTGTACAAG)

[28] using Apex 26 Taq Master Mix (Genesee Scientific, San

Diego, CA, USA). Each of 28 polymerase chain reaction (PCR)

cycles consisted of 45 seconds at 94uC, 45 seconds at 58uC, and

90 seconds at 72uC. Three separate 16S rRNA PCRs were done

for each extraction (i.e., two extractions per site on each date).

We amplified denitrifier DNA with two functional gene primer

sets – nirK and nosZ. The nirK primer set was nirK1F (59- GG(A/

C)ATGGT(G/T)CC(C/G)TGGCA, FAM labeled) and nirK5R

(59-GCCTCGATCAG(A/G)TT(A/G)TGG) [29]. The nosZ prim-

er set was nosZ-F (59- CG(C/T)TGTTC(A/C)TCGACAGC-

CAG, FAM labeled) and nosZ1622R (59- CGC(G/A)A(C/

G)GGCAA(G/C)AAGGT(G/C)CG) [30]. We used Apex 26
Taq Master Mix (Genesee Scientific) for both nirK and nosZ

denitrifier PCRs.

nirK is a functional gene that encodes the copper containing

form of nitrite reductase, which catalyzes the first step in the

denitrification pathway. Each of 33 nirK PCR cycles consisted of

30 seconds at 95uC, 30 seconds at 46uC, and 45 seconds at 72uC.

Primers were also tested for the amplification of nirS, which

encodes an alternate form of nitrite reductase (i.e., containing

cytochrome cd1), but repeated amplification difficulties with the

primer set (nirS1F and nirS6R) [29] prevented their inclusion in

this study. nosZ is a functional gene that encodes for nitrous oxide

reductase, which catalyzes the last step in the denitrification

pathway. Each of 35 nosZ PCR cycles consisted of 30 s at 94uC,

60 s at 53uC, and 60 s at 72uC. Each DNA extraction (two to

three per site by sampling date) was amplified in triplicate PCRs

for both denitrifier primer sets.

Resulting PCR products were composited (i.e., three PCRs per

extraction combined to yield two to three PCR product pools per

site per date for each primer set), cleaned with Qiaquick PCR

purification kits (Qiagen, Germantown, MD, U.S.A.), checked for

appropriate sizes by agarose gel electrophoresis, and then used to

generate terminal restriction fragment length polymorphism

(TRFLP) profiles with either endonuclease Msp I for 16S rRNA

products, Hae III for nirK products, or Mn lI for nosZ products.

Table 1. Study streams, ranked in order of percent impervious cover in the watershed.

Stream

Watershed
impervious
cover (%)

Watershed
develop-
ment (%)

Nitrate
(mg/L)1

TOC
(mg/L)1

Total
metals2

Sediment
d503

Total
degree-
days4

Flashi-
ness5

EPT
richness6

Mud Creek 0.5 4.4 0.111 4.775 16 13 11018 0.04 12.0

Stony 3.4 24.4 0.200 4.173 29 111 10691 0.01 9.0

Lower Mud 9.5 58.6 0.145 5.286 20 49 11418 0.01 2.5

Pott’s 9.9 27.4 0.083 4.676 29 64 11020 0.04 8.5

Upper Mud 11.0 66.9 0.127 6.290 34 1 11450 0.26 0.0

Cemetery 19.1 98.0 1.436 2.150 30 9 11470 0.14 2.0

Ellerbee 20.8 88.7 0.215 7.622 24 1 12167 0.09 3.5

Goose 39.4 100.0 0.200 15.169 34 11 12899 0.17 0.0

Notes:
1Mean stream water concentrations recorded between June 2008 and July 2009.
2Measure of cumulative heavy metal loading in July 2009 sediment samples.
3Stream reach-averaged median sediment grain size based on surveys conducted in June 2007 and June 2009 [20,21]. Low values indicate dominance by smaller sand
particles. High values indicate dominance by larger pebbles and granules.

4Total degree-days calculated with daily minimum and maximum temperatures using the double triangle method [56] and data taken between May 2007 and June
2007 [20].

5Flashiness estimated from changes in hourly discharge between May and June 2007 [20].
6Mean number of macroinvertebrate species belonging to Ephemeroptera, Plecoptera, and Trichoptera found in 2006 and 2007 surveys [21]. EPT richness is often used as
an indicator of water quality; EPT species tend to occur in clean, well oxygenated waters [57].

doi:10.1371/journal.pone.0022972.t001
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Endonucleases were chosen based on test runs with different

endonucleases; we used endonucleases that yielded the largest

number of fragments, as visualized on 1% agarose gels, for that

particular PCR product type. All endonucleases were from New

England Biolabs (Ipswich, MA, USA). Subsequent electrophoresis

runs were done with an ABI Prism 3100 genetic analyzer (Applied

Biosystems, Foster City, CA, USA) using a 1000 ROX size

standard (Applied Biosystems).

To process TRFLP data, we used T-REX software [31] to

determine a baseline fluorescence threshold for filtering true peaks

from background noise and to align terminal restriction fragments.

T-REX uses a filtering algorithm that eliminates peaks that do not

meet a user-specified standard deviation limit [32]. We used one

standard deviation in peak area as the limit. Each peak

corresponds to a terminal restriction fragment length and

represents an operational taxonomic unit (OTU). Following the

filtering procedure, we aligned fragments by using a clustering

threshold of 0.5 base pair [33]. Any OTUs present in less than 5

percent of samples were eliminated. For all subsequent analyses,

we transformed the processed TRFLP data to presence-absence

matrices and averaged replicates (i.e., two to three replicates for

each site, date, and primer set combination) by the following logic

- OTUs found present in at least one replicate were recorded as

present (1), while those not found in any replicate were recorded as

absent (0) at that site on that particular date. While this method of

scoring OTU presence may have a higher risk of introducing

biases associated with contamination and/or incomplete digestion

(as opposed to requiring presence in at least two replicates, for

instance), we chose to use this more lenient approach to scoring

OTU presence to minimize the risk of throwing out ‘real’ but rare

OTUs that have already survived the previous quality control step

(i.e., OTUs present in ,5% of samples eliminated).

The TRFLP method is a cost-effective tool that has been

accepted as an appropriate and efficient means of assessing overall

dissimilarity among microbial community composition [28,34,35].

Denitrification potential
We used denitrification enzyme activity (DEA) assays to

measure denitrification potentials [36] of sediments collected from

all four sampling dates. DEA assays are short laboratory

incubations conducted at room temperature under optimal

conditions (i.e., anoxia and unlimited substrate availability). Five

replicate incubation slurries were prepared for each stream on

each sampling date by weighing 10 g subsamples of sediment into

Erlenmeyer flasks (125 mL) and adding 20 mL of stock media

solution with 0.72 g potassium nitrate, 0.5 g glucose, and 0.125 g

chloramphenicol in 1 L of double de-ionized water.

After adding media, flasks were topped with butyl rubber

stoppers (Grace, Deerfield, Illinois, U.S.A.) to achieve airtight

conditions and made anaerobic by three successive cycles of

evacuation and nitrogen gas (N2) flushing. The incubation was

initiated by adding 10 mL of acetylene (C2H2) gas to each flask.

C2H2 inhibits nitrous oxide (N2O) reduction (the last step of the

denitrification pathway), allowing N2O to accumulate in the flask

headspace. Flasks were continuously shaken (125 rpm) on

reciprocal shakers during the 90 minute incubation. Gas samples

were taken at the start of the incubation and every 30 minutes

thereafter. Chloramphenicol inhibits the synthesis of new enzymes

and bacterial communities are unlikely to change significantly

during the short incubation period [37].

DEA assays provide estimates of maximum denitrification rates

achievable by the extant community, given optimal conditions, but

without allowing sufficient time for shifts in denitrifier community

structure due to growth or the synthesis of new denitrification

enzymes. The rates measured by DEA assays are, therefore, a

function of two key aspects of each sample: 1) the concentration of

denitrification enzymes, which reflects stream conditions at the

time of sampling, and 2) the structure of the denitrifier community,

which reflects a legacy of stream conditions over a period of time

leading up to the time of sampling. DEA assays are widely used as

a valid means of comparing denitrification rates among sites [38].

We measured N2O concentrations using a Teledyne Tekmar

7000 headspace autosampler (Teledyne Tekmar, Mason, Ohio,

U.S.A.) to inject samples into a Shimadzu GC-17A ver.3 gas

chromatograph with a Porapak Q column and electron capture

detector (injector temperature = 380uC, column tempera-

ture = 80uC, detector temperature = 340uC, with N2 carrier gas).

We used Bunsen coefficients to determine N2O concentrations in

each sample and calculated rates of N2O production as the

average rate observed over any 30 minute interval. N2O

production rates were then divided by the dry mass of sediments

in the flask to calculate denitrification potentials (ng N/g

sediment/hr). Statistical analyses of denitrification potentials were

based on averaged potentials across all five DEA assay replicates

done for each site on each sampling date.

Data analyses
To explore relationships among measured variables, we used R

2.11.1 (R Core Development Team) software to conduct simple

linear regressions. To equalize variances and normalize residuals,

denitrification potential, nitrate, TOC, and heavy metal values

were natural log transformed, while watershed % IC and %

development were arcsine square root (arcsq) transformed prior to

this and all subsequent data analyses.

To test the null hypothesis of no difference in log-denitrification

potential, log-nitrate, and log-TOC among streams, we used R to

conduct repeated measures analysis of variance (rmANOVA) with

watershed impervious cover as a factor. That is, we categorized

streams a priori into three groups: low (,3% IC; Mud Creek and

Stony), intermediate (9 to 10% IC; Lower Mud and Pott’s), and

high (.10% IC; Upper Mud, Cemetery, Ellerbe, and Goose)

impervious cover streams (Table 1).

To test the null hypothesis of no difference in community

composition among streams, we conducted permutational multi-

variate analysis of variance (perMANOVA) [39] in R using the

adonis function in vegan [40]. perMANOVA is similar to

redundancy analysis [41] and calculates a pseudo F-statistic by

comparing the total variance explained by sample identity (i.e., %

IC groups) to that explained by random permutations of sample

identities. To avoid pseudoreplication, permutations (n = 9,999)

were constrained by sampling date. Calculations were based on

presence-absence matrices and Jaccard distance measures.

To visualize differences in community composition among sites,

we created non-metric multidimensional scaling (NMS) ordina-

tions in R using the nmds function in ecodist [42]. We used

Jaccard distance measures, random starting configurations, and

200 runs with real data for each ordination. NMS creates a

mapping of samples into a reduced ordination space that preserves

the rank order of ecological distances among samples. Classical

hypothesis testing can be conducted on ordination scores if test

assumptions are met [43,44].

Following the ordination, we analyzed potential correlations

between bacterial community composition and urbanization

intensity by regressing mean ordination scores for each primer

set against arcsq-transformed % IC [45].

We built a linear mixed-effects (LME) model of log-denitrifica-

tion to compare the explanatory power of substrate concentration

versus denitrifier community composition variables. We used
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LME because the method can account for non-independence of

errors (e.g., those rising from pseudoreplication) by differentiating

between fixed versus random effects [46]. LME analyses were

done using the lme function (package nlme in R) [47] with

maximum likelihood estimation. We specified log-nitrate, log-

TOC, and nirK and nosZ ordination scores as fixed effects and

sampling date, nested within site as a random effect. We tested

auto-correlation of residuals with a simple autoregressive model of

order 1 [48]. To assess model fit, we calculated a pseudo-R2 based

on a likelihood ratio test [49].

We started with a complete model that included log-nitrate, log-

TOC, all three nirK ordination axes scores, and all three nosZ

ordination axes scores. Substrate concentrations were means of all

available measurements from the month of each sediment

sampling date. We simplified the complete model by sequentially

removing the least significant term and using a likelihood ratio test

to compare the deviance of the simpler versus more complex

model [48]. If removal led to an insignificant change in deviance,

we eliminated the term from all further evaluations. We also

calculated the Aikaike information criterion (AIC) to compare

models. AIC penalizes against additional parameters and

decreases when more of the residual variation in log-denitrification

is explained.

We built a second LME model with interaction terms to explore

potential interactions between substrate concentration and

denitrifier community composition. We used the same random

effects structure and model simplification approach as for the first

model. For the second LME model, the complete model included

log-nitrate, log-TOC, and the two best performing (based on

results of the first LME model) community composition param-

eters as single terms, along with all possible two-way interaction

terms. We did not include more single terms and interactions

because of the relatively small dataset size (n = 30).

Results

Study stream characteristics
Study streams varied widely in terms of watershed impervious

cover (0.5 to 39.4%), and watershed development (4.4 to 100%)

(Table 1). Monthly water sampling over the course of this research

effort also revealed a wide range of nitrate concentrations (from

0.017 to 1.706, mean: 0.327 mg NO3-N L21) and TOC (from

1.298 to 35.525, mean: 6.350 mg C L21) concentrations across

sites. Study streams also had a wide range of heavy metal

concentrations (Table S1). Total metals, a measure of cumulative

heavy metal loading, ranged from 16 to 34. Table S2 provides

data on the mean water and mean organic carbon content for

sediments collected from study streams.

Macroinvertebrate surveys conducted within these same study

streams revealed substantial declines in the diversity of sensitive

macroinvertebrate species within the families Ephemeroptera,

Plecoptera, and Trichoptera (EPT) [21] in streams draining more

highly urbanized watersheds [20] (Table 1 and Table S3). Streams

with higher % IC and % development also had significantly higher

total summer degree-days. Relationships between heavy metals

and urbanization were significantly positive for Ni and marginally

significantly positive for Al, Cd, and Pb.

Overall bacterial and denitrifier communities
The mean relative fluorescence units for OTUs that were

present in less than 5 percent of samples and therefore eliminated

was 107 for overall bacterial (n = 101 OTUs), 17 for nirK denitrifier

(n = 119 OTUs), and 20 for nosZ denitrifier (n = 139 OTUs)

communities. For reference, the mean relative fluorescence units

for OTUs retained after data processing was 371 for overall

bacterial, 301 for nirK denitrifier, and 1054 for nosZ denitrifier

communities. Microbial community composition was significantly

affected by watershed urbanization. Across these eight streams, the

composition of overall bacterial, nirK denitrifier, and nosZ

denitrifier communities clustered into the three groups we defined

based on % IC: low, intermediate, and high impervious cover

streams (overall bacterial: F2,11 = 1.52, p-value = 0.032 ; nirK

denitrifier: F2,27 = 2.46, p-value,0.001 ; nosZ denitrifier:

F2,27 = 1.37, p-value,0.001).

In the NMS ordinations, communities from low and interme-

diate impervious cover streams were separated from communities

from high impervious cover streams, as indicated by the separation

along axis 1 for the overall bacterial ordination, axis 1 for the nirK

ordination, and axis 3 for the nosZ ordination (Fig. 2).

The linear regression of overall bacterial NMS axis 1 against

arcsq-transformed % IC was highly significant (F1,12 = 11.88,

R2 = 0.50, p-value = 0.005) (Fig. 3). The same was also true for the

linear regression of nirK NMS axis 1 versus arcsq-transformed %

IC (F1,28 = 23.77, R2 = 0.46, p-value,0.001). The linear regression

of nosZ NMS axis 3 against arcsq-transformed % IC was also

highly significant (F1,28 = 49.86, R2 = 0.64, p-value,0.001).

Denitrification potentials
Denitrification potentials ranged between 41 and 561 ng N g

sediment21 hr21, with a mean DEA of 195 ng N g sediment21

hr21 (Table S4). Watershed land cover was not associated with

significant differences in log-denitrification potentials (rmANOVA:

F2,3 = 1.35, p-value = 0.44). Log-denitrification potentials were also

not significantly different across sampling dates (rmANOVA:

F3,13 = 3.02, p-value = 0.07).

Linear mixed-effects models
There was no evidence of autocorrelation of observations within

groups, suggesting that errors were normally distributed within

groups (i.e., sampling dates within sites). In the first LME model

without interaction terms, log-nitrate, log-TOC, and all nirK

ordination scores were removed from the final, best fitting model

(Table 2, Table S5). The final model included all three nosZ

ordination scores and captured an estimated 38% of the variation

in log-denitrification. Although nosZ ordination axis 3 was not a

significant term, its removal increased AIC and decreased pseudo-

R2, so we kept the term in the final model. Compared to the

intercept only model (AIC = 69.51), the final model (AIC = 61.21)

had lower deviance (p-value = 0.003).

In the second LME model with two-way interaction terms, the

starting model included log-nitrate, log-TOC, and nosZ ordina-

tion axes 1 and 2, along with all two-way interactions. We used

the ordination axes 1 and 2 because they explain a larger

proportion of the variation in composition than any other

combination of axes. Log-nitrate, log-TOC, and all two-way

interactions, except that between log-TOC and nosZ ordination

axis 1, were deleted from the final, best fitting model (Table 3,

Table S6). The final model (AIC = 57.62) captured an estimated

45% of the variation in log-denitrification and had lower

deviance than the intercept only model (AIC = 69.51) (p-

value,0.001).

Discussion

Watershed urbanization imposes numerous stressors on stream

inhabitants, including increased contaminant concentrations,

stream water temperatures, and hydrologic disturbance [1].

Our results suggest that these urban stressors can drive changes in
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the composition of bacterial communities in streams. Given the

key roles bacteria play in the biogeochemical cycling of nutrients

and organic matter [4], such compositional changes could affect

ecosystem functioning, particularly if the composition or activity

of specific functional groups within the overall bacterial

community are altered by urban inputs or stressors. In our

study, denitrifier communities sorted along the urbanization

gradient, regardless of whether nitrite (nirK) or nitrous oxide (nosZ)

reductase primers were used to characterize communities.

Knowledge of denitrifier community composition, in turn, greatly

improved our ability to capture observed variations in denitrifi-

cation potential.

Figure 2. Non-metric multidimensional scaling (NMS) ordina-
tion of overall bacterial and nirK and nosZ denitrifier commu-
nities based on presence-absence TRFLP (terminal restriction
fragment length polymorphism) data. Each point represents the
community in a study stream on a particular sampling date. Black circles
are streams in watersheds with high percent impervious cover (% IC).
Green triangles are streams in watersheds with intermediate % IC. Blue
squares are streams in watersheds with low % IC. Values given in
parentheses following axes titles are estimated R2 values for individual
axes. All three NMS ordinations had a final solution with three
dimensions. Total R2 values for overall bacterial, nirK, and nosZ
ordinations were 0.70, 0.55, and 0.59, respectively.
doi:10.1371/journal.pone.0022972.g002

Figure 3. Linear regressions of NMS ordination axes scores
against arcsine square root transformed percent impervious
cover.
doi:10.1371/journal.pone.0022972.g003
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Watershed % IC is a good predictor of bacterial
community composition in streams

Our study streams encompassed chemical (nutrients, heavy

metals), physical (stream water temperatures) and hydrologic

(flashiness) gradients that were generally positively associated,

though not always significantly, with watershed % IC. While

several factors are likely to regulate bacterial community

composition, we found that a single variable, watershed % IC,

was strongly and significantly correlated with overall bacterial and

denitrifier community composition across our study streams.

Moreover, communities from low, intermediate, and high % IC

streams were significantly different from one another.

Clearly, watershed land cover itself is not directly driving

differences in bacterial community composition. Rather, % IC

provides an integrative measure of the intensity with which

watershed urbanization may be altering numerous different

measured and unmeasured aspects of stream conditions, which

are, in turn, regulating bacterial community composition. Given

the limited number of sites in this study, we cannot identify the

specific urban impacts primarily responsible for observed patterns

in bacterial community composition. We can, however, conclude

that watershed % IC is a good predictor of bacterial community

composition in these streams and that watershed urbanization has

the potential to strongly affect bacterial community composition,

albeit through as yet unidentified pathways. Further support for

these conclusions can be found in the consistency with which the

composition of different groups of bacteria (i.e., overall bacteria,

nirK denitrifiers, and nosZ denitrifiers) appeared to sort along the

urbanization gradient identified in this study.

One substantial limitation in this study arises from unmeasured

covariates that may present potential confounding factors (i.e.,

factors other than watershed urbanization) that may play some

role in driving observed differences in bacteria community

structure in these study streams. Thus, further studies, using both

observational and experimental approaches, are needed to

definitively describe the relationships between watershed urban-

ization and bacterial community composition in receiving streams.

Depsite this limitation, we feel this study provides intial insights

into the potential for stream bacterial communities to respond to

urban impacts in a similar manner as larger fish and insect

communities.

Denitrifier community composition helps explain
denitrification potential

Model results indicate that denitrifier community composition

may be more important than substrate supply in driving

denitrification rates in our study streams. The first LME model

captured an estimated 38% of the variation in denitrification

potential among streams and included three composition param-

eters, but no substrate parameters. The second LME model

captured an estimated 45% of the variation in denitrification

potential among streams and included two composition parame-

ters and an interaction term between composition and organic

carbon. The interaction suggests that the capacity of communities

to utilize available carbon substrates depends, in part, on which

denitrifier taxa are present.

These results suggest that one important pathway through which

watershed urbanization may alter stream ecosystem functioning is

by changing bacterial community composition in streams. That is,

community composition can directly influence rates of functioning,

independent of environmental factors. It remains unclear whether

the observed links between urbanization-driven shifts in denitrifier

community composition and denitrification potential extend to

other microbe-mediated ecosystem processes in streams, such as

decomposition and carbon cycling. Future studies could address this

research gap by characterizing different functional groups of

bacteria and measuring their function rates in streams with varying

degrees of watershed urbanization.

Study findings also provide novel insight into the potential

impacts of watershed urbanization on the production of nitrous

oxide gas from incomplete denitrification in streams. Nitrous oxide

is a potent greenhouse gas that contributes to climate change and

stratospheric ozone depletion. Although we did not measure nitrous

oxide emissions, we did examine patterns of distribution for nitrous

oxide reducing denitrifiers (i.e., nosZ denitrifiers) in relation to

urbanization intensity. Our findings suggest that the composition of

nosZ denitrifier communities may be strongly affected by urbani-

zation, which may speculatively help explain recent observations

indicating that urban streams may release more nitrous oxide to the

atmosphere than non-urban streams [50].

Conclusions
Microbes are the most ubiquitous, abundant, and diverse group

of organisms on Earth [51]. Our understanding of how ecosystems

respond to land-use change would be incomplete without the

microbial perspective. Ecologists generally agree that shifts in plant

community composition can alter ecosystem process rates [52,53].

The same could be true for microbial community composition, yet

ecosystem modeling efforts have largely ignored microbial

community composition [54]. Given advances in molecular

technology, we can now question the assumption that microbial

communities are resistant to anthropogenic disturbances and that

they can be adequately represented as ‘black boxes’ responding

only to substrate supply in ecosystem models [55].

This study demonstrates that incorporating data on bacterial

community composition, even relatively low resolution data from a

molecular fingerprinting method, can drastically improve our

Table 2. Results from an ANOVA conducted to determine the
significance of fixed effects on the final linear mixed-effects
model (without interactions) of log-denitrification.

Parameter Num DF Den DF F-value p-value

Intercept 1 19 956.38 ,0.001

nosZ ordination axis 1 1 19 7.875 0.011

nosZ ordination axis 2 1 19 4.636 0.044

nosZ ordination axis 3 1 19 3.403 0.081

Note: While nosZ ordination axis 3 was not a significant term, its removal
increased AIC (see Table S5) and decreased pseudo-R2, so we kept the term in
the final model.
doi:10.1371/journal.pone.0022972.t002

Table 3. Results from an ANOVA conducted to determine the
significance of fixed effects on the final linear mixed-effects
model (with interactions) of log-denitrification.

Parameter Num DF Den DF F-value p-value

Intercept 1 19 796.17 ,0.001

nosZ ordination axis 1 1 19 9.420 0.006

nosZ ordination axis 2 1 19 5.899 0.025

nosZ ordination axis 1: log-TOC 1 19 6.977 0.016

doi:10.1371/journal.pone.0022972.t003
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ability to model ecosystem process rates, particularly under

realistic scenarios of environmental degradation. To identify and

rank specific drivers of bacterial community change in urban

streams, we need to survey a larger number of streams and collect

more comprehensive data on factors like contamination, temper-

atures, and hydrology. This information would improve our ability

to understand the detrimental impacts of urbanization on

microbial community structure and function. Future research

should focus on understanding not only the causes of microbial

community change in human impacted ecosystems, but also how

these communities differ in resistance and function.
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