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Abstract

It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far
beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in
mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into
polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells
hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for
degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits
remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage
of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132.
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Introduction

The synthesis of ribosomes is a special challenge to the cell in

two respects. First, in a growing cell it utilizes a very substantial

fraction of the cell’s resources [1]. Perhaps more importantly, it

requires the coordinated production of each of the 79 ribosomal

proteins (RPs), which are needed, with a couple of exceptions, in

exactly equimolar amounts. There is substantial evidence from

both yeast and metazoan systems that an imbalance of RPs can

lead to stress, now often termed ‘nucleolar stress’ (reviewed in

[2],[3]). Thus, in yeast overproduction of a RP from a 2 micron

plasmid drives the plasmid number down several fold [4]. In

Drosophila haploinsufficiency for a RP leads to the minute

phenotype, with delayed development, short bristles, etc. [5]. In

zebrafish haploinsufficiency for any of at least 14 RPs leads to

tumor formation [6]. In mammalian cells haploinsufficiency or

excess amounts of a RP lead to accumulation of p53 and

subsequent cell cycle arrest or apoptosis [7,8]. In humans

haploinsufficiency for any of several RPs leads to Diamond-

Blackfan anemia and associated pathology, including increased

incidence of cancer [9]. Other examples of pathological effects of

haploinsufficiency for RP genes are appearing with increasing

frequency (Reviewed in [10,11]). Without doubt, the role of

ribosomopathies in human disease is only just beginning to be

appreciated.

While the yeast Saccharomyces cerevisiae is missing certain of the

components that lead to such pathology, e.g., p53, it nevertheless

is an attractive model to probe some of the more general responses

to nucleolar stress. Under the assumption that deficiency of a

single RP would lead to substantial amounts of incomplete

ribosomal subunits that should be subject to surveillance and

degradation, we carried out Synthetic Genetic Array analyses [12]

using strains constructed with deletions of one of the two

paralogues of a RP gene, RPL1B, RPL4A, or RPS6A, each crossed

into the S. cerevisiae knock-out collection. The summary results have

been reported previously [13]. We now concentrate on the effects

of deletion of RPL1B, which has some unusual characteristics of its

own.

Surprisingly, although Rpl1 is essential for growth, 60S subunits

can be assembled in the absence of Rpl1, and these can be

incorporated into polyribosomes. Nevertheless, cells limited for

Rpl1 grow slowly, are synthetically sick with deletion of numerous

members of the ubiquitin-proteasome system, and are hypersen-

sitive to the proteasome inhibitor MG132.

Results

Pseudo-haploidy for RP genes
The original aim of these experiments was to assess how the cell

responds to a shortage of a single RP. In S. cerevisiae this is

experimentally simple to arrange, since many RPs are encoded by

two genes that in most cases yield identical or nearly identical

proteins. We selected three RPs for which to assay the effects of a

deficiency on rate of growth and on genetic interactions: Rpl1
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(Rpl1 in E. coli, Rpl10a in mammals), Rpl4 (Rpl4 in E. coli and

mammals) and Rps6 (Rps6 in mammals, not present in E. coli).

Rpl1 and Rpl4 are both essential, universally conserved RPs

whose placement in the 60S subunit is well-defined in both

bacteria and eukaryotes [14,15]. Rpl4 is known to facilitate early

assembly of the 60S subunit and to make extensive contact with

multiple domains of 25S rRNA, including Domain I, the first to be

transcribed, suggesting an obligatory early assembly into the 60S

subunit [14]. In contrast, Rpl1 occupies a peripheral location in

the 60S subunit with only localized rRNA contacts. Nevertheless,

it forms a major structural feature of the ribosome, the L1 arm,

which plays an important role in removal of E-site tRNA [16–18].

Thus, limiting for Rpl1 and Rpl4 would perturb very different

stages of subunit assembly. Rps6 was included for comparison as a

component of the 40S subunit known to be essential for subunit

assembly [19,20]. For each of the three RPs the paralogous genes

yield identical proteins.

Deletion of one of the genes encoding each of these RPs, a

pseudo-haploinsufficiency, leads to slower growth, but over a wide

range, with deletion of RPL1B having the most deleterious effect

(Fig. 1A). This may be due partially to an imbalance between the

two genes encoding Rpl1. qPCR analysis reveals that deletion of

RPL1B reduces the Rpl1 mRNA by 55%, consistent with the

published value [21]. To put the slow growth of the rpl1bD strain

in context, we determined the growth rate of strains carrying

deletions (KOs) of most of the individual RP paralogous genes of

yeast (Fig. 1B). Deletion of RPL1B had a greater effect on growth

than all but one of the RP paralogues. Nevertheless, normal

growth could be restored by overexpression of RPL1A, showing

that the rpl1bD growth defect is not due to a paralogue-specific

function. The reasons for the spread of growth rates in this set of

pseudo-haploids are not clear but could be due to relative

abundance of transcripts between the paralogue pairs, or to some

RPs being normally made in excess, as appears to be the case in

mammalian cells [22], or, more interestingly, through compensa-

tion by the remaining gene, as in the case of Rps14 [23].

RPL1 is dispensable for 60S subunit assembly in yeast
The very slow growth of rpl1bD compared to other RP KOs led

us to re-examine the molecular consequences of Rpl1 limitation.

Polysome profiles indicated that a reduction in Rpl1 has somewhat

different consequences for ribosome synthesis than expected from

the loss of a 60S RP (Fig. 2A). A typical polysome profile of cells

with impaired 60S synthesis is illustrated by the strain carrying

rpl4aD: the level of free 60S subunits is reduced, and half-mer

polysomes indicate an excess of 43S initiation complexes stalled on

mRNA, waiting for 60S subunits [24]. In contrast, the strain

carrying rpl1bD shows little reduction of the 60S subunit peak and

few half-mer polysomes. There is, however, a substantial reduction

in the levels of the largest polysomes, suggesting a limitation in the

initiation process.

A possible explanation for the only slight reduction in free 60S

subunits and the few half-mers seen in the rpl1bD polysome profile

is that 60S synthesis continues even in the absence of Rpl1,

resulting in structurally or functionally defective subunits. Using

Rpl5 as a control, Western blot analysis of the relative amount of

Rpl1 in rpl1bD 60S subunits and ribosomes showed, indeed, that

the ratio of Rpl1 to Rpl5 in the 60S fractions of rpl1bD was only

about one third that of wildtype (Fig. 2B,C). By contrast, in the

rpl4aD strain the Rpl1/Rpl5 ratio of the few 60S subunits was

normal. This comparison supports the hypothesis that whereas no

60S subunit can be made lacking Rpl4, subunits can be assembled

without Rpl1.

Interestingly, although Rpl1 was reduced in 60S subunits, the

Rpl1/Rpl5 ratio was at nearly wildtype levels in the rpl1bD
polysome fractions, indicating a possible selection against the

Rpl1-deficient subunits in actively translating ribosomes. Analysis

on 5–20% sucrose gradients, in order to better resolve 60S from

80S particles, showed that although the greatest reduction in Rpl1

is seen in 60S subunits (to ,30% of wildtype levels), rpl1bD also

shows a distinct reduction of Rpl1 in 80S monomers (to ,50% of

wildtype levels) (Fig. 3A). This suggests that at least a fraction of

Figure 1. Growth of strains carrying deletions of one RP gene
paralogue. (A) Growth curves for wildtype (Y7092) and RP KO strains
in YPD at 30uC. OD600 was read every 30 min in a Bioscreen CTM

microbiology reader. Lag phases have been excluded from each curve
to show growth from OD600 ,0.1. (B) Doubling times for paralogous RP
KOs, calculated using Bioscreen growth curves (see Materials &
Methods). Doubling times for 60S RPs are shown in black, 40S RPs
are in blue, and wildtype (Y7092 and BY4741) are in red. Arrows indicate
positions of rpl1bD, rpl4aD, and rps6aD, the natr-marked KO strains
(Y7092 background) used in this study. Doubling times given are mean
value 6 SE (rpl1bD, n = 13 independent biological replicates; rpl4aD,
n = 8; rps6aD, n = 6). All other RP KO strains were from the Open
Biosystems kanMX-marked KO library (BY4741 background); values
represent the mean of three technical replicates.
doi:10.1371/journal.pone.0023579.g001

Eukaryotic Ribosomes Lacking Rpl1
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subunits lacking Rpl1 can indeed join with 40S subunits, although

not necessarily engage in translation.

Subunits lacking Rpl1 are competent for export and
assembly into ribosomes

In many cases aberrant or incomplete 60S ribosomal subunits

are confined to the nucleus, their export being blocked [25,26]. In

order to establish that the subunits lacking Rpl1 are actually

exported from the nucleus, we analyzed cytoplasmic extracts from

wildtype and rpl1bD cells (Fig. 3B, Fig. S1). Western blots of the

cytoplasmic extract fractions confirmed that the Rpl1/Rpl5 ratio

in 60S subunits was only ,30% of wild type and that of 80S

ribosomes was only ,60% of wildtype levels. Thus, 60S subunits

lacking Rpl1 are present in the cytoplasm and potentially available

for initiation of translation.

Subunits lacking L1 can be found in polysomes
For a more thorough analysis of the synthesis of 60S ribosomal

subunits in the absence of Rpl1, we developed a strain in which the

synthesis of Rpl1 could be completely repressed (rpl1bD,

GAL1::RPL1A) along with control strains to repress synthesis of

Rpl4 (rpl4aD, GAL1::RPL4B) or Rps6 (rps6aD, GAL1::RPS6B). Due

to the rapid turnover of RP mRNAs, levels of RPL1 and RPS6

transcripts are reduced by 98–99%, and RPL4 mRNA by .90%,

after 60 minutes in dextrose medium, as determined by qPCR.

Polysome profiles of these strains after two hours in dextrose show

that in cells deprived of Rpl4 there are essentially no free 60S

subunits, and the half-mer peaks actually exceed the normal ones

(Fig. 4B). Depletion of Rps6 leads to an enormous peak of free 60S

subunits (Fig. 4C). In both cases a substantial imbalance between

the two subunits has developed. By contrast, depletion of Rpl1 has

relatively little effect on the pattern (Fig. 4A).

This result further supports the conclusion that synthesis of 60S

subunits continues even in the absence of Rpl1. As a more

definitive test, we labeled the repressible strains for 60 minutes

with 32P orthophosphate, either during growth in galactose or

between 60 and 120 minutes following transfer to dextrose. For

these polysome gradients we employed 1.5 mM Mg2+, which more

closely replicates physiological Mg2+ levels [27], and which

dissociates subunits not translating mRNA [13]. It is interesting

that the proportion of half-mers increases substantially under these

conditions of analysis (Compare Fig. 5A with Fig. 4A), suggesting

that some 60S subunits, presumably those lacking Rpl1, are

loosely associated with polysomes.

Autoradiographs of samples from the gradients (Fig. 5A–C)

show clearly that while lack of Rps6 leads to synthesis of 60S but

not 40S subunits, and lack of Rpl4 leads to synthesis of 40S but not

60S subunits, lack of Rpl1 permits substantial synthesis of both

60S and 40S subunits. Analysis of total RNA on a separate gel

showed that repressing conditions reduced 25S rRNA synthesis by

,35% for the rpl1bD strain, but more than 95% for the rpl4aD
strain. Similarly, 18S rRNA synthesis was reduced by more than

90% for the rps6aD strain. Furthermore, many of the 60S subunits

synthesized after depletion of Rpl1 are associated with polysomes.

Figure 2. 60S subunits can be made without Rpl1. (A) Polysome profiles of whole cell lysates of the indicated strains (See Methods). 8–10 A260

units of whole cell lysate were centrifuged for 2.5 h at 40K rpm on a 10–50% sucrose gradient. Top of the gradient is at left; arrows indicate half-mers.
(B) Western blot analysis of equal volumes of each gradient fraction, shown below corresponding polysome profiles. a-Rpl5 cross-reacts with a 40S
protein (middle band marked with an asterisk, under 40S, 80S, and polysome peaks). (C) The Rpl1/Rpl5 ratio was determined for each fraction of the
gradients. The values for rpl1bD and rpl4aD in are shown, normalized to the ratio for Y7092, 6 SD (n = 2).
doi:10.1371/journal.pone.0023579.g002
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However, the ratio of the radiolabelled 25S rRNA to 18S rRNA is

substantially less in the polysomes than in the 80S or the subunit

peaks (Fig. 5A), showing that while 60S subunits lacking Rpl1 can

associate with polysomes, they are strongly discriminated against

during translation initiation.

The apparent conflict between Fig. 2C, where we did not detect

Rpl1-deficient 60S subunuits on polysomes, and Fig. 5A, where we

did, is likely due to both physiological and experimental effects.

We suggest that in the rpl1bD strain there is a competition between

complete and Rpl1-deficient 60S subunits that greatly favors the

complete ones. Only when a large proportion of Rpl1-deficient

60S subunitsaccumulates, after two hours in dextrose medium, can

they overcome the competition to force their way onto polysomes.

Experimentally, the Rpl1/Rpl5 signal to noise ratio in western

blots is inadequate to detect in polysomes the small fraction of

defective 60S subunits that may be present in the Drpl1b strain.

Indeed, in polysomes of cells entirely depleted of Rpl1 for two

hours, the Rpl1/Rpl5 ratio in the polysomes declined to ,0.8

(data not shown?).

An interesting sidelight to Fig. 5 is the observation that in these

low Mg2+ conditions the precursor particles containing either 27S

or 20S pre-rRNA migrate more slowly than the mature subunits.

Although they have greater mass, with numerous extra proteins

[28], the precursor particles must be substantially less compact at

this low Mg2+ concentration, providing more hydrodynamic

resistance to sedimentation.

Partial turnover of Rpl1-deficient 60 S subunits
Note that in gradient fractions of neither the Rpl4-depleted nor

the Rps6-depleted cells can the corresponding 27S or 20S pre-

rRNA be detected (Fig. 5B, C), suggesting that the nascent

subunits missing key proteins are rapidly degraded. We confirmed

this rapid degradation with a pulse-chase experiment where a

short pulse of [C3H3]-methionine, which labels the numerous

methyl groups on rRNA, was followed by a short chase. After a

30 minute depletion of Rpl4, newly synthesized 27S rRNA is

degraded within ,six minutes (Fig. 6A). In contrast, Rpl1

depletion does not affect the processing of 27S precursor; mature

25S rRNA is produced.

Since the subunits lacking Rpl1 appear to be selected against in

polysomes, we hypothesized that these subunits might be

degraded. This was tested with a somewhat different pulse-chase

(Fig. 6B, C). Strains bearing rpl1bD, rpl4aD, or rps6aD were grown

in supplemented minimal medium, pulsed with [C3H3]-methio-

nine for 15 minutes and then chased with an excess of unlabelled

methionine. The resulting 25S/18S ratio is shown in Fig. 6B, C. A

15 minute pulse is sufficiently long that the 25S/18S ratio of

wildtype cells remains constant during the chase. As expected, cells

missing RPS6A are substantially deficient in 18S rRNA, while cells

lacking RPL4A are slightly deficient in 25SrRNA (Fig. 6B). In both

cases the ratio has been established by the end of the pulse and

does not change. By contrast, cells deficient for Rpl1 have

approximately wildtype levels of 25S rRNA at time zero, but show

Figure 3. Subunits without Rpl1 can be exported to the cytoplasm. (A) Polysome profiles of whole cell lysate; in this case 5–20% gradients
were used to better separate 60S from 80S peaks. As above, 8–10 A260 units of lysate was layered onto sucrose gradients and centrifuged for 3 h at
40K rpm. Western blots of gradient fractions are shown below the polysome profiles; Rpl1/Rpl5 ratio for rpl1bD in each fraction is graphed normalized
to the wildtype ratio, 6 SE (n = 3). (B) Polysome profiles of cytoplasmic extracts: As above, except using approximately 3 A260 units of cytoplasmic
extract, prepared as described in Methods. The freedom from nuclear contamination was demonstrated by western blot analysis (Fig. S1). Only peak
fractions with enough band intensity for accurate quantification are graphed (6 SD, n = 2).
doi:10.1371/journal.pone.0023579.g003
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Figure 4. Comparison of polysome profiles after depletion of (A) Rpl1 (B) Rpl4 and (C) Rps6. Strains carrying a knockout of one RP
paralogue with the other paralogue under control of the GAL1 promoter were grown to early log phase in medium supplemented with 2% galactose.
Cultures were then filtered, the cells washed and split into YP supplemented with either 2% galactose or 2% dextrose. After 2 h, the cultures were
harvested and analyzed as in Fig. 2. Arrows indicate half-mer polysomes.
doi:10.1371/journal.pone.0023579.g004
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a turnover of ,20–25% of the 25S rRNA within the first ten

minutes (Fig. 6B, C). The remainder remains stable. This result

suggests that unlike cells deficient in Rpl4 or Rps6, in which the

pre-rRNA molecules are rapidly degraded (Fig. 6A), a substantial

fraction of the pre-60S subunits lacking Rpl1 are stable, while only

some are degraded.

Genetic interactions of RP-deficient strains
Under the assumption that deficiency of a RP would lead to

substantial amounts of incomplete ribosomal subunits that should

be subject to surveillance and degradation, we carried out

Synthetic Genetic Array analyses [12] by mating rpl1bD, rpl4aD,

and rps6aD with the S. cerevisiae KO collection. The overall results

have been reported previously [13]. We now concentrate on the

striking contrast between the collection of genes that interact with

Drpl1b compared to the other RP KOs. In brief, some 15 genes of

the ubiquitin-proteasome, SUMO, and urmylation pathways were

synthetic sick with rpl1bD [CUE3, DOA1, PRE9, RPN4, RPN10,

RUP1, SEM1, UBA4, UBC4, UBI4, UBP2, UBP6, UBP8, ULS1,

URM1], while none were with rpl4aD and only three with rps6aD.

The breadth of this list of interacting genes is so broad is

presumably due to an active demand for protein turnover, but is it

turnover of the defective ribosomal subunits themselves, or

turnover of defective proteins made by the ribosomes lacking

Rpl1?

We carried out a number of experiments to try to detect

aberrant proteins or their degradation. Western blots of whole cell

lysates probed with anti-ubiquitin showed at best a minor increase

in polyubiquitin conjugates in rpl1bD compared to wildtype or

rps6aD (data not shown). A [C3H3]-methionine pulse-chase yielded

no detectable differences in bulk protein turnover between rpl1bD
and wildtype strains (data not shown). Since it has been suggested

that Rpl1 influences the removal of empty tRNA from the E site of

the ribosome, and that the removal of the E site tRNA is coupled

to the accurate filling of the A site [29], we hypothesized that lack

of Rpl1 might make the ribosome more susceptible to frame-

shifting or to miscoding. However, constructs designed to detect

frame-shifting [30,31] or miscoding [32] yielded no detectable

effects in the rpl1bD strain.

Having failed to detect any increase in defective translation

products or their turnover in cells carrying rpl1bD, we examined

the possibility that proteins derived from the genes identified in the

SGA screen were involved in the turnover of Rpl1-deficient 60S

subunits. Two of the slowest growing but still viable combinations,

ubp6D rpl1bD, and doa1D rpl1bD were freshly constructed for

further experiments. Ubp6 deubiquitinates polyubiquitinated

substrates before they enter the proteasome for degradation,

freeing the ubiquitin moieties for re-use [33]. The slow growth of

the ubp6D rpl1bD strain (T1/2 = 25065 min.) is apparent in Fig. 7A.

Tables S3 and S4 provide some of the characteristics of this strain.

It has less RNA/OD600, suggesting fewer ribosomes per cell. This

is substantiated by a two-fold lower level of mature 25S and 18S

rRNA, suggesting that ribosome synthesis is somewhat repressed.

Northern analysis showed substantially less 35S, 27S, and 20S pre-

rRNA species, corroborating this conclusion. The polysome

gradient had fewer ribosomes, but the pattern resembled the wt,

with more large polysomes (Fig. S2A). Surprisingly, the double

mutant no longer has a deficit of Rpl1 in the 60S subunits; the

Rpl1/Rpl5 ratio in the 60S subunits is similar to that on polysomes

(Fig. S2A). This result suggests that Ubp6 itself is not involved with

the degradation of 60S subunits lacking Rpl1, but that its absence

leads to repression of ribosome synthesis for which the limited

supply of Rpl1 is sufficient. The growth curves in rich medium

have two components, a log phase of rapid growth by

fermentation of glucose to OD600 ,1.2, followed by a diauxic

shift to oxidative metabolism. The strain carrying the double

mutant ubp6D rpl1bD cannot carry out the latter, nor can it grow

on non-fermentable medium (not shown) although both single

mutants can (Fig. 7A).

Since Ubp6 is responsible for the recycling of ubiquitin

molecules, the lack of Ubp6, coupled with an increased demand

for ubiquitin because of the shortage of Rpl1, may lead to a

shortage of ubiquitin [34]. If this is the case, then supplying

additional ubiquitin might suppress the slow growth of the double

mutant. Indeed, introduction into the double mutant of a

2 micron plasmid carrying a ubiquitin construct leads to growth

comparable to the rpl1bD strain itself (Fig. 7B). It is interesting,

however, that while supplemental ubiquitin leads to an increased

growth rate of the double mutant during log phase, it does not

cure the strain’s inability to undergo a productive diauxic shift

after the exhaustion of glucose (Fig. 7C). Note that the selective

advantage of the supplemental ubiquitin maintains the plasmid in

YPD medium.

Another protein identified in the SGA screen, Doa1, also has a

role in maintaining ubiquitin levels in the cell [35] and in addition

has been implicated in the vacuolar degradation of ribosomal

subunits, termed ‘ribophagy’ [36]. Nevertheless, polysome analysis

of the doa1D rpl1bD strain (T1/2 = 232616 min) was more like wild

type, showing little if any accumulation of Rpl1-deficient subunits,

as estimated from the Rpl1/Rpl5 ratio determined by Western

analysis (Fig. S2B). Thus, our data suggest that Doa1 and the

ribophagy process are not responsible for the degradation of Rpl1-

deficient subunits.

Although they had not been identified in the SGA screen, we

studied the E3 ubiquitin ligase complex member, Rtt101, and its

partner, Mms1, because they have been implicated in the

degradation of aberrant 60S ribosomal subunits [37]. However,

we found that deletion of neither gene had any effect on the

turnover of RNA as seen in Fig. S3 (compare to Fig. 6C). This

result suggests that there are multiple systems for eliminating

aberrant ribosomal subunits.

The inhibition of proteasome function elicits a stress
response

The observation that a number of genes in the ubiquitin-

proteasome complex were synthetic sick with rpl1bD led us to ask

whether lack of proteasome function itself sensitizes cells

haploinsufficient for Rpl1. To do so we employed the proteasome

inhibitor MG132, using cells with a deletion of PDR5 to prevent

Figure 5. Subunits made without Rpl1 can be incorporated into polysomes. Rpl1 (A) Rpl4 (B) and Rps6 (C) repressible strains were grown to
log phase in phosphate-depleted medium (see Methods) supplemented with 2% galactose, filtered, and transferred to phosphate-depleted medium
supplemented with either 2% galactose or 2% dextrose. After 60 min, 100 mCi/ml 32P was added to each culture. After a further 60 min, cells were
harvested and total lysate was analyzed as in Fig. 2, except that both lysing buffer and gradient buffer contained Mg2+ at 1.5 mM to separate
subunits not involved in translation (see Methods). Polysome profiles for the Rpl1 depletion strain in galactose or dextrose media are shown in (A),
half-mers are indicated by arrows. RNA from equal volumes of each fraction was analyzed on a denaturing gel, blotted, and subjected to
autoradiography (see Methods). rRNA corresponding to the subunit of the depleted RP for each strain is indicated by arrowheads flanking the blots
for strains grown in dextrose.
doi:10.1371/journal.pone.0023579.g005
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efflux of the drug [38]. The effects on growth were analyzed in the

Bioscreen by inoculating log phase cells at an OD600 of ,0.1 into

growth wells containing DMSO or with MG132 at different

concentrations. The resulting growth curves (Fig. 8) show clearly

that the effect of even the lowest concentration of MG132 on

growth of Drpl1b strain is far more drastic than on either the

wildtype or the Drpl4a or Drps6b strains. The doubling times are

shown in Table 1. The chemical-genetic interaction seen with

MG132 serves to corroborate the genetic interactions of rpl1bD
with the many members of the proteasome complex. It is

interesting that the presence of MG132 seems to have a

continuous effect during the ten hours of the growth curve in

spite of the suggestion that it may be degraded within a few hours

[39].

Is the susceptibility of the Drpl1b strain to MG132 due to a

failure to degrade aberrant cytoplasmic 60S subunits? A pulse-

chase with [C3H3]-methionine, similar to that in Fig. 6B, gave a

surprising result. Although the growth curves of Fig. 8 showed that

wildtype cells were resistant to MG132, while Drpl1b cells were

sensitive, pulse labeling showed just the opposite (Fig. 9A). After

30 minutes in MG132, both transcription and processing of rRNA

in the wildtype strain was severely inhibited, while they continued

at a substantial rate in the Drpl1b strain. Nevertheless, the

degradation of 25S rRNA seen in the Drpl1b strain was still

evident (Fig. 9B), proving that such degradation is not a function of

the proteasome, directly or indirectly.

The reason for the repression of rRNA transcription and

processing became clear when mRNA was analyzed. As with the

rRNA, in wildtype cells RP mRNAs decline rapidly through the

first 45 minutes of MG132 treatment, while in rpl1bD cells the RP

mRNAs are less affected (Fig. 9C). Over a longer time, the RP

mRNA levels recover (Fig. S4) as would be predicted from the

mild influence of MG132 on the growth of wt cells (Fig. 8A). By

contrast, the mRNA level for RPN4, encoding the transcription

factor active at many proteasomal genes, rapidly increases, with

concomitant increases in the mRNA levels of proteasomal genes

(RPT6 & PRE1) and a dramatic increase in a source for ubiquitin,

UBI4 (Fig. 9D). Thus, the extreme sensitivity of rpl1bD to MG132

is clearly not due to an inability to recover proteasome levels in the

presence of the drug. A particularly intriguing contrast is the rapid

decline in mRNA from RPS31 (also known as UBI3 since it

encodes a ubiquitin-Rps31 fusion protein [40]) vs. the strong

induction of UBI4, encoding four ubiquitins in tandem.

Thus, as has been reported for mammalian cells [41], MG132

initially represses ribosome synthesis. It seems likely that in S.

cerevisiae this repression of ribosome synthesis mimics the stress

response seen when the ER is insulted by drugs or mutation [42],

presumably due to a failure to deal with unfolded proteins in the

ER. We have shown that this stress response is partially ablated by

the haploinsufficiency of Rpl1 [43], and we suggest that the data of

Fig. 9 is another manifestation of that effect. Presumably the

failure to assemble ribosomes correctly provides a signal that

partially overrides the repression of ribosome synthesis due to ER

stress.

Discussion

Ribosomal protein L1 is unusual in a number of aspects. It

occupies a prominent site on the large ribosomal subunit, forming

a lateral protuberance associated with a single loop of the 25S

rRNA. During the course of a translation step it moves more than

any other RP, arcing between two quite distinct orientations in

connection with movement of uncharged tRNA from the P-site to

the E-site, and then again to facilitate the exit of tRNA from the E-

site [16–18]. While these functions appear to be conserved from

prokaryotes to mammals, Rpl1 is essential for growth of S. cerevisiae

[21] but not for E. coli [44], where its absence reduces the growth

Figure 6. A fraction of subunits lacking Rpl1 are targeted for
degradation. (A) Rapid pulse-chase. Cultures of the indicated
genotype were labeled with a three minute pulse of [C3H3]-methionine,
with a subsequent chase with unlabelled methionine, as described in
Methods, either in galactose-containing medium, or after 30 minutes in
dextrose-containing medium. Total RNA (5 mg per sample) was run on a
1.5% denaturing agarose gel, blotted, then subjected to autoradiogra-
phy. (B)Long pulse-chase – In this experiment cultures of the indicated
genotype were labeled for 15 min with [C3H3]-methionine, followed by
a cold chase. By 15 minutes most of the label is in mature 25S and 18S
species. RNA was analyzed as above. In addition, the identified 25S and
18S bands were cut from the membrane and their CPM of 3H
determined in a scintillation counter. The data is presented to show the
25S CPM/18SCPM ratio (6 SE; n = 4), highlighting the relative amounts
of rRNA species in RP mutants relative to wildtype. (C) The data from (B),
normalized to show decay from t = 0.
doi:10.1371/journal.pone.0023579.g006
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rate by only 50% [18]. It thus seems surprising that haploinsuffi-

ciency for Rpl1 should have such an effect on growth. We suggest

that this is may be due to the fact that Rpl1 is an unusual

eukaryotic RP in that 60S ribosomes lacking Rpl1 can be exported

from the nucleus to the cytoplasm (Fig. 3B) and can even be found

on polysomes (Fig. 6).

Although yeast cells cannot grow without Rpl1 that does not

necessarily imply that translation cannot occur on ribosomes

lacking Rpl1, albeit at a reduced rate. What is clear is that 60S

subunits lacking Rpl1 compete poorly for association with

initiating 43S complexes on mRNA (Fig. 6). The role of Rpl1 in

the translation process, namely the moving of an empty tRNA into

Figure 7. Effects of Dubp6 on strains lacking RPL1B. (A) Growth curves of the indicated strains in YPD. (B) Growth curves in minimal medium
without uracil of the indicated strains carrying either the 2 micron vector pRS426 (V) or the 2 micron plasmid pUB175 carrying ubiquitin (Ub). (C) As in
(B) in YPD medium.
doi:10.1371/journal.pone.0023579.g007
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and out of the E site, could impact translation in several ways. On

the one hand, lack of Rpl1 could simply slow up each step, since

the E. coli data suggest that Rpl1 is not essential for the process. On

the other hand, some models of translation postulate that filling of

the A site with a new aa-tRNA is coupled to the exit of tRNA from

the E site [29]. If so, then lack of Rpl1 could affect the accuracy of

selection of the A site aa-tRNA. Although we were unable to

demonstrate such miscoding directly, it may occur with enough

frequency that the ubiquitin-proteasome system is called upon to

degrade an unusual flux of denatured proteins. It is interesting that

although a number of mutant RP genes have been identified as a

cause of human disease, there are as yet no examples of human

SNPs that alter the translation of the human Rpl1, Rpl10a. It may

be that haploinsufficiency for this gene is lethal.

One reason for our selection of Rpl1 to study is that we had

previously found that a nonsense mutation in RPL1B suppressed

one element of the ER stress response, namely the repression of

ribosome synthesis, expressed through repression of both Pol I

transcription of rRNA genes and Pol II transcription of RP genes

[43]. It was therefore interesting to find that loss of RPL1B also

partially suppresses the temporary repression of ribosome synthesis

brought about by inhibition of the proteasome with MG132

(Fig. 9). It remains to be seen whether this is due simply to a

deficiency of 60S subunits, to the effects of mistranslation by

ribosomes lacking Rpl1, or to a shortage of ubiquitin.

One element of cell physiology that has become clearer from

our results is the yin-yang relationship of the ribosome synthesis

complex and the proteasome complex. Whereas nearly any stress

leads to rapid repression of ribosome synthesis [1], such stress leads

to induction of proteasome synthesis [45]. The most vibrant

example is the contrast between RPS31 (UBI3) and UBI4 (Fig. 9C).

During normal growth the production of ubiquitin derives from

three ubiquitin-RP fusion genes, RPL40A&B and RPS31. Thus, it

matches the production of ribosomes, and of translation. By

contrast, under stress ubiquitin can be produced in large amounts

even as ribosome synthesis is repressed.

The machinery that detects and destroys aberrant ribosomes

remains unknown. While there is some evidence that Rtt101 and

Mms1 play such a role for aberrant 60S subunits, our experiments

showed that neither of these had an effect on the turnover of 60S

subunits lacking Rpl1 (Figs. 6, S3). Nor, apparently, does the

proteasome (Fig. 9B). There clearly remain surveillance mecha-

nisms that have yet to be identified.

An interesting element that remains unexplained is the fact that

only the strain carrying the double deletion ubp6D rpl1bD appears

to be functionally petite, in that it does not undergo the diauxic

shift (Fig. 7B) and will not grow on plates whose only C source is

glycerol. While provision of extra ubiquitin suppresses the slow

growth phenotype of this double mutant, it does not suppress this

failure of oxidative growth. The role in mitochondrial biosynthesis

and function that is played by the cytoplasmic ribosome and

cytoplasmic translation is fruitful for further study.

Figure 8. Growth of rpl1bD is highly sensitive to proteasome
inhibition. Growth curves were recorded at 30uC for (A) pdr5D (wt), (B)
rpl1bD pdr5D, (C) rpl4aD pdr5D, and (D) rps6aD pdr5D. Note that all
strains used for MG132 experiments carry a deletion of PDR5 to prevent
drug efflux [38]. Strains were grown to log phase and inoculated to a
final OD600 of ,0.1 in YPD supplemented with 0.1% DMSO alone or
with MG132 at concentrations of 10, 25, or 50 mM. Triplicate wells were
loaded for each strain/drug treatment. Representative curves are
shown. See Table 1 for compiled doubling times from all biological
replicates.
doi:10.1371/journal.pone.0023579.g008
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Materials and Methods

Strains
Yeast strains used in this study are listed in Table S1. pUB175 is

a 2 micron, URA3 plasmid carrying ubiquitin driven by the CUP1

promoter.

Growth analysis
Growth at 30uC was measured using a Bioscreen CH

Microbiology Reader (Growth Curves USA), which recorded

OD600 readings from 100-well plates every 30 minutes for up to

72 hours. Strains were diluted in growth medium from single

colonies or log-phase cultures prior to inoculation, in triplicate, of

150 ml media per well in Bioscreen plates. To prevent clumping of

cells, we added Nonidet-P40 to minimal (dropout) media at a final

concentration of 0.2%. For MG132 sensitivity experiments, strains

were grown to log phase and inoculated into YPD +/2 drug at a

final OD600 of ,0.1. Doubling times were calculated based on the

time for each strain to grow from OD600 0.1 to 0.4.

Polysome analysis
Strains were grown to log phase (OD600 ,0.8–1.0). Cyclohex-

imide was added to a final concentration of 100 mg/ml and cells

were chilled immediately on ice prior to collection. Lysis was

carried out in LHB buffer (0.1 M NaCl, 0.03 M MgCl2, 0.01 M

Tris pH 7.4, 100 mg/ml cycloheximide, 200 mg/ml heparin) with

an equal volume of glass beads in a BeadBeater8, clarified by

centrifugation at 14,000 g for 15 min, and the supernatant layered

on 11 ml gradients. Sucrose density gradients were prepared with

the appropriate amount of sucrose [10–50% (w/v) or 5–20% (w/

v)] in TMN buffer (0.05 M Tris-Ac pH 7.0, 0.05 M NH4Cl,

0.012 M MgCl2). For low magnesium gradients, LHB and TMN

buffers were prepared using 1.5 mM MgCl2. Gradients were

centrifuged for 2.5–4 h at 40K rpm in a SW41 rotor, A260 was

read using an ISCO UA-5 absorbance detector, and 500 ml

fractions were collected into 1/10th volume of 20% SDS.

Purification of cytoplasm extract
Preparation of cytoplasm extract was carried out essentially as

described [46]. Cells were grown to log phase (OD600 ,1.0),

washed in water, and spheroplasts prepared by resuspending in 1/

10th volume 1 M sorbitol+1% Glusulase (PerkinElmer) and

incubating for 1 h at room temperature. Spheroplasts were diluted

into 10 volumes synthetic complete medium containing 0.4 M

MgSO4 as osmotic support. After 2 h of gentle swirling at 30uC,

the culture was treated with 100 mg/ml cycloheximide, chilled

over frozen 1 M sorbitol, collected (2 min, 10K rpm), and washed

with cold 1 M sorbitol. Spheroplasts were lysed at 4uC for 15 min

in 1/10th volume cell fractionation buffer (CFB, pH 6.5: 0.01 M

NaCl, 0.01 M PIPES, 0.005 M MgCl2, 0.001 M DTT, 0.01%

spermidine) and lysis completed (but leaving nuclear and

mitochondrial membranes intact) by adding 0.1% saponin (British

Drug Houses, Ltd.). Centrifugation at 12K rpm (,126 g) for

10 min at 4uC yielded the cytoplasmic fraction. Note that this

technique yields a very pure cytoplasmic fraction, but a nuclear

fraction that is heavily contaminated with residual cytoplasm and

semibroken cells.

Western blotting
Equal volumes of polysome gradient fractions were run on 4–

15% polyacrylamide gradient gels using a Tris-Glycine-SDS buffer

system and were electro-blotted onto nitrocellulose membrane.

Membranes were blocked in Odyssey Blocking Buffer (LI-COR

Biosciences) and probed overnight at 4uC with a-L1 (kind gift of

François Lacroute) and a-L5 (kind gift of John Woolford) rabbit

polyclonal antibodies at 1:5000. Probing with IRDye680 Goat

Anti-Rabbit secondary antibody (LI-COR Biosciences) was followed

by analysis using an Odyssey infrared imaging system.

RNA extraction, Northern blotting, and RT-qPCR
Total RNA extraction and Northern blotting was performed

essentially as described previously [47] from cell pellets resus-

Table 1. Doubling times for strains following MG132 treatment.

Strain MG132 conc. (mM) Mean doubling time (min) % increase from 0 mM

Y7092 0 97.862.4 0

10 109.062.5 11.5

25 114.863.8 17.4

50 118.564.9 21.2

rpl1bD 0 180.764.6 0

10 257.7614.4 42.6

25 272.767.5 50.9

50 293.2610.2 62.2

rpl4aD 0 109.762.7 0

10 125.262.4 14.1

25 131.062.2 19.4

50 136.262.3 24.1

rps6aD 0 118.064.8 0

10 136.966.3 16.0

25 142.767.2 20.9

50 148.869.6 26.1

Doubling times were calculated as in Materials and Methods, based on growth curves from the Bioscreen CTM reader as in Figure 8. Values shown are doubling times in
minutes 6 SE (n = 3).
doi:10.1371/journal.pone.0023579.t001
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pended in AE buffer (50 mM Na-Ac pH 5.3, 10 mM EDTA

pH 7.0) using glass bead lysis and AE-saturated phenol extraction.

For isolating RNA from sucrose gradient fractions, 10 mg glycogen

(Sigma), 1/10 volume of 3 M NaAc pH 5.5, and 2.5 volumes 95%

ethanol were added to each fraction and stored overnight at

220uC. The RNA was collected by centrifugation, washed once

with 70% ethanol, and resuspended in 15 ml water.

For RT-qPCR, 1 mg of total RNA treated with RQ1 DNase

(Promega) was used for reverse transcription using SuperScript III

(Invitrogen) and both oligo(dT)20 and random hexamer primers.

cDNAs were diluted 100-fold and qPCR was conducted using an

Applied Biosystems ABI Prism 7900HT Fast Real-Time PCR

system and ABsolute Blue QPCR SYBR Green ROX Mix (Thermo

Scientific). Analysis was carried out using the comparative DDCT

method. Primers used for qPCR are listed in Table S2.

Labelling with [C3H3]-methionine and with 32P
Strains were labeled with [C3H3]-methionine and with 32P as

described [48]. Briefly, log phase cells (OD600 ,0.8–1.0) in

methionine-free medium were labeled with 60 mCi/ml [C3H3]-

methionine for 3 or 15 min at 30uC, followed by a chase of 1 mg/

ml unlabeled methionine. Samples of 1.5–2 ml were poured over

ice at intervals post-chase, collected via centrifugation and the

pellet flash-frozen in liquid nitrogen. Total RNA was extracted

and 5 mg per sample run on a 1.5% denaturing agarose gel and

transferred to nylon membrane. Following UV crosslinking and

drying, membranes were dipped twice in EN3HANCE (Perkin-

Elmer), allowed to dry, and subjected to autoradiography (2–5

days at 280uC). In some cases, using the x-ray film as a guide, 25S

rRNA, 18S rRNA, and tRNA bands were cut from the membrane

and activity measured using a scintillation counter.

For incorporation of 32P, cultures were grown to log phase in

medium depleted of inorganic PO4. After 60 min in medium with

the appropriate C source, 100 mCi/ml 32PO4 was added. After

60 min more, cells were harvested and analyzed as described

above, lysed in low Mg2+ LHB and the clarified lysate was

analyzed as described above, except that the Mg2+ concentration

was 1.5 mM in both LHB and TMN buffers.

Supporting Information

Figure S1 Nuclear-free cytoplasmic extract. Extracts were

prepared as in Materials and Methods, and equal volumes

cytoplasmic (C) and nuclear (N) subcellular fractions were run

on the same blot and hybridized with antibodies to histone H2B

(nuclear marker) and Rpl3 (nuclear/cytoplasmic) to demonstrate

that cytoplasmic fractions are nuclear-free. Different channels

were used to detect the IR Dye secondary antibodies for H2B (700

channel) and Rpl3 (800 channel) on the same blot using Li-Cor.

(TIF)

Figure S2 Polysome profiles and western blots for SGA
interactors. Polysome profiles of (A) ubp6D and ubp6D rpl1bD
and (B) doa1D and doa1D rpl1bD; 8.4 (ubp6D rpl1bD) or 11 (all other

strains) A260 units of whole cell lysate was layered onto 7–47%

sucrose gradients and centrifuged for 2.5 h at 40K rpm. Top of the

gradient is at left. Western blots of equal volumes of each gradient

fraction, probed with a-Rpl1 and a-Rpl5 is shown below the

polysome profiles for double KO strains.

(TIF)

Figure 9. MG132 severely disrupts, and Drpl1b partly restores
ribosome synthesis. (A) A 15 minute pulse-chase with [C3H3]-
methionine as in Fig. 6B. As in Fig. 8, these strains carry a deletion of
PDR5. (B) Quantitative data from (A) where the CPM for the rRNA
species is normalized to tRNA on the same gel. (C) qPCR determination
of mRNA levels of RP genes and TDH3 after MG132 treatment. CT values
were first normalized to ACT1. The values shown represent the fold

change of mRNA level in MG132-treated cells relative to those treated
with the DMSO solvent. (D) As in (C) for non-RP genes. Note the
difference in scale.
doi:10.1371/journal.pone.0023579.g009

Eukaryotic Ribosomes Lacking Rpl1

PLoS ONE | www.plosone.org 12 August 2011 | Volume 6 | Issue 8 | e23579



Figure S3 Mms1 and Rtt101 are not involved in
degradation of subunits in rpl1bD. Strains were grown to

log phase and subjected to a 15 min [C3H3]-methionine pulse

followed by a cold met chase. 5 mg total RNA from each sample

was blotted and subjected to autoradiography, and bands

corresponding to 27S+25S and 20S+18S rRNA were cut out

and counted directly using a scintillation counter as in Fig. 6.

Graph shows 25S/18S ratio 6 SD (n = 2).

(TIF)

Figure S4 Repression and recovery of RP mRNAs
following MG132 treatment. (A) qPCR determination of

mRNA levels of RP genes following up to 180 minutes of

incubation with MG132. CT values were first normalized to

ACT1. The values shown represent the fold change of mRNA level

in MG132-treated cells relative to those treated with the DMSO

solvent. (B) As in (A) for non-RP genes. Note the difference in

scale.

(TIF)
Table S1 Strains used in this study.

(DOC)

Table S2 Primers used in qPCR.

(DOC)

Table S3 Total RNA content of RP and proteasome mutants

compared to wildtype. Micrograms of total RNA per OD600 unit

of cells were determined following RNA extraction for an equal

volume of cells for each strain. Values shown are normalized to

wildtype.

(DOC)

Table S4 rRNA species in RP and proteasome mutants

compared to wildtype. Relative amounts of different rRNA

species were determined by Northern blot quantitation using

Phosphorimager software.

(DOC)
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