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Franco da Silveira1*

1 Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil, 2 Centro de Pesquisas
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Abstract

Background: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic
variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being
determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in
defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma
brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these
parasites.

Methodology/Principal Findings: The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes
of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was
statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (José-IMT). Satellite DNA content was
correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of
retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages.
Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of
several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were
identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi
chromosomal bands, respectively.

Conclusions: Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of
chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic
regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive
selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion
and split events involving T. brucei and T. cruzi chromosomes.
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Introduction

Trypanosoma cruzi is a protozoan parasite transmitted to

vertebrate hosts by insect vectors causing Chagas disease, also

known as American trypanosomiasis. The disease is endemic in

Latin America and affects approximately eight million people [1],

with an increasing number of cases in non-endemic countries

including the United States and Europe [2,3]. The disease has a

broad spectrum of clinical symptoms, which may reflect parasite

and host genetic factors. T. cruzi is a complex taxon that

demonstrates remarkable genetic heterogeneity [4,5]. Natural

populations of T. cruzi undergo clonal evolution with rare events of

genetic recombination [6]. However, hybrid lineages have been

identified in natural T. cruzi populations [7,8,9,10]. On the basis of

a number of genetic and biochemical markers, the strains of T.

cruzi have been divided into six discrete typing units (DTU)

designed as TcI to VI [11].

Trypanosome genetic material is organized into small chromo-

somes, which are poorly condensed during cell division, precluding

the use of conventional cytogenetic analysis. The T. cruzi
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karyotype is poorly defined; identification of each of the individual

chromosomes has been problematic as many are of small-size or

very similar. Therefore, the precise relationships between

homologous chromosomes have yet to be determined. There is a

significant variation in the size of chromosomes among strains

[12,13,14,15,16,17], and although the genome is generally diploid,

the sizes of homologous chromosomes differ considerably

[13,14,18,19,20]. Differences of up to 50% in the sizes of

genetically equivalent chromosomes were detected in the karyo-

types of various strains, suggesting that major chromosomal

rearrangements occurred during the evolution of T. cruzi.

Studies based on flow cytometry, microfluorometry, chemical

and renaturation kinetic analyses have demonstrated variation of up

to 40% of the total DNA content among T. cruzi strains and clones

[21,22,23,24,25,26,27]. The absolute amount of total DNA (nuclear

+ kinetoplast) varies from 0.12 to 0.33 pg per cell among various

strains and clones isolated from the same strain [21,22,23,25,27].

The wide variation in genome size observed among eukaryotic

species is more closely correlated with the amount of repetitive DNA

than with the number of coding genes. In T. cruzi repeat sequences

account for at least 50% [28]. The genome of T. cruzi was sequenced

using a whole-genome sequencing approach from a hybrid strain

(clone CL Brener) originated from genetic recombination of TcII

and TcIII [8,11,28,29]. Sequence strategy resulted in high sequence

coverage from two parental haplotypes. However, high allelic

variation and the repetitive nature of the genome have prevented

the complete linear sequence of T. cruzi chromosomes being

determined. Therefore, determining the full complement of

chromosomes, identifying chromosome-specific markers and estab-

lishing syntenic and linkage genetic groups are important for

defining the molecular karyotype and structure of T. cruzi

chromosomes.

In this study, the genome organization of various T. cruzi strains

was analyzed using genetic and computational approaches. The

following questions were addressed: (1) What is the range of

genome sizes and repetitive DNA contents (satellite DNA and

retrotransposons) across strains from T. cruzi DTUs?; (2) What is

the contribution of repetitive DNA to variability in genome size

and chromosomal polymorphism?; (3) By analyzing large homol-

ogous chromosomal segments, what is the level of synteny among

these strains? To address these questions genome sizes, repetitive

DNA contents, and the numbers and sizes of chromosomes of nine

strains from four DTUs including two clones from a hybrid strain,

were determined and compared. The size distribution of syntenic

blocks of clone CL Brener among the T. cruzi DTUs was

examined. Two T. cruzi megabase chromosomes were compared

with their counterparts in T. brucei; comparison between T. cruzi

and T. brucei chromosomes could help the reconstruction of the

ancestral trypanosome karyotype.

Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. The protocol was

approved by the Committee on the Ethics of Animal Experiments of

the Federal University of Sao Paulo (Permit Number: CEP09555-

07). All surgery was performed under sodium pentobarbital

anesthesia, and all efforts were made to minimize suffering.

Parasites
Nine isolates from the main lineages of T. cruzi [11] were used in

this study. Three isolates belonged to group TcI (clone Dm28c,

Tc1161 (José-IMT) isolate and G strain), two to the TcII group

(clone Esmeraldo-cl3 and Y strain), one to the TcV group (clone

SO3-cl5) and three to the TcVI group (CL strain, CL-strain

derived clones CL Brener and CL 14). CL Brener was kindly

provided by Dr. Bianca Zingales (IQ-USP), clone Dm28c by Dr.

Samuel Goldenberg (ICC-Fiocruz), Y, G and CL strains and CL-

strain derived clone CL 14 by Dr. Nobuko Yoshida (UNIFESP),

clone SO3-cl5 by Dr. Marta de Lana (UFOP) and clone

Esmeraldo-cl3 by Dr. Santuza Teixeira (UFMG). Tc1161 (José-

IMT) was obtained from the Trypanosomatid Culture Collection

(TryCC) of the Department of Parasitology, USP and was

provided by Marta M. G. Teixeira (ICB-USP). Parasites were

maintained by cyclic passage in mice and in axenic cultures at 28

uC in liver-infusion tryptose medium (LIT) containing 10% fetal

calf serum.

Synchronization of parasite cultures and flow cytometry
Epimastigotes were diluted to a final concentration of 36106

parasites per mL and maintained in the exponential growth phase

for 24 h at 28uC. Hydroxyurea (20 mM) was added to the

cultures, and after incubation for 24 h the number of parasites was

determined using a Neubauer-counting chamber. Cells were

washed with PBS and fixed with 50% methanol for 10 min at 0uC.

After washing with PBS, parasites were resuspended in PBS

(66106 cells/mL) containing 20 mg/mL propidium iodide and

16 mg/mL RNase and subjected to flow cytometry analysis in a

custom-designed flow cytometer (Becton-Dickinson FACScalibur).

Cultures without hydroxyurea (HU) were used as controls.

Determination of total DNA content
Genome size of isolates from groups TcI (clone Dm28c, Tc1161

isolate and G strain), TcII (clone Esmeraldo-cl3 and Y strain), TcV

(clone SO3-cl5) and TcVI (CL strain, CL-strain derived clones CL

Brener and CL 14) were determined after several control

experiments had been carried out. Epimastigotes of T. cruzi strains

were arrested with HU and total DNA was isolated from 108 cells

as described previously [30]. DNA content was estimated using a

fluorescent nucleic acid stain for dsDNA ‘‘Quant-iTTM dsDNA

Assay Kit, High Sensitivity - 0.2-100 ng’’ (Invitrogen) as described.

This kit provides accurate quantification, comparing DNA

samples with pre-diluted DNA standards. Fluorescence intensity

was read on a GENios Fluorometer (Magellan program) using

485 nm excitation and 535 nm emission wavelengths. Between

three and seven independent assays were performed on each

isolate and all experiments were carried out in triplicate. To assess

the reliability of the assay using large DNA molecules, unbroken

chromosomal DNA and sonic wave broken DNA were compared.

Control experiments demonstrated that fluorophore incorporation

was the same for both samples (data not shown). The next control

experiment involved calculating the percentage yield obtained in

DNA extraction experiments using a recovered radioactive

experiment. T. cruzi chromosomal DNA was incubated overnight

with 10 U endonuclease AscI in an appropriate restriction buffer

at 37uC. After digestion, restriction fragments were labeled with

5 mCi [a-32P]dCTP, 0.02 mM dGTP and 5 U Klenow fragment

in the same buffer at 65uC for 1 h (adapted protocol described by

Cornillot et al., 2002) [31]. Known amounts of labeled DNA were

added before total DNA extraction. Taking into account the

percentage of radioactivity recovered, the real DNA mass in each

T. cruzi isolate could be determined. Three independent assays

were performed in triplicate (data not shown).

For statistical analysis, the one-way ANOVA test was performed

using GraphPad InStat version 3.05 (GraphPad software, San

Diego, CA). The statistical significance level was set at P,0.05.

T. cruzi Chromosome Structure and Evolution
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Data presented were the result of a minimum of three independent

experiments and plotted as mean 6 SD.

Copy-number measurements
The copy numbers of repetitive sequences were determined

approximately using dot-blot hybridization. DNA samples were

denatured with NaOH (0.4 M) for 10 min, chilled on ice and

diluted with an equal volume of 2 M ammonium acetate. DNA

was quantified using an ultra-sensitive fluorescent nucleic acid

stain for double-stranded DNA [‘‘Quant-iTTM dsDNA Assay Kit,

High Sensitivity - 0.2-100 ng’’ kit (Invitrogen)]. Various amounts

of genomic DNA from T. cruzi strains (clones Dm28c, Esmeraldo-

cl3, SO3-cl5 and CL Brener; Tc1161 isolate; G and Y strains)

were applied to nylon membranes (Amersham) using a dot-blot

apparatus (Bio-Rad). DNA was fixed by exposure to 150 mJ of UV

radiation in a ‘‘GS Gene LinkerTM UV chamber’’ (Bio-Rad).

Standard samples containing repetitive sequences DNA were

loaded on the same filters to provide a standard scale. The

following recombinant plasmids were used: clone F3.17, which

carries part of the intergenic region from the L1Tc retro-

transposon and part of reverse transcriptase (nt 1333 to 2021 of

L1Tc, GenBank accession number X83098); clone F4.10, which

carries 3.3 units of satellite DNA (195-bp repeats, GenBank

accession number AY520076) and pUC18 as a background

control. Filters were hybridized in exactly the same way as the

chromoblots. After autoradiographic exposure, the amount of 32P

in each spot was determined by liquid scintillation counting. The

amount of probe sequence in the trypanosome DNA samples was

estimated from a graph of the counts present in the spots of each

repetitive sequence. Copy numbers of repetitive sequences in the

various T. cruzi genomes were calculated taking into consideration

the genome size determined in this study. The pUC18 control was

used to normalize experiment data.

For statistical analysis, a one-way ANOVA test was performed

using GraphPad InStat version 3.05 (GraphPad software, San

Diego, CA). The statistical significance level was set at P,0.05.

Data presented were the result of at least three independent

experiments and plotted as mean 6 SD.

Separation of T. cruzi chromosomal DNA by pulsed-field
gel electrophoresis (PFGE)

Epimastigotes from T. cruzi were grown to late logarithmic phase.

Cells were collected in PBS and mixed with an equal volume of 1%

low-melting point agarose. Approximately 16107 cells (100 mL) were

used for each gel plug; these were incubated in a solution containing

0.5 M EDTA (pH 8.0), 1% sodium lauryl sarcosinate (Sarkosyl) and

1 mg/mL proteinase K at 50uC for 48 h, and stored at 4uC in 0.5 M

EDTA (pH 8.0). Chromosomal bands were separated on agarose gels

using a Gene Navigator System (Amersham Pharmacia Biotech, NJ,

USA) and a hexagonal electrode array. PFGE was carried out using

1.2% agarose gels in 0.5X TBE (45 mM Tris; 45 mM boric acid;

1 mM EDTA, pH 8.3) at 13uC for 132 h as previously described

[18]. Gels were stained with ethidium bromide (0.5 mg/mL) and

photographed. DNA samples were incubated with 0.25 M HCl for

45 min, denatured with 0.5 M NaOH/1 M NaCl for 20 min,

neutralized with 1 M Tris-base/0.5 M NaCl for 20 min and

transferred to nylon membranes in 20X SSC (1X SSC = 0.15 M

NaCl and 0.015 M sodium citrate). The membranes were hybridized

as described below.

Hybridization
Membranes were pre-hybridized in a solution containing

50% formamide/5X SSC/5X Denhardt’s solution (Invitrogen)/

0.1 mg/mL salmon sperm DNA/ 0.1 mg/mL tRNA at 42uC for

1 h and hybridized overnight at 42uC with 32P-labeled probes.

Following hybridization, membranes were subjected to two washes

(30 min each at 42 uC) in 2X SSC containing 0.1% SDS and 0.1%

sodium pyrophosphate and two additional washes at 56 uC in

0.1X SSC containing 0.1% SDS and 0.1% sodium pyrophos-

phate. They were then exposed to X-ray film. The gene

identification and the accession number of each marker used as

probe are indicated in Table S4.

Bioinformatic analysis
T. cruzi contigs and scaffolds were assembled into 41 platforms

named chromosomes (TcChr)[32]. The chromosome-sized scaf-

folds assigned to the Esmeraldo and non-Esmeraldo haplotypes

were designated S and P, respectively. The T. cruzi clone CL

Brener (TcChr) and T. brucei (Tb) chromosomes used in this study

were obtained from EuPathDB Project (http://tritrypdb.org/

tritrypdb). Whole genome alignments between TcChr P and S

were performed using tblastx algorithm [33] and implemented

through big_blast.pl script (from Sanger Institute) that was

modified by Jeronimo Ruiz. TcChr chromosomes were also used

in similarity searches using tblastx algorithm against the T. brucei

genomic sequence.

A locally compiled database (DB) of T. cruzi sequences was built

by parsing sequences from GenBank. Chromosome-specific

markers from this database were used as anchors in similarity

searches. Similarity searches against this locally compiled DB were

carried out using the BLAST and FASTA program package

algorithms [34,35]. The annotation and graphical output of

chromosome-specific markers were obtained using the Artemis

Comparison Tool [36] (http://www.sanger. ac.uk/resources/

software/act).

Results

We selected nine strains from the four major T. cruzi lineages

[TcI (DTU I), TcII (DTU IIb), TcV (DTU IId) and TcVI (DTU

IIe)] that are very well characterized in terms of epidemiological,

biological and pathological features [4,8,11,21,37,38,39,40]. The

isolates of DTUs I, II, V and VI predominate in endemic areas

and are responsible for most cases of human Chagas’ disease in

Central America (mostly TcI) and South America (mostly TcII).

Isolates of DTU I are the most widespread isolates of T. cruzi

circulating in sylvatic cycles (in all Latin America) and domestic

cycles (in Central America, Colombia and Venezuela). Charac-

terization of a large number of isolates evidenced important

genetic population diversity within DTU I [39,41,42]. For these

reasons, three isolates from TcI diverging in host and geographic

origin were included in this study.

Fluorescent nucleic acid stain for double-stranded DNA
accurately estimates genome sizes of T. cruzi isolates

The genome size, repetitive DNA content and karyotype of nine

different isolates from the main lineages of T. cruzi were estimated

and compared. Clone CL Brener (TcVI) was chosen for this study

as it is the reference strain for the genome sequencing project. The

ability of the fluorescent dye to estimate the genome size

accurately in three isolates from group TcI (clone Dm28c,

Tc1161 isolate and G strain), two isolates from group TcII (clone

Esmeraldo-cl3 and Y strain), one isolate from group TcV (clone

SO3-cl5) and three isolates from group TcVI (CL strain and CL-

derived clones CL Brener and CL 14) was assessed. The analysis

was performed using parasites arrested with HU, which inactivates

ribonucleoside diphosphate reductase, thereby preventing cells

T. cruzi Chromosome Structure and Evolution
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from leaving the G1/S phase of the cell cycle. Non-treated

trypanosomes presented with a profile comprising two peaks

representing cells with 2C and 4C DNA contents, respectively (Fig.

S1). After 24 h incubation with HU, the proportion of 2C cells

increased at least 1.7-fold compared with the corresponding 4C

cells, indicating that epimastigotes were arrested in the G1 phase

(Fig. S1). These results are in agreement with those obtained by

Elias et al. [43]. Cells that were post-S phase at the time of HU

addition would have progressed through the cell cycle and re-

entered G1.

Epimastigote cells in the G1-phase of the cell cycle were used to

estimate DNA content by quantifying the dsDNA. Control

experiments were performed using well-established haploid and

diploid S. cerevisiae lineages. The estimated nuclear DNA contents

of haploid and diploid yeast lineages were 0.01386060.001989

and 0.026348 6 0.006182 pg/cell, respectively. Table 1 summa-

rizes the estimates of total DNA content per cell (nucleus and

kDNA) for T. cruzi isolates. Values refer to the diploid content,

assuming that T. cruzi is essentially diploid [28]. Between three

and seven independent assays were performed on each isolate.

Variance was analyzed (ANOVA test) to detect significant

differences among the isolates (Table S1). The mean total DNA

contents of parasites from groups II (Esmeraldo-cl3 and Y strain),

V (clone SO3-cl5) and VI (CL strain, CL-strain derived clones CL

Brener and CL 14) were higher than isolates from group TcI (G

strain and clone Dm28c). Although Tc1161 belongs to the TcI

group [11,44], its genome is larger than other isolates from this

group. These differences were significant when assessed using

hierarchical ANOVA (Table S1). There was no significant

difference (P.0.05) among parasites from T. cruzi groups II

(Esmeraldo-cl3 and Y strain), V (clone SO3-cl5) and VI (CL-strain

derived clones CL Brener and CL 14). Significant differences

(P,0.05) were demonstrated between clone Esmeraldo-cl3 and

CL strain, and CL strain and clone CL 14.

Assuming that kDNA accounts for 20% of the parasite’s total

DNA [21,45], the nuclear genome size was determined for each

isolate (Table 1). The nuclear genome of clone CL Brener was

estimated to be 122 Mb, although a previous study demonstrated

that the genome size was 106.4–110.7 Mb [28]. It is likely that the

discrepancy (11 Mb) between the data presented herein and that

from the sequencing genome project represents extra repetitive

sequences in non-sequenced gaps in repeated regions such as

nucleolar organizing regions, spliced leader tandem repeats and

individual reads that were not assembled in contig sequences [46].

From the data presented in this study, the nuclear genome is larger

than previously thought and its size varies up to 1.57-fold between

strains (e.g. CL vs Dm28c) and 1.25-fold within isolates from the

same strain (e.g. CL strain vs clone CL14). TcI isolates have, on

average, smaller nuclear genomes (89.5 Mb, G and Dm28c) than

TcII, TcV and TcVI isolates (125 Mb). These results concurred

with previous reports [18,19] demonstrating that TcI isolates have

smaller genomes than TcII isolates. The only exception to this rule

was the isolate Tc1161, whose genome size (115 Mb) is

comparable to TcII, TcV and TcVI, and higher (P,0.05) than

other TcI isolates, G strain and clone Dm28c (89.5 Mb).

Copy number of repetitive sequences
Genome size differences could be attributed to the amplification

and deletion of various repeated DNA sequences including

retrotransposons and satellite DNA. To investigate the influence

of repetitive DNA fractions on the genome size of T. cruzi isolates,

the copy numbers of a high-repetitive sequence (195-bp satellite

DNA element) and a middle-copy number non-LTR retro-

transposon (L1Tc) were estimated. The copy number of the

repetitive sequences was estimated using dot-blot hybridization

and known amounts of T. cruzi genomic DNA and recombinant

plasmids containing the repetitive element. The hybridization

signal intensity was quantified by measuring the amount of 32P in

each spot by liquid scintillation counting. The copy numbers of

satellite DNA per cell were estimated to be 35,474 and 29,886 in Y

and Esmeraldo-cl3, respectively (TcII isolates); 29,459 and 27,890

copies in the SO3-cl5 and CL Brener, respectively (TcV and TcVI

isolates); and from 9,247 to 12,382 in TcI isolates (G, Dm28c and

Tc1161) (Table 2). Satellite DNA is 2.3 to 3.8 times more

abundant in TcII, TcV and TcVI isolates than in TcI isolates.

Variance analysis (ANOVA test) demonstrated that the trend was

significant (P,0.001). As shown in Tables 2 and S2A, the Y strain

contains more satellite DNA and this variance is significant when

compared with other isolates (P,0.001), while no significant

difference (P.0.05) was found among Esmeraldo-cl3 (TcII), clone

SO3-cl5 (TcV) and clone CL Brener (TcVI). There was no

significant difference (P.0.05) among the TcI isolates (clone

Dm28c, Tc1161 isolate and G strain) (Table S2A). These data are

in agreement with a previous report that suggested repetitive

sequences are less abundant in TcI genomes than TcII, V and VI

genomes [16,17].

Table 1. Total DNA content and genome size of various T. cruzi isolates.

Isolate Group Total DNA content* (rg) Genome size** (Mb) Nuclear genome*** (Mb)

G I 0.122270 6 0.026692 112.17 90

Dm28c I 0.121429 6 0.031253 111.40 89

Tc1161 I 0.157183 6 0.031282 144.20 115

Y II 0.171660 6 0.044942 157.49 126

Esmeraldo II 0.155235 6 0.029427 142.42 114

SO3-cl5 V 0.183778 6 0.024398 168.60 135

CL VI 0.191118 6 0.038978 175.34 140

CL14 VI 0.152632 6 0.015553 140.03 112

CL Brener VI 0.165813 6 0.031826 152.12 122

*Absolute DNA mass (rg) by means of fluorescent nucleic acid stain assay per epimastigote cell. Values are the means 6 SD of three to seven independent assays
performed in triplicate.
**Estimate of genome size including nuclear and kDNA considering 1 base pair as 1.0961029 rg.
***Nuclear genome size was estimated assuming that kDNA accounts for 20% of total DNA [45].
doi:10.1371/journal.pone.0023042.t001
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L1Tc presented 1.2 to 2.2-fold variation in copy number among

the various isolates. Significant differences were evident (P,0.001)

between of the majority of the isolates (Table S2B). However, no

significant difference (P.0.05) was demonstrated between Dm28c

and Y, Dm28c and CL Brener, or Tc1161 and SO3-cl5. L1Tc is

more abundant in Tc1161 and SO3-cl5 genomes and less

abundant in the G strain and clone Esmeraldo-cl3. There was

no association between high numbers of this repetitive sequence

and TcII, V and VI groups.

Satellite DNA and L1Tc fractions account for 4.47% (5.44 Mb)

and 2.6% (3.18 Mb), respectively, of the genome of clone CL

Brener. This is in agreement with an estimate of abundance of

satellite DNA (5.13%) in clone CL Brener [46] using individual

reads rather than assembled contig sequences generated by the T.

cruzi sequencing consortium [28]. Satellite DNA and L1Tc

fractions comprised 8.62 Mb or 7.1% of the nuclear genome of

CL Brener. The content of a T. cruzi species-specific sequence

(TcTREZO) in the genomes of CL Brener, G, Dm28c and

Tc1161 was determined. TcTREZO is a site-specific element

composed of three sub-regions that have sequence similarity with

other T. cruzi sequences [47]. The copy number of TcTREZO-

related sequences was estimated to be 3,998 elements per cell in

CL Brener and 1,693; 1,546; 1,593 copies in G, Dm28c and

Tc1161, respectively. TcTREZO is 2.5 times more abundant in

CL Brener than TcI isolates. Previously, we used the RepeatMas-

ker script to estimate the number of copies of TcTREZO in the T.

cruzi database [47]. Using the 1,573-bp sequence of TcTREZO

(AF508945) formatted as a custom library, we identified 173 copies

of the complete element per haploid genome. Taken together,

these results suggest that the majority of TcTREZO tandem

sequences were not incorporated into the CL Brener assembled

contig sequences. Furthermore, most of TcTREZO sequences are

truncated (94%).

Our results are in agreement with those from Sylvio X10/1

genome project, a TcI isolate which genome was fully sequenced

recently [48]. By comparison repetitive sequences content between

Sylvio X10/1 and CL Brener, Franzen et al. did not find

significant difference in LTR/LINE copy number and low

number of satellite DNA comparing to CL Brener genome. The

Sylvio X10/1 genome size was estimated to be 88 Mb, similar to

TcI genomes studied herein (G strain and Dm28c).Furthermore,

they confirmed that multigenic families (e.g. MASP, mucin, DGF-

1, GP63 and RHS gene families) are less abundant in Sylvio X10/

1 and underlie genome size difference between these two genomes

fully sequenced (Sylvio X10/1 and CL Brener) [48].

Karyotype polymorphism
Chromosomal bands were separated by PFGE and stained with

ethidium bromide (Fig. 1). Herein, chromosomal bands are

defined as those bands separated by PFGE and visible after

staining with ethidium bromide. The distribution of ethidium

bromide fluorescence was not the same for all chromosomal

bands, indicating that co-migrating chromosomes are not

necessarily homologous. A chromosome or homologue is a single

DNA molecule. The chromosomal bands of CL Brener were

numbered using Roman numerals (I–XX) and Dm28c with

Arabic numerals as previously described [17,18]. The bands of

other isolates were numbered using Arabic numerals, starting with

the smallest band (Fig. 1). The karyotype patterns are homoge-

neous within TcII, V and VI isolates. It is composed of 19–22

bands with sizes ranging from 3.27 to 0.5 Mb, and they can be

easily differentiated from those of TcI isolates (G strain and clone

Dm28c). As previously reported [16,17], the karyotypes of TcII, V

and VI are generally different from TcI isolates (G strain and clone

Dm28c). Nineteen bands ranging from 0.53 to 2.83 Mb in G

strain, and 17 bands ranging from 0.57 to 2.58 Mb in clone

Dm28c, were identified. The size and number of chromosomal

bands in the G strain and clone Dm28c were smaller than those

identified in TcII, V and VI isolates. The Tc1161 genome

displayed 22 chromosomal bands ranging from 0.46 to 3.09 Mb.

The chromosomal bands were larger in size and number than TcI

isolates. It is interesting to note that although the isolate Tc1161

belongs to TcI, its chromosomal pattern is more similar to that of

the TcII, V and VI isolates. This is in agreement with the

estimated value of the Tc1161 genome size, which is higher than

that of other TcI isolates.

Hybridization of chromosomal bands with repetitive sequences

(satellite DNA, L1Tc) (Fig. S2) confirmed the copy number

estimates reported above. The satellite DNA strongly hybridized

to 9–12 bands of TcII, V and VI isolates, and with lesser intensity

to 7–10 bands in TcI isolates (Fig. S2 and Table S3A). It

hybridized with approximately 50% of chromosomal bands but

predominantly larger ones. The intensity of the hybridization

signal was markedly stronger in the chromosomal bands of TcII, V

and VI, suggesting the presence of a higher DNA satellite copy

number per cell in these isolates. This is in agreement with the dot-

blot estimates that demonstrated that the satellite DNA was 2.3 to

3.8 times more abundant in TcII, V and VI isolates than in TcI

isolates. The retrotransposon L1Tc was distributed evenly in

almost all chromosomal bands of TcI, II, V and VI isolates, with

the exception of clone Esmeraldo-cl3 (Fig. S2 and Table S3B).

Using the intensity of signal hybridization, there was a high

concentration of L1Tc in the Y, SO3-cl5, CL Brener and Tc1161

genomes and it was distributed among many chromosomal bands.

L1Tc was concentrated in bands ranging from 1.06 to 1.50 Mb of

clone Dm28c. As expected from the copy number of estimates

(Table 2), L1Tc was less abundant in G strain and clone

Esmeraldo-cl3. The distribution of satellite DNA and L1Tc in

the chromosomal bands was consistent with its copy numbers in

the different isolates.

Large-scale synteny in T. cruzi lineages
The concept of synteny, molecular markers shared between

chromosomes and organized in the same order, was used to define

regions of chromosomal homology. To examine the level of

synteny among the TcI, II, V and VI isolates, genetic markers

previously mapped to the chromosomal bands XVI (2.09 Mb) and

XX (3.27 Mb) of clone CL Brener were used. Physical maps of

chromosomes XVI [49] and XX [50] have been constructed using

YAC clones and hybridization with chromosome-specific markers.

Table 2. Copy number of Satellite DNA and L1Tc
retrotransposon in various T. cruzi isolates.

Isolate Group Satellite DNA* L1Tc*

G I 9341 6 766 323 6 26

Dm28c I 12382 6 1261 586 6 33

Tc1161 I 9247 6 1077 720 6 15

Y II 35474 6 2231 561 6 25

Esmeraldo II 29886 6 1526 398 6 17

SO3-cl5 V 29459 6 3053 726 6 33

CL Brener VI 27890 6 1878 635 6 27

*Values are the means 6 SD of three independent assays performed in
duplicate.
doi:10.1371/journal.pone.0023042.t002
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Table S4 lists the chromosome specific markers used as probes in

the hybridization experiments, and includes the gene identifica-

tion, the accession number and the chromosomal bands identified

in clone CL Brener. Here, the newly generated sequence

assemblies of clone CL Brener identified by the EuPathDB Project

(TrypDB: http://tritrypdb.org) [32] were integrated into the

physical map of megabase chromosomes XVI and XX of clone

CL Brener.

Recently, T. cruzi contigs and scaffolds were assembled into 41

platforms, tentatively named as chromosomes (TcChr) [32]. This

designation is not accurate as some of these chromosomes could be

part of a single chromosome. For this reason, they are referred to

as chromosome-sized scaffolds in the present study. They were

assigned to the Esmeraldo and the non-Esmeraldo haplotypes and

designated S and P, respectively [33]. The chromosome-sized

scaffolds were assigned to the chromosomal bands of CL Brener

separated by PFGE. The assignments obtained were: chromo-

somes TcChr37-P and S, and TcChr4-P and S to the

electrophoretic band XX (3.27 Mb) (Fig. 2A); TcChr39-P and S

to the electrophoretic band XVI (2.09 Mb) (Fig. 2B); TcChr7-P

and S to the electrophoretic bands XVIII (2.5 Mb) and V

(0.77 Mb) (Fig. 3).

The chromosomal band XX-specific markers delta-6-fatty

acid desaturase, hexose transporter, TEUF0180 (85 kDa HSP),

procyclic form surface glycoprotein and hypothetical protein

XM_801570 were assigned to the chromosome-sized scaffolds

TcChr37-P and TcChr37-S, while TEUF0001 (Histone H2B)

and XM_814424 (ATP-dependent DEAD/H RNA helicase)

were assigned to the TcChr37-P and TcChr37-S, respectively

(Fig. 2A). The delta-6-fatty acid desaturase gene was located at a

distance of approx 1.11 Mb from the hypothetical protein gene

XM_801570 (see Fig. 2A). The 40S ribosomal protein S24E was

assigned to the chromosome-sized scaffold TcChr4-P. All

markers identified in TcChr37 hybridized to one chromosomal

band in the TcII (3.23 Mb), TcV and VI isolates (3.27 Mb) and

in the clone Dm28c (2.58 Mb), and with two distinct bands in

TcI isolates (2.00 and 2.83 Mb in G strain; 2.31 and 2.58 Mb in

Tc1161). The same type of pattern was observed for the 40S

ribosomal protein S24E marker (Fig. 2A, Table S4), suggesting

that TcChr37 and TcChr4 scaffolds are part of the same

chromosome. The results confirm the linkage of these markers

on the non-Esmeraldo-like ‘‘P’’ and the Esmeraldo-like ‘‘S’’

chromosomes, and indicate that the syntenic block was

conserved in TcI, II, V and VI isolates. The co-localization of

these markers with two chromosomal bands in TcI isolates (2.00

and 2.83 Mb in G strain; 2.31 and 2.58 Mb in Tc1161) could be

explained by the existence of two different-sized homologous

chromosomes or by the occurrence of a large duplication event

comprising the 1.1 Mb regions of two non-homologous

chromosomes.

Figure 1. Karyotype polymorphism in representative isolates of T. cruzi lineages. Chromosomal bands were separated by Pulsed Field Gel
Electrophoresis (PFGE) and stained with ethidium bromide. The chromosomal bands of clone CL Brener were numbered using Roman numerals (I –
XX) and Dm28c with Arabic numerals as described previously [17,18]. The bands of others isolates were numbered using Arabic numerals starting
from the smallest band, as the reference determined for clone CL Brener [18]. The following isolates were used: Y strain and clone Esmeraldo-cl3 from
lineage TcII; clone SO3-cl5 from TcV; CL Brener from TcVI; clone Dm28c, G strain and Tc1161 (José-IMT) isolate from TcI. Numbers of chromosomal
bands and their sizes are indicated at left and at right of each strip, respectively.
doi:10.1371/journal.pone.0023042.g001
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The chromosomal band XVI-specific markers phosphatidyli-

nositol (3,5) kinase, H49, JL8, katanin, iron-sulfur cluster assembly

protein, syntaxin and ankyrin were assigned to the chromosome-

sized scaffolds TcChr39-P and TcChr39-S, while the hypothetical

protein XM_811099 was assigned to the TcChr39-S, and

hypothetical protein XM_811753 to the TcChr39-P. TcChr39-P

and TcChr39-S are approximately 1.85 Mb in length. The

XM_811753 was located approx 1.79 Mb from ankyrin (Fig. 2B).

These markers hybridized with two chromosomal bands in the Y

strain (2.09 and 2.24 Mb), CL Brener and SO3-cl5 (2.09 and 2.34

Mb), and with a chromosomal band (2.09 or 2.14 Mb) in

Esmeraldo-cl3 and TcI isolates (Fig. 2B). The two chromosomal

bands identified in hybrids and Y could be different-sized

chromosomes, as demonstrated in clone CL Brener [49]. The

results confirm that this large syntenic block is conserved in TcI,

TcII, TcV and TcVI isolates.

Despite strong chromosomal conservation, some markers are

found only in one haplotype (TcChr-P or TcChr-S) of clone CL

Figure 2. Conservation of large syntenic regions in the genome of T. cruzi lineages. Linkage groups from TcChr37 and TcChr4 (Panel A)
and TcChr39 (Panel B) were mapped on chromosomal bands. Specific markers from in silico assembled T. cruzi chromosomes (TcChr) were
hybridized with chromosomal bands separated by PFGE. The positions of markers used as probes are indicated in the diagrammatic representation of
in silico assembled chromosomes (TcChr37 and 4, and TcChr39).The isolates are: Y and clone Esmeraldo-cl3 (E) from lineage TcII; clone SO3-cl5 (S)
from TcV; clone CL Brener (C) from TcVI; clone Dm28c (D), G strain and Tc1161 (José-IMT) isolate (T) from TcI. Markers from TcChr37: XM_801570,
THTc, TEUF0001, TEUF0180, TcProcyclic, DEAD-H and delta-6. The marker 40S is located in TcChr4. Markers from TcChr39: XM_811753, H49, PI3,5K,
XM_811099, JL8, katanin, iron-sulfur, syntaxin and ankyrin. The gene identification and GenBank accession number of each marker are indicated in
Table S4.
doi:10.1371/journal.pone.0023042.g002
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Brener. They are not necessarily specific-haplotype markers

because the corresponding region of each marker is interrupted

by sequence gaps designated as an N-rich region (nucleotides not

determined). There are 56 to 75 N-rich regions in TcChr37-P,

TcChr37-S, TcChr39-P and TcChr39-S, comprising 10.4% to

20.5% of these haplotypes. This could explain the presence of 40S

ribosomal protein S24E in TcChr4-P and the many mismatches

identified in the merging of syntenic regions from Esmeraldo and

non-Esmeraldo haplotypes [32].

A linkage group assigned to the chromosome-sized scaffolds

TcChr7-P and TcChr7-S was analyzed. These markers hybridized

in two chromosomal bands (0.96 and 1.06 Mb in clone Dm28c

and 0.96 and 1.02 Mb in Tc1161) of TcI isolates, with the

exception of the G strain in which only the 0.96 Mb band was

detected (Fig. 3 and Table S4). Two chromosomal bands (0.87 and

0.98 Mb) were identified in the clone Esmeraldo-cl3 of TcII. In

CL Brener, SO3-cl5 and Y, the probes strongly hybridized to a

0.77 Mb-band and weakly to a 2.5 Mb-band. These results suggest

that the 0.77 Mb band harbors two homologous chromosomes of

the same size. Hybridization of TcChr7 markers with the 2.5 Mb-

band could be the result of spontaneous duplication of a DNA

segment comprising the coding sequences XM_803658, farnesyl

synthetase and tryparedoxin peroxidase, followed by translocation

to the 2.5 Mb chromosomal band. The fragment comprising from

XM_803658 to the third copy of tryparedoxin peroxidase gene is

approx 20.2 kb (Fig. 3).

Chromosome architecture and comparison with T. brucei
chromosomes

T. brucei and T. cruzi exhibit striking conservation of gene order

[51,52]. T. brucei chromosomes provide a structural basis for

studying T. cruzi chromosome organization [32]. The data

presented herein demonstrated that TcChr37 and TcChr4 specific

markers map to the chromosomal band XX (3.27 Mb) of clone CL

Brener. Correlations between T. cruzi and T. brucei chromosomes

were accomplished using sequences of large chromosomal

fragments from each species. TcChr37 was identified as being

homologous to T. brucei chromosome 10 (Tb10) (Fig. 4). The

comparison between these chromosomes identified a large

segment inversion involving chromosome TcChr37. The initial

segment of TcChr37 (1 Mb) corresponds to a region from 2.0 to

2.8 Mb of Tb10, while the ending segment of TcChr37 (350 kb) is

similar to a region of 1.43 to 1.75 Mb of Tb 10 (Fig. 4).

Furthermore, the region located between the two chromosome

inversion segments in Tb10 corresponds to TcChr4. Although

there was no assembling between these chromosome-sized

scaffolds in the database, they belong to the same chromosome.

On the basis of their gene content, telomeric sequences were

identified at one end of TcChr37 and TcChr4 suggesting that they

are located at the extremities of chromosome XX (see Fig. S3).

The telomeric region is located at the start of TcChr37 and at the

end of TcChr4, both in the middle of Tb10, suggesting there was a

real inversion process in this T. cruzi chromosome (Fig. S3). The

complete sequences of chromosome-sized scaffolds TcChr37 and

TcChr4 comprise 1,361,061 and 200,400 bp, respectively which

covers 47.75% of the entire chromosome XX (3.27 Mb). The

difference in size can be explained by other TcChr not allocated to

chromosomal band XX or by the highly repetitive nature of the

genome, where the numerous repetitive regions were collapsed

and/or misassembled.

The complete sequence of chromosome-sized scaffold TcChr39

comprises 1,849,755 bp. TcChr39 was assigned to two different T.

brucei chromosomes: Tb9 and Tb11 (Fig. 5). The initial region of

TcChr39 (821 kb) is homologous to a region of the same size

located in one extremity of Tb11. The ending part (1 Mb) of

TcChr39 is similar to Tb9 of T. brucei (position 1.8 to 2.8 Mb of

Tb9). These two TcChr39 fragments, homologous to different T.

brucei chromosomes, are separated by a short region (nt 877,707 to

Figure 3. Segmental duplication on a 2.5 Mb chromosomal band in the Y strain and clones SO3-cl5 and CL Brener. A single segment in
TcChr7 comprising the coding sequences XM_803658, farnesyl synthetase and tryparedoxin peroxidase corresponds to a gene segmental duplication
on a 2.50 Mb chromosomal band in the Y strain and clones SO3-cl5 and CL Brener. The positions of markers used as probes are indicated in the
diagrammatic representation of in silico assembled chromosome TcChr7. The isolates are: Y and clone Esmeraldo-cl3 (E) from lineage TcII; clone SO3-
cl5 (S) from TcV; CL Brener (C) from TcVI; clone Dm28c (D), G strain and Tc1161 (José-IMT) isolate (T) from TcI. Markers from TcChr7: XM_803658,
farnesyl synthetase and tryparedoxin peroxidase. The gene identification and GenBank accession number of each marker are indicated in Table S4.
doi:10.1371/journal.pone.0023042.g003
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883,237) corresponding to the T. cruzi specific sequences VIPER

and C6 interspersed DNA elements. These sequences are

generally located in synteny breakpoints [51,52]. The presence

of telomeric sequences at both ends of TcChr39 suggests that it

represents the complete sequence. The length of 1,849,755 bp

compares well with the PFGE-based estimate (mean of several

determinations) of 2.09 Mb (see Fig. 2). The complete sequence of

chromosome-sized scaffold TcChr39 includes 72–75 gaps which

have been indicated in the TriTrypDB as blocks of 100 to 197,373

nt. The total size of these gaps is estimated as 192,815 bp in

TcChr39-S and 261,904 bp in TcChr39-P, and they could be

composed of repetitive sequences.

Using information from genome projects, the sequences of

TcChr7 were compared with T. brucei chromosomes (see Fig. 5).

TcChr7 is similar to the initial region of Tb9 (390 kb segment

located between 1.1–1.5 Mb of Tb9), while the final region of Tb9

corresponds to TcChr39 (segment located between 1.8–2.8 Mb of

Tb9). TcChr7 and TcChr39-specific markers hybridized with

different chromosomal bands in CL Brener, suggesting that they

are not located in the same chromosome (Figs. 2B and 3).

To understand the complexity of fusion/split fragment processes

between T. cruzi and T. brucei further, the predicted organization of

each chromosome was associated by experimental Southern blot

hybridization with the T. cruzi chromosomal bands separated by

PFGE, and chromosome-specific genes were used as probes (Fig. 6).

T. brucei chromosome Tb9 is syntenic to the distal ends of T. cruzi

TcChr39 (blue block) and TcChr7 (green block) (Fig. 6A). However,

Tb11 shares syntenic regions with the initial region of TcChr39

(yellow block) and the whole chromosomes TcChr14 (brown block),

TcChr30 (pink block) and TcChr35 (purple block) (Fig. 6A).

Hybridization of markers from in silico chromosomes (TcChr) to

chromosomal bands of CL Brener is presented in Fig. 6B and 6C.

The marker TcChr39 (H49) mapped to the chromosomal band

XVI, the marker located in TcChr14 (leucyl tRNA synthetase)

mapped to the chromosomal bands VII and IX, markers from

TcChr30 (XM_806918 and XM_812638) hybridized with the band

XII, and marker glucosamine-6-phosphate isomerase (TcChr35)

mapped to the bands I and XI. Markers from these bands detected

orthologous counterparts distributed over almost the entire length of

chromosome Tb11 of T. brucei. In the same way, markers from

chromosomal bands V and XVIII (e.g. XM_803658 of the TcChr7)

and from part of the TcChr39 (katanin, chromosomal band XVI)

were distributed throughout orthologous counterparts of T. brucei

chromosome Tb9 of (Fig. 6C).

Analysis of TriTryp database comparative syntenic regions

confirmed these data, validating synteny among Tb11 and several

T. cruzi chromosomes (Fig. S4). The beginning of TcChr39 and the

entirety of TcChr14, TcChr30 and TcChr35 are represented by

arrows of yellow, brown, pink and purple, respectively. It is

interesting to note that other chromosomal fragments are homol-

ogous to Tb11 (TcChr16, TcChr26, TcChr27 and TcChr41, black

arrows). However, these TcChr were not analyzed in detail and the

syntenic fragment size related to each chromosome is unknown.

Discussion

Differences in genome size in T. cruzi lineages
The absolute DNA content of T. cruzi epimastigotes was

determined using total DNA isolated from a defined number of

cells and a DNA-specific fluorescent dye. The presence of parasites

Figure 4. Alignment among homologous regions of T. cruzi in silico assembled chromosomes TcChr37, TcChr4 and T. brucei
chromosome Tb10. Panel A) Schematic representation of chromosome-specific markers from the chromosomal band XX (clone CL Brener) in the assembly
sequence of chromosome TcChr37 and TcChr4 (clone CL Brener). These markers were used as probes in chromoblot hybridizations. Panel B) Comparison
among TcChr37 (‘‘P’’ chromosome assigned to the non-Esmeraldo haplotype and ‘‘S’’ to the Esmeraldo haplotype) and TcChr4 (‘‘P’’ and ‘‘S’’) with chromosome
Tb10 of T. brucei. Homologous genes are connected by colored lines. The matches and reverse matches are represented in red and in blue, respectively. The
beginning of TcChr37 (1 Mb) aligned to a chromosomal segment located in the middle of Tb10 (positions 2 Mb to 2.8 Mb). The end of TcChr37 (350 kb) shows
similarity with the portion included between 1.43 Mb to 1.75 Mb of Tb10. The TcChr4 made up the middle of Tb10, where there is a large chromosome
inversion. Grey blocks represent each chromosome. Chromosome-specific markers are drawn in sense (+) and antisense (-) strands.
doi:10.1371/journal.pone.0023042.g004
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in S or G2 phases of the cell cycle can lead to an overestimation of

DNA content of non-multiplying cells when all measurements are

averaged. To avoid this complication, the analysis was performed

using parasites arrested in the G1 phase of the cell cycle by

treatment with HU. Synchronization was confirmed by compar-

ison between hydroxyurea-treated and non-treated parasites

(Figure S1). During HU treatment, cells accumulate in the late

G1 to early S phase of the cell cycle with a concomitant decrease

in the G2 peak.

To estimate the nuclear genome size it was assumed that kDNA

accounts for 20% of a parasite’s total DNA and that the

proportion of nuclear and kDNA was the same across strains

[45,53,54]. The degree of accuracy of DNA measurements was

confirmed by comparing the DNA content of haploid and diploid

lineages of S. cerevisiae. The genome size estimated for S. cerevisiae

(12.72 Mb) is almost identical to that obtained by whole genomic

sequencing (12.07 Mb), confirming the accuracy of this technique.

The DNA content estimated for the diploid lineage was 1.9-fold

greater than the haploid lineages.

Overall, the mean nuclear genome size of the TcII, TcV and

TcVI isolates was 125 Mb, and values for TcI isolates ranged from

89 Mb in Dm28c to 115 Mb in Tc1161 (Table 1). These values

are comparable to those obtained by Lewis et al., 2009 who

measured the genome size of 54 T. cruzi isolates using flow

cytometry of fixed parasites stained with propidium iodide, and

they are in agreement with previous findings that TcI strains have

lower genome sizes than strains from other DTUs strains

[17,21,26,48,55,56]. The low variability in genome size values

observed among the TcI isolates and among the TcII, TcV and

TcVI isolates indicates that the dsDNA quantification technique

was reliable and that the estimated genome sizes of the different

isolates are accurate.

However, several points should be noted. Although the mean

amount of DNA is homogeneous across the TcI group, some TcI

strains (Tc1161 and 92101601P) had a DNA content 29% higher

than the average, comparable to the TcII group [21,57]. T. cruzi

has been considered to be at least diploid, but aneuploid in hybrid

strains [8,17,58].

Assuming a diploid content of 89.5 Mb for G and Dm28c, the mean

DNA content of Tc1161 was 129% of the reference diploid value, very

close to triploid cell (2.6n). One possible interpretation of this result

would be that Tc1161 was generated by fusion of two TcI nuclei. The

DNA content could be decreased with time, the mean genomic DNA

content evolving from tetraploidy to near triploid. Its DNA content

(115 Mb) could correspond to a loss of 45.5% of the DNA from the

tetraploid nucleus (179 Mb). Recently, Minning et al. proposed ‘‘fusion

then loss’’ mechanism occurs more frequently among T. cruzi strains

than previously thought [9,59].

Figure 5. Alignment among homologous genomic regions of T. cruzi in silico assembled chromosomes TcChr39 and TcChr7, and
T. brucei chromosomes Tb11 and Tb9. Panel A) Schematic representation of chromosome-specific markers from the chromosomal band XVI
(clone CL Brener) in the assembly sequence of chromosome TcChr39 (clone CL Brener). These markers were used as probes in chromoblot
hybridizations. Panel B) Comparison among TcChr39 (‘‘P’’ chromosome assigned to the non-Esmeraldo haplotype and ‘‘S’’ to the Esmeraldo
haplotype) and TcChr7 (‘‘P’’ and ‘‘S’’) with chromosomes Tb11 and Tb9 of T. brucei. For ease of viewing, chromosomes Tb11 and Tb9 were joined
together and drawn in the same line. The limit between Tb11 and Tb9 is shown by a red arrow. Grey blocks represent each chromosome.
Homologous genes are connected by colored lines. . The matches and reverse matches are represented in red and in blue, respectively. The
beginning of TcChr39 (821 kb) was aligned to the initial portion of Tb11. The end of the TcChr39 (1 Mb) shows similarity with Tb9 end (positions
1.8 Mb to 2.8 Mb). TcChr7 constituted the beginning of Tb9 (390 kb region between positions 1.1-1.5 Mb). Chromosome-specific markers are drawn
in sense (+) and antisense (-) strands.
doi:10.1371/journal.pone.0023042.g005
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It is interesting to note that 92101601P and Tc1161 strains have

diverse origins; 92101601P was isolated from Didelphis marsupialis in

the United States [21,57] and Tc1161 (José-IMT) from a north-

eastern Brazilian patient with end-stage chronic Chagasic

cardiomyopathy [44]. The results presented herein agree with

recent findings that sylvatic TcI populations are more genetically

diverse than previously thought [21,39,41]. Recently, Cura et al.

proposed a subdivision in TcI group (TcI a- TcI e) based on

microsatellite motif of the intergenic spacer of Spliced-Leader gene

relating to geographical distribution and transmission cycle [41]

while Ocaña- Mayorga et al. identified geneticatlly distinct groups

in TcI studying microsatellite data for ten variable loci [42].

Furthermore, in Tc1161 there are more chromosomal bands that

are larger than in other TcI isolates, suggesting that the genome

size changes could have occurred due to chromosomal aneuploidy.

It is suggested that changes in genome size in TcI strains are

relatively small and occur frequently, and involve gains of

chromosomes. Karyotypic variations are frequent among trypano-

somes and may be due to the non-disjunction of chromosomes at

mitosis and the irregularity of genetic exchange in these organisms

[38,60].

The TcI group differs from other groups (TcII, TcV and TcVI)

with regard to their genome size, and satellite DNA content is

correlated with genome size for all isolates. This has not been

accompanied by the simultaneous amplification of retrotranspo-

sons. The increase in genome size of TcII, TcV and TcVI isolates

cannot be attributed solely to an increase in its satellite DNA

amount. Other non-coding, repetitive DNA elements such as

microsatellites, simple sequence repeats and large gene families of

surface proteins can account for differences in genome size. In

addition, karyotypic changes involving the gain of chromosomes

were observed. Although the DNA content differs significantly

among the T. cruzi lineages, the grouping of isolates by genome

size agrees with the phylogenetic grouping, except for TC1161.

Synteny, chromosome polymorphism and evolution
Regardless of chromosomal polymorphism, large syntenic

groups are conserved among T. cruzi lineages (TcI, TcII, TcV

and TcVI). Two large syntenic groups of 1.1 and 1.8 Mb in size

(TcChr37 and TcChr39) were mapped to chromosomal bands

XX and XVI of clone CL Brener, respectively. All specific

markers demonstrated the same hybridization pattern in each

Figure 6. Split and fusion events among T. cruzi and T. brucei chromosomes. Panel A) Comparison among homologous regions of T. cruzi
chromosomes TcChr39, TcChr7, TcChr14, TcChr30 and TcChr35 and T. brucei chromosomes Tb11 and Tb9. The homologous regions of TcChr7 (green
box) and the end of TcChr39 (blue box) comprise the beginning and the end of Tb9, respectively. The beginning of TcChr39 and the entire T. cruzi
chromosomes TcChr14, TcChr30 and TcChr35 were assigned to different regions of Tb11. Soft and dark grey blocks represent T. cruzi and T. brucei
chromosomes, respectively. Panel B) Markers XM_803658 and katanin located in T. cruzi homologous regions to Tb9 were hybridized with
chromosomal bands of clone CL Brener. Panel C) Markers located in T. cruzi homologous regions to Tb11 were hybridized with chromosomal bands
of clone CL Brener. The probes were the following: H49, leucyl, XM_806918, XM_812638 and glucosamine. The gene identification and the accession
number of each marker are indicated in Table S4.
doi:10.1371/journal.pone.0023042.g006
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isolate, suggesting the maintenance of gene order. Recently,

strong synteny was confirmed by Sylvio X10/1 (TcI) genome

sequencing data after comparison with CL Brener database [48].

Despite the large genetic distances that separate the lineages of T.

cruzi [61], they exhibit conservation of chromosome structure.

The syntenic regions are much larger than expected if

rearrangements occur randomly, suggesting that they are

conserved owing to positive selection. The results suggest a

highly dynamic genome, which could be sorted into stable regions

with genes coding for core activities, and dynamic regions where

repetitive sequences and multigenic families are located. By array

comparative genomic hybridization, Minning et al. described

widespread Copy Number Variation among T. cruzi isolates [59].

It is more frequent in hot-spot sites where there are located a

great number of repetitive elements and multigenic family in

every chromosome [59].

The other syntenic group (TcChr7) was assigned to a single

chromosomal band in the G strain, and two bands of similar size

in isolates Esmeraldo-cl3, Dm28c and Tc1161 which could

correspond to size-polymorphic homologous chromosomes.

However, in other isolates (Y, CL Brener and SO3-cl5) the

TcChr7 markers hybridized with two bands that differ greatly in

size, 0.77 Mb (band V) and 2.5 Mb (band XVIII). The strong

hybridization of the 0.77 Mb band with TcChr7 markers suggests

that this band contains two homologous chromosomes of the

same size. The weak hybridization signal of TcChr7 markers with

the 2.5 Mb-band could be explained by the occurrence of a

segment duplication in the 0.77 Mb-band followed by an

insertion event in the larger 2.5 Mb-chromosome. By means of

array comparative genomic hybridization, Minning et al.

described that aneuploidies of chromosomes fragments are clearly

evident [59]. The authors demonstrated a segmental aneuploidy

in Brazil strain involving a 500 kb-fragment in the TcChr39 [59].

Herein, the duplicated chromosome-sized region was retained on

both chromosomal bands as paralogous loci, increasing the

dosage of several genes.

The results demonstrated that the integration of in silico

assembled chromosome sequences and the molecular karyotype

allowed the chromosomes present in the chromosomal bands to be

identified and errors to be corrected, improving the quality of

these complementary resources. This provides a valuable resource

for comparative genomics of distinct T. cruzi lineages and between

trypanosomatids.

Comparison of the genomes of Trypanosoma species is essential

for identifying genetic changes involved in the acquisition of

unique features in each species such as virulence factors (antigenic

variation and antigenic variability), and developmental intracellu-

lar forms. By comparing the in silico assembled T. cruzi sequences

with T. brucei chromosomes, homologous chromosomal regions in

T. brucei would be defined. The chromosomeTb9 shares various

regions of syntenic homology with T. cruzi chromosomes TcChr7

and 39, and chromosome Tb11 with TcChr14, 30, 35 and 39.

The mapping of the syntenic regions on T. cruzi chromosomal

bands provides evidence for the occurrence of fusion and split

events involving T. brucei and T. cruzi chromosomes. Specific

markers for the T. cruzi chromosomes belong to syntenic regions

on Tb9 and Tb11 chromosomes hybridized with distinct

chromosomal bands in CL Brener. For instance, markers of Tb9

were mapped to T. cruzi chromosomal bands V, XVI and XVIII,

whereas markers for Tb11 hybridized with bands I, VII, IX, XI,

XII, and XVI. By comparing the sequences of large chromosomal

fragments from T. brucei, T. cruzi and L. major, Ghedin et al.

proposed two alternative hypotheses to explain the genomic

architecture in trypanosomatids [52]. The first hypothesis assumes

that the ancestor of trypanosomatids had large chromosomes

similar to those observed in T. brucei. Therefore, two independent

fragmentation events would have occurred, one in the lineage

leading to Leishmania and another leading to T. cruzi. Alternatively,

if the ancestral state corresponded to smaller chromosomes only

one event had to occur, a chromosomal fusion in the lineage

leading to T. brucei.

Available information cannot determine which of these two

hypotheses is most likely. However, the results presented in this

study favor the second hypothesis. The data confirmed the

occurrence of fusion and split events involving T. brucei and T.

cruzi chromosomes, and suggest that the common ancestor of

trypanosomes had small chromosomes and a more fragmented

genomic organization; during speciation these fragments joined

in different combinations, forming different genomes at the same

time. It is likely that there is a selective pressure to keep gene

order, although several karyotypic changes could be genetically

neutral.

In the present study, data from chromosomal mapping and

karyotyping were integrated with genome sequence data. The

integrated map facilitated draft genome assembly and is a valuable

resource for comparative genomics of trypanosomatids.

Supporting Information

Figure S1 Flow cytometry analysis demonstrating DNA
synchronization after HU treatment of T. cruzi epimas-
tigotes. Panels A, B, C and D present Flow cytometry analysis of

propidium iodide-stained epimastigotes of G strain (TcI), Y strain

(TcII), clone SO3-cl5 (TcV) and clone CL Brener (TcVI),

respectively. Histograms of non-treated-parasites are presented

on the left and those treated with 20 mM HU for 24 h are

presented on the right. The number above the first peak

corresponds to the percentage of cells in G1 phase and that above

the second peak to the S/G2 phase.

(TIF)

Figure S2 Mapping of repetitive element satellite DNA
and L1Tc retrotransposons on chromosomal bands of
various isolates. Chromosomal bands of Y strain and clone

Esmeraldo-cl3 (E) from TcII; SO3-cl5 (S) from TcV; clone CL

Brener (C) from TcVI; and clone G strain, clone Dm28c (D) and

Tc1161 (José-IMT) isolate (T) from lineage TcI were separated by

PFGE, transferred to nylon membranes and hybridized with

probes satellite DNA and L1Tc, shown at left and at right of the

figure, respectively.

(TIF)

Figure S3 Illustration of synteny between the chromo-
somal band XX of clone CL Brener and T. brucei
chromosome 10 (Tb10). Panel A) Schematic representation of

a chromosome comprising the scaffolds TcChr37 and TcChr4

within chromosomal band XX. The complete sequences of

chromosome-sized scaffolds TcChr37 and TcChr4 comprise

41.6% of the entire chromosome XX (3.27 Mb). Panel B) The

beginning of TcChr37 (red rectangle, 1 Mb) aligned to a

chromosomal segment located at the middle of Tb10 (positions

2 Mb to 2.8 Mb). The end of the TcChr37 (blue rectangle,

350 kb) shows similarity with the portion included between

1.43 Mb to 1.75 Mb of Tb10. The TcChr4 (green rectangle)

comprises the middle of Tb10 where there is a large chromosome

inversion. Alignment among homologous genomic regions of T.

cruzi chromosomes TcChr37 and TcChr4, and T. brucei chromo-

some Tb10. Homologous genes are connected by grey lines. On

the basis of their gene contents, telomeric regions are located in
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the beginning of TcChr37 and at the end of TcChr4. Telomeric

sequences located at the extremities of chromosome XX are

indicated by red and green triangles, respectively. Soft and dark

grey blocks represent T. cruzi and T. brucei chromosomes,

respectively.

(TIF)

Figure S4 Overview of Tb11 compared with T. cruzi
Esmeraldo genomic sequences using TriTrypDB com-
parative syntenic regions analysis. Tb11 was assigned to

different T. cruzi chromosomes. The beginning of TcChr39,

TcChr14, TcChr30 and TcChr35 are represented by yellow,

brown, pink and purple arrows, respectively. Fragments belonging

to other TcChr are demonstrated with black arrows. As

demonstrated in Fig. 6, the syntenic regions located in Tb11 are

distributed in different T. cruzi chromosomes: TcChr39 was

assigned to chromosomal band XVI, TcChr14 to bands VII and

IX, TcChr30 to band XII and TcChr35 to bands I and XI. The

gene identification and the accession number of each marker are

indicated in Table S4.

(TIF)

Table S1 Variance analysis (ANOVA) of genome sizes in
T. cruzi isolates.

(XLS)

Table S2 Variance analysis (ANOVA) of Satellite DNA
(A) and L1Tc retrotransposon (B) copy numbers in
various T. cruzi isolates.
(XLS)

Table S3 Chromosome localization of Satellite DNA (A)
and L1Tc retrotransposon (B) in various T. cruzi
isolates.
(XLS)

Table S4 Chromosomal localization of T. cruzi markers
used in hybridization experiments.
(XLS)
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