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There are three standard methods for generating two channels of partially correlated noise: the two-

generator method, the three-generator method, and the symmetric-generator method. These methods

allow an experimenter to specify a target cross correlation between the two channels, but actual gen-

erated noises show statistical variability around the target value. Numerical experiments were done to

compare the variability for those methods as a function of the number of degrees of freedom. The

results of the experiments quantify the stimulus uncertainty in diverse binaural psychoacoustical

experiments: incoherence detection, perceived auditory source width, envelopment, noise localiza-

tion/lateralization, and the masking level difference. The numerical experiments found that when the

elemental generators have unequal powers, the different methods all have similar variability. When

the powers are constrained to be equal, the symmetric-generator method has much smaller variability

than the other two. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3596475]

PACS number(s): 43.66.Pn, 43.60.Cg, 43.64.Yp [MAA] Pages: 292–301

I. INTRODUCTION

The study of binaural hearing frequently requires noise

stimuli with a controllable amount of interaural correlation. Two

channels of partially correlated noise can be presented directly

to the two ears as in the early binaural incoherence studies by

Pollack and Trittipoe (1959a,b) or the masking level difference

studies by Jeffress et al. (1962) and Robinson and Jeffress

(1963). Alternatively, two channels of partially correlated noise

may be reproduced by loudspeakers in a simple or complicated

environment (e.g., Schneider et al., 1988; Blauert, 1996).

In 1948, Licklider and Dzendolet described two ways of

making two channels of noise with a tunable value of cross

correlation. These were the asymmetric two-generator

method and the asymmetric three-generator method. Experi-

mentally, the methods were implemented with analog noise

generators, but the mathematical foundations of the methods

are still used today when noises are created by digital means.

Both methods can be used to make noise with a targeted

value of cross correlation from �1.0 to þ1.0, and both meth-

ods have been used repeatedly in hearing research as will

become apparent below. A third method, the symmetric gen-

erator, was introduced by Plenge (1972).

The noises that are generated by these methods have val-

ues of cross correlation that approximately agree with the tar-

geted value on the average. Therefore over an ensemble of a

very large number of noises—all stochastically identical and

generated with the same targeted value of cross correlation—

the ensemble average value of the cross correlation will be

close to the targeted value. However, any particular noise will

show a deviation from the targeted value. The purpose of this

report is to study the statistical properties of such deviations.

The value of the study is that by knowing the uncertainty in

cross correlation, one can more effectively evaluate the histor-

ical literature that uses partially correlated noise.

A second value is that one can detect potential biases

for the different generators wherein the actual cross correla-

tion differs systematically from targeted values. A third

value is that one can decide whether some noise generators

are better than others in the sense that they produce noise

pairs with cross correlation that more often resembles the

target value.

II. DEFINITIONS

There are several definitions of cross correlation (often

shortened to “correlation” in this article) in common use.

They all describe comparisons between time-dependent

signals, yL(t) in a left channel and yR(t) in a right channel. It

will be assumed that the time-averaged value of each signal

is zero, i.e., the signals have no dc component.

The finite-lag cross correlation function is an answer to

the question, “How similar is one of the signals to the other

signal given that one of the signals has been delayed by a

certain time (the lag).” It is defined as q(s),

qðsÞ ¼ yLðsÞyRffiffiffiffiffiffiffiffiffiffiffi
PLPR

p : (1)

The overbar notation in the preceding text refers to an inte-

gral of the signals over a duration, TD, evaluated at a lag of

s, for example,

yLðsÞyR ¼
1

TD

ðTD

0

dt yLðtþ sÞyRðtÞ: (2)

Power PL is the time-average power in the left channel, and

it has an overbar representation independent of s,

PL ¼ yLyL ¼
1

TD

ðTD

0

dt y2
LðtÞ: (3)

An equivalent formula gives the time-average power in the

right channel, PR ¼ yRyR.
a)Author to whom correspondence should be addressed. Electronic mail:
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The zero-lag cross correlation function is an answer to

the question, “How similar is one signal to a second signal?”

It is the s¼ 0 limit of q(s). Often, treatments of correlation

are entirely limited to the zero-lag function, as in the article

by Licklider and Dzendolet (1948).

Also, there are perceptual models of the masking level dif-

ference that are based on q(0), as reviewed by Bernstein and

Trahiotis (1996). Calculations for the zero-lag function are more

straightforward than calculations for the finite-lag function.

III. THREE GENERATORS

All the noise generators discussed in this article operate

by adding together the outputs of independent, elemental

generators. We consider them in turn.

A. Asymmetric two-generator method

The asymmetric two-generator method from Licklider

and Dzendolet, depicted in Fig. 1(a), was used by Gabriel and

Colburn (1981) in their study of the minimum detectable

decorrelation from perfect binaural correlation. The mothod

was recently used by Hall et al. (2006) with cross-correlation

very close to 1.0. The method was applied in loudspeaker

experiments by Schneider et al. (1988) and in physiological

studies of the ascending binaural system by Coffey et al.
(2006). The asymmetric two-generator method adds two inde-

pendent, statistically identical noises from separate elemental

generators. The two noises are here called x1(t) and x2(t), and

they have time-averaged powers P1 and P2, respectively.

These noises have the same spectral envelope and the same

duration. They have the same expected time-average power

(i.e., they have the same expected energy). This feature will

be called the “weak equal-power assumption” because it

applies only statistically and not to every noise pair.

The signal sent to the left channel, namely, yL(t), is sim-

ply the noise directly from one of the generators,

yLðtÞ ¼ x1ðtÞ: (4)

The signal sent to the right channel is the weighted sum

from the two elemental generators,

yRðtÞ ¼ ax1ðtÞ þ bx2ðtÞ; (5)

where the expected value of the power in the right channel is

caused to be the same as the power in the left channel by

insisting that the weighting factors obey the rule a2þb2¼ 1.

Therefore b is set equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

:
The normalizing denominator for the correlation func-

tion,
ffiffiffiffiffiffiffiffiffiffiffi
PLPR

p
is obtained by squaring Eq. (4) (PL¼P1) and

Eq. (5) (PR) so that the finite-lag correlation function is

qðsÞ ¼ a x1ðsÞx1 þ b x1ðsÞx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 a2P1ð þ b2P2 þ 2ab x1x2Þ

q ; (6)

and for the zero-lag correlation,

qð0Þ ¼ aþ b x1x2=P1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2P2=P1 þ 2ab x1x2=P1

q : (7)

Because noises x1 and x2 are independent, the expected

value of x1x2 is zero. Also the expected values of P2 and P1

are the same. Then from Eq. (7), one expects q(0)¼ a. Thus

an experimenter can adjust the summing weights a and

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

to target a particular value of correlation.

B. Asymmetric three-generator method

The asymmetric three-generator method from Licklider

and Dzendolet is depicted in Fig. 1(b). The elemental noise

generators 1 and 2 and the common noise generator, c, are all

independent and all have the same ensemble average time-av-

erage power. The three-generator method was used in inco-

herence detection studies by Pollack and Trittipoe (1959a,b).1

It was used in lateralization centering studies by Jeffress,

Blodgett, and Deatherage (1962), and in masking studies by

Robinson and Jeffress (1963). Blauert and Lindemann (1986)

used this method in their study of auditory spaciousness.

Albeck and Konishi (1995) used it to study interaural time

difference sensitivity in barn owl, and Akeroyd and Summer-

field (1999) used it in their binaural gap experiment.

The left and right channel signals are given by

yLðtÞ ¼ a1xcðtÞ þ b1x1ðtÞ; (8)

FIG. 1. Block diagrams of generators with symbols from text equations.

Signals move from left to right. (a) The asymmetric two-generator method.

(b) The asymmetric three-generator method. (c) The symmetric (two) gener-

ator method.
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and

yRðtÞ ¼ a2xcðtÞ þ b2x2ðtÞ: (9)

To target a particular correlation, the experimenter is

free to choose two parameters, a1 and a2. The values of

b1 and b2 are constrained by the rules, a2
1 þ b2

2 ¼ 1 and

a2
2 þ b2

2 ¼ 1. Our research on the three-generator method

was confined to the homogeneous case, a1¼ a2, as con-

sidered by Licklider and Dzendolet. Then there is only

one parameter, called a, and b2 is equal to 1� a2. The

expression for the finite-lag correlation is straightforward

but long. The expression for the zero-lag correlation is a

little shorter,

qð0Þ ¼ a2 þ b2 x1x2=Pc þ ab x1xc=Pc þ ab x2xc=Pcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2P1=Pc þ 2ab x1xc=Pc

� �
a2 þ b2P2=Pc þ 2ab x2xc=Pc

� �q : (10)

Then because the expected values are xcx1 ¼ xcx2

¼ x1x2 ¼ 0, and all the powers are expected to be the same,

the expected value of correlation is a2.

C. Symmetric-generator method

The symmetric two-generator method introduced by

Plenge (1972) is shown in Fig. 1(c). It was also used by van

der Heijden and Trahiotis (1998) and by Bernstein and Tra-

hiotis (2008), inspired by a decomposition of the general

noise in a theory article by van der Heijden and Trahiotis

(1997). The corresponding equations are

yLðtÞ ¼ ax1ðtÞ þ bx2ðtÞ; (11)

and

yRðtÞ ¼ ax1ðtÞ � bx2ðtÞ: (12)

This method uses only two generators, but it has some

advantages over the asymmetrical generator methods of

Figs. 1(a) and 1(b). Using analog noise sources and (6)-

unity-gain mixers, one can keep a constant and vary the cor-

relation by changing b without changing the expected inter-

channel level difference, though the overall level will

change. However, the following calculations will assume

that a2þ b2¼ 1, as usual. The zero-lag correlation is then

qð0Þ ¼ a2 � b2 P2=P1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 P2=P1ð Þ
� �2� 2ab x1x2=P1½ �2

q ; (13)

and its expected value is a2�b2, or 2a2� 1.

D. Expected values

The expected values noted above for the correlations,

q(0), for the three generators depend on two facts. First, one

expects that all the overlap integrals (e.g., x1x2) are zero.

Second, according to the weak equal-power assumption, all

the elemental generators are expected to have the same

power (e.g., P1¼P2¼Pc). Actually insisting that all the

generators have equal power will be called the “strong

equal-power assumption,” treated in Sec. V.

If the signals are generated digitally, it is possible to

orthogonalize all the overlap integrals using the Gram–

Schmidt method to ensure that they are exactly zero for ev-

ery individual noise (e.g. Culling et al., 2001; Shackleton

et al., 2005; Goupell and Hartmann, 2006). Then given the

strong equal-power assumption, the correlation of every

two-channel noise will be exactly given by its expected

value. However, if the outputs of the elemental noise genera-

tors are not deliberately orthogonalized, or the powers from

those generators are not identical (and these both occur

whenever analog noise generators are used), the values of

correlation for individual noise pairs will deviate from the

expected values. The statistical nature of the deviations, spe-

cifically the standard deviation, is the topic of this report.

IV. NUMERICAL EXPERIMENTS

Numerical experiments for all three generators were

conducted using only the weak equal-power assumption.

Experiments studied only the zero-lag correlation q(0)

because it is the simplest. The experiments used noise pairs

of the Fourier series form,

x1ðtÞ ¼
XN

n¼1

An cos 2p fntþ /nð Þ; (14)

and

x2ðtÞ ¼
XN

n¼1

Bn cos 2p fntþ wnð Þ; (15)

when there are two elemental generators, supplemented with

xcðtÞ ¼
XN

n¼1

Cn cos 2p fntþ vnð Þ; (16)

for the three-generator method.

Here all the spectral component frequencies, fn, are har-

monics of fo, and fo is the inverse of the duration, fo¼ 1/TD.

These harmonics do not need to be consecutive, nor do they

need to start with the first. For instance, they might be har-

monics numbered 500, 501, 502,… of a fundamental fo¼ 1 Hz.
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The components have amplitudes such as An and phases

such as /n. The number of spectral components in the noise,

N, is an important variable because the number of degrees of

freedom is 2N. This number depends jointly on the band-

width, W, and the duration, TD; i.e., N¼W/fo¼W TD.

Over a rectangular integration window with duration

TD¼ 1/fo, the cosine terms of different frequencies are or-

thogonal, and the correlation integrals can be done analyti-

cally and exactly (e.g.):

x1ðsÞx1 ¼
1

2

XN

n¼1

A2
n cos 2p fnsð Þ; (17)

x1ðsÞx2 ¼
1

2

XN

n¼1

AnBn cos 2p fnsþ /n � wnð Þ: (18)

These analytic results considerably simplify the calcula-

tions of correlation. They also show that in the zero-lag

limit, s¼ 0, the correlation is independent of stimulus

frequencies, although it depends on bandwidth. The

effects of violating the 1/TD relationship between the du-

ration and the frequency spacing are discussed in the

Caveats section.

In the numerical experiments, the phases were inde-

pendently chosen and uniformly distributed from 0 to 360�.
The amplitudes were independently chosen and Rayleigh

distributed consistent with the weak equal-power assump-

tion, namely, that only the ensemble-average powers of the

generators are the same. These are the correct distributions

to represent white, Gaussian noise from independent, sto-

chastically similar generators.

The numerical experiments targeted different values of

correlation. The targeted values were the expected values, as

defined for each generator in the sections in the preceding

text.

The results of the experiments are very simple to

describe. All generators led to the same standard deviations

(SD), as shown in Fig. 2, for number of components N equal

to 5, 10, 20, and 40. Each point in Fig. 2 was actually plotted

12 times. For each value of N, each generator was run four

times with different random starts. Then, as noted, all three

generators produced the same standard deviations. The 12

symbols overlap almost entirely.

The variability in correlation, measured by the standard

deviation, is greatest when the target correlation a is zero. It

can be shown that in this limit the SD is given by 1=
ffiffiffiffiffiffi
2N
p

.

The variability decreases monotonically as a increases until

there is no variability at all when a¼ 1 and the left and right

channels are the same.

The SDs for N¼ 40 exhibit the large-N limit. Those SDs

are almost exactly a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
40=20

p
less than the SDs for

N¼ 20. The large-N limit is incorporated into a one-parame-

ter fit to the standard deviations from the numerical

experiments,

SD ¼ 1� a2:2
� � ffiffiffiffiffiffi

1

2N

r
; (19)

shown by the solid lines in Fig. 2. We expect the formula to

hold good for all generators when N is 10 or greater. There is

no theoretical basis for the functional dependence on a,

including the single parameter, 2.2, nor do we understand in

any fundamental way why all three generators lead to the

same standard deviation plots.

Figure 2, and the fitting formula, allow the reader to

find the variability in correlation whenever analog gener-

ators are used. Knowing the variability in the stimulus

correlation allows an experimenter to estimate how much

of the variability observed in psychoacoustical or physio-

logical experiments can be attributed to the stimulus

itself.

V. STRONG EQUAL-POWER ASSUMPTION

The standard deviations computed for Fig. 2 arise from

two causes: finite overlaps between non-orthogonal elemen-

tal noises such as x1x2, and unequal elemental-generator

powers. The latter cause reflects the weak equal-power

assumption in which only the ensemble-average powers are

the same. Studying the generator mathematics, we discov-

ered interesting and useful simplifications that arise if one

assumes that all the elemental generators have identical

power. That assumption is the strong equal-power assump-
tion. It says that for every noise pair generated, the two (or

three) elemental noise generators have the same power, e.g.,

P1¼P2. Beyond the mathematical simplification, the strong

equal-power assumption is also required when making

noises using Gram–Schmidt orthogonalization. The remain-

der of this article investigates the results of making that

assumption. The treatment begins with the zero-lag correla-

tion q(0) because of its simplicity.

FIG. 2. The standard deviation, SD, of the correlation from numerical mod-

els for all three generators as a function of the target correlation. Parameter

N is the number of spectral components in the noise, equal to the product of

the bandwidth and the duration. Symbols show the mean SD for 100000 tri-

als using Rayleigh-distributed amplitudes with the weak equal-power

assumption. Each symbol is actually plotted four times because the numeri-

cal experiments were performed four times with different random starts.

However, the individual symbols cannot be distinguished because they over-

lap. The solid lines show the fit to the formula in Eq. (19).
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A. Two-generator method

If P1¼P2 then Eq. (7), becomes

qð0Þ ¼ aþ b x1x2=P1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ab x1x2=P1

p ; (20)

and the overlap, x1x2, can be computed from Eq. (18) with

s¼ 0,

x1x2 ¼
1

2

XN

n¼1

AnBn cos /n � wnð Þ: (21)

Numerical experiments were done to compute the standard

deviation of the correlation. Correlation q(0) was computed

100 000 times from Eqs. (20) and (21), using uniformly dis-

tributed phases and Rayleigh-distributed amplitudes, to find

an average correlation and a mean squared deviation (sample

variance) from the average correlation. The square root of

the mean squared deviation is the standard deviation of q(0).

The amplitudes were scaled to be consistent with the strong

equal-power assumption. Values of the standard deviation

can be read from the symbols in Fig. 3 for each of 4 values

of N and 11 values of the target correlation, a. Because the

standard deviations (SD) decrease as the square root of 1/N,
Fig. 3 plots

ffiffiffiffiffi
N�
p

SD.2 The vertically hatched region shows

the data from Fig. 2 replotted in this way. A comparison

with the symbols shows that the standard deviation is always

reduced by making the strong equal-power assumption.

The numerical experiments found that the standard devi-

ations were insensitive to the distribution of the amplitudes.

When the Rayleigh-distributed amplitudes were replaced by

equal amplitudes (An¼Bn¼ 1), the standard deviations of

the correlations changed negligibly, as shown by comparing

the symbols and the cross-hatched region in Fig. 3.

Because of this amplitude insensitivity, it is possible to

replace x1 and x2 by functions in which all the amplitudes

are 1.0 to obtain an expression entirely in terms of the

phases. With that replacement,

x1x2=P1 ¼
1

N

XN

n¼1

cos /n � wnð Þ: (22)

In words, the power-normalized overlap between independ-

ent noises is the average, computed over the N spectral com-

ponents, of the cosine of the difference between two random

phases.

For large N, this statistic is normally distributed with

zero mean and with a variance given by r2¼ 1/(2N). Know-

ing this fact makes it possible to compute statistical proper-

ties of the distribution of q(0) from moments.3 Letting Q
represent the power-normalized overlap, the kth moment is

given by

lk ¼
ð1
�1

dQ P Qð Þ aþ bQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2abQ
p
� �k

; (23)

where the normalized distribution of the cosine of the angle

difference is

P Qð Þ ¼
ffiffiffiffi
N

p

r
exp � NQ2

� �� �
: (24)

For example, the variance of q(0) is l2� l2
1. The square root

of the variance calculated from Eq. (23) with density P(Q)

from Eq. (24) is an excellent large-N limit for the computed

standard deviation. It is shown by the heavy dashed line in

Fig. 3. When N� 10, the discrepancy between symbols and

the dashed line is less than 0.02 for any value of target corre-

lation a. When N¼ 40, there is no observable discrepancy;

the symbols fall right on the dashed line. The limit at a¼ 0

is rigorously 1=
ffiffiffi
2
p

.

The heavy dashed line from Eqs. (23) and (24) can be

used to compute expected standard deviations to two signifi-

cant figures. For instance, for a noise targeting a correlation

of 0.4, the dashed line gives
ffiffiffiffiffi
N�
p

SD¼ 0.54. Therefore if the

noise is made with 1000 components, the expected standard

deviation is 0:54=
ffiffiffiffiffiffiffiffiffiffi
1000
p

¼ 0:017.

The analytic simplifications for the asymmetric two-gen-

erator model were possible because the correlation involved

only a single stochastic function, x1x2/P1. Therefore statistical

properties of the correlation could be determined from a sin-

gle integral over the density of this function.

FIG. 3. The standard deviation, SD, from the asymmetric two-generator

method, plotted as
ffiffiffiffiffi
N�
p

SD. Parameter N is the number of spectral compo-

nents in the noise. Symbols show the results for 100 000 trials using Ray-

leigh-distributed amplitudes with the strong equal-power assumption. The

symbols for N¼ 20 and N¼ 40 overlap; N¼ 20 is asymptotically large; no

change would be expected for N> 40. Each symbol is actually plotted four

times because the numerical experiments were performed four times with

different random starts, but the individual symbols cannot be distinguished.

The cross-hatched region shows the result of setting all the amplitudes equal

to 1.0. It is bounded by the standard deviations for N¼ 5 on the top and

N¼ 40 on the bottom. The heavy dashed line shows the large-N prediction

from the model based on the normal distribution, Eqs. (23) and (24). For

a¼ 0, its limit is 1/
ffiffiffi
2
p

. The vertically hatched region shows the results for

the weak equal-power case, replotted from Fig. 2. The vertical extent of the

region again indicates the range for N¼ 5 to N¼ 40. The vertically hatched

region is characteristic of all the generators discussed in this article.
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B. Three-generator method

With the strong equal-power assumption, i.e.,

Pc¼P1¼P2 for every noise in the ensemble, the correlation

for the three-generator model becomes

qð0Þ ¼ a2 þ ab xcx1=Pc þ xcx2=Pcð Þ þ b2 x1x2=Pcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ab xcx1=Pcð Þ 1þ 2ab xcx2=Pcð Þ

p : (25)

It is evident that the correlation for the three-generator

method involves three stochastic functions, and they are not

independent. Consequently analytic simplifications such as

those used for the two-generator method are not available

for the three-generator.

We performed a numerical experiment, computing q(0)

for 100 000 trials using the same procedures as for the two-

generator method. The values of q(0) computed as a function

of target a2 for different values of N (N as small as 5) had a

mean value that closely tracked the target when the target

correlation was greater than 0.4. For smaller target correla-

tions, the computed correlation was smaller than the target

by a few percent.

The standard deviation can be read from the symbols in

Fig. 4 for four values of N, N¼ 5, 10, 20, 40. Again the plot

shows
ffiffiffiffiffi
N�
p

SD. The figure shows that the standard devia-

tions are close to those from the two-generator method

shown in Fig. 3. The cross-hatched region in Fig. 4 repeats

the two-generator standard-deviation data shown by symbols

in Fig. 3. That region is bounded by the data for N¼ 5 on the

top and N¼ 40 on the bottom. Only for 0.3� a� 0.6 is there

a difference between the standard deviations for the two

methods that is greater than 0.02; the three-generator method

gives a slightly smaller standard deviation. It is not surpris-

ing that the two methods give similar results. In the limit of

totally uncorrelated noise (Nu), where a¼ 0, recently used

by Edmonds and Culling (2009) and by Huang et al. (2009),

the methods become identical, as can be seen from Eqs. (4)

and (5) compared to Eqs. (8) and (9).

The three-generator experiments were run a second

time with the amplitudes all replaced by 1.0. The standard

deviations did not change from those shown in Fig. 4. Once

again, the standard deviations could be accurately com-

puted from only the phases for the strong equal-power case,

Pc¼P1¼P2.

The vertically hatched region in Fig. 4 replots the data

from Fig. 2, computed with only the weak equal-power

assumption. Because the three-generator variance is slightly

smaller than the two-generator variance, when the strong

equal-power assumption is made, that assumption makes a

slightly larger difference for the three-generator method than

for the two-generator method.

C. Symmetric-generator method

Figures 3 and 4 for the asymmetrical generators show

that the strong equal-power assumption led to rather minor

effects on the final standard deviations. For the symmetric

generator, however, the strong equal-power assumption

leads to qualitatively different results as will be seen

below.

From squaring Eqs. (11) and (12), the power in the left

channel is 1þ �ð ÞP1, and the power in the right channel is

1� �ð ÞP1, where � is the error that occurs because x1 from

generator N1 and x2 from generator N2 are not orthogonal,

� ¼ 2ab x1x2=P1; (26)

and x1x2 is given by Eq. (21).

The correlation for zero lag can be computed by substi-

tuting Eqs. (11) and (12) into Eq. (1),

qð0Þ ¼ 2a2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p : (27)

The important difference between the symmetric generator

and the asymmetrical generators is that the error � cancels in

computing the numerator of Eq. (27) for the symmetric gen-

erator. Also, as for the asymmetric two-generator, the corre-

lation involves only a single stochastic function, �, and our

analytic approach in terms of an integral over a density

would again be legitimate.

As for the other generator methods, one can calculate an

expected value of q(0) assuming that the overlap x1x2 is

zero, i.e., �¼ 0. That expected value can be taken as a initial

target value, defined as tg¼ 2a2� 1. An improved target

value will emerge below. Then because 2ab ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2g

q
; Eq.

(27) can be written in terms of the initial target value. The

correlation for zero lag is

FIG. 4. Standard deviation for the three-generator method with the strong

equal-power assumption plotted as
ffiffiffiffiffi
N�
p

SD. The cross-hatched region

shows the results for the two-generator method from Fig. 3 for comparison.

The top of the cross-hatched region corresponds to N¼ 5, and the bottom of

the region corresponds to N¼ 40. Both the target-correlation and a-parame-

ter axes apply to the three-generator data. Only the target-correlation axis

applies to the two-generator data. The vertically hatched region shows the

results for the weak equal-power case, replotted from Fig. 2. The vertical

extent of the region again indicates the range for N¼ 5 to N¼ 40.
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qð0Þ ¼ tgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� t2g

	 

x1x2=P1ð Þ2

r : (28)

The initial target correlation can be any value� 1� tg� 1,

but the sign of tg is a trivial factor in Eq. (28), and it is

enough to consider only positive values.

The variance is smaller for the symmetric generator

than for the asymmetric generator because an expansion of

Eq. (28) is quadratic in the small quantity x1x2/P1, but an

equivalent expansion for the asymmetric generator described

by Eq. (20) is linear. Computer experiments were done to

calculate moments of q(0). The experiments showed that the

standard deviation of q(0) is dramatically smaller than for

the asymmetrical generators given the strong equal-power

assumption.

Because x1x2 appears as the square in Eq. (28), the

standard deviation of q(0) decreases as 1/N for the symmet-

ric generator. Therefore the standard deviation over 100 000

trials shown in Fig. 5 is plotted as N � SD. By contrast, the

standard deviation decreased only as 1=
ffiffiffiffi
N
p

for the asymmet-

rical generators and for generators without the strong equal-

power assumption. As shown in Fig. 5, the SD vanishes for

both limits of targeted correlation.

Equation (28) shows that in the symmetric generator

method, the computed value of q(0) is guaranteed to be

greater than the initial target value. No such guaranteed bias

occurs for the asymmetrical generators. Because q(0) com-

puted for the symmetric generator is greater than tg, it is pos-

sible to correct the value of tg to target a desired correlation

more successfully. Analytically, we know that the function

x1x2/P1 is normally distributed with variance 1/(2N), so that

1/(2N) is the expected value of the square of this function, as

it appears in Eq. (28). Therefore the experimenter will be

able to target a desired correlation, qo, more successfully by

adjusting tg so that it satisfies the equation

qo ¼
tgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1� t2g

	 

= 2Nð Þ

r ; (29)

i.e.,

tg ¼ qo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N � 1

2N � q2
o

s
: (30)

In practical terms, that means choosing a such that

a2 ¼ 1

2
1þ qo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N � 1

2N � q2
o

s" #
; (31)

where qo is the desired correlation, and b2¼ 1� a2 as usual.

VI. FINITE-LAG CROSS-CORRELATION

The finite-lag correlation function q(s) is more general

than the zero-lag function. It is of particular value in models

of sound localization where the peak of the correlation

occurs at a value of lag s that represents the interaural time

difference (ITD). [See, for example, Rakerd and Hartmann

(2010).]

The maximum value of q(s) over all allowed values of s
is defined as the coherence, c. Typically, s is allowed to range

from �1 to 1 ms (Hartmann, Rakerd, and Koller, 2005)

because this range approximately corresponds to the range of

interaural delays that a listener experiences in free field. That

range is a standard in architectural acoustics (Beranek, 2004).

Wider ranges, including very wide ranges, e.g., �9 to 9 ms,

have been explored psychophysically (Blodgett et al., 1958;

Langford and Jeffress, 1964; Mossop and Culling, 1998). The

practical value of the coherence measure is that if the coher-

ence is high, a listener receives strong ITD localization cues

even if the zero-lag correlation is small.

Because of the 61 ms range, calculations of the finite-

lag correlation are necessarily somewhat specific. They

depend on details of the noise. In the calculations that

follow, noise bands were centered on 500 Hz, the duration of

the noise was 1 s, and the spacing of the N frequency compo-

nents was 1 Hz. In principle, calculations are also sensitive

to computational resolution. In the calculations below, the

time increments were 10 ls, and the coherence was taken to

be the largest value found on 10-ls intervals of s without

further optimization.

A. Asymmetric two-generator method

With the strong equal-power assumption, the finite-lag

correlation function in Eq. (6), becomes

qðsÞ ¼ a x1ðsÞx1=P1 þ b x1ðsÞx2=P1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ab x1x2=P1

p : (32)

FIG. 5. Symbols show the standard deviations, SD, computed for the sym-

metric generator, plotted as N � SD, as a function of the initial target value

tg. Each symbol actually appears four times, representing four different ran-

dom starts of the numerical experiment. The very small values of SD are a

result of the strong equal-power assumption.
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1. Expectations

Because noises x1 and x2 are independent, the expected

value of x1ðsÞx2 is zero for any s. Then from Eq. (32), q(s) is

given by the autocorrelation function, q(s)¼ a x1ðsÞx1/P1.

The coherence is the maximum of q(s), but the maximum

value of x1ðsÞx1 occurs for s¼ 0, i.e., it is x1x1. Then because

x1x1¼P1, the expected coherence is c¼ a, the same answer

as for the zero-lag function. However, if x1ðsÞx2 is not zero,

the actual coherence will be greater than a, especially if a is

close to zero because there are many opportunities to maxi-

mize over the range of s.

2. Experiments

Numerical experiments for q(s) were done by substitut-

ing Eqs. (14) and (15) with random amplitudes and phases

into Eq. (32). The target coherence values were limited to

0� a< 1. Calculations for a< 0 would make little sense in

our context where the coherence is defined as a maximum

value. In the experiments, a coherence was computed for

each two-channel noise in a large ensemble, and the squared

deviation about the average value of coherence was used to

find the standard deviation. The experiments showed that the

results were insensitive to the distribution of the amplitudes.

When the Rayleigh-distributed amplitudes were replaced by

equal amplitudes (An¼Bn¼ 1), the means and standard

deviations of the computed coherences changed somewhat,

but the change was no bigger than the change caused by

using different sets of random phases and Rayleigh-distrib-

uted amplitudes.

Because the coherence computed from the noise pairs is

a maximum value, it is inevitable that the computed coher-

ence will be greater than the target coherence—much greater

when the target coherence is near zero. The larger the num-

ber of components and the larger the value of a, the smaller

is the discrepancy between the target coherence and the en-

semble mean of the computed coherence, c, averaged over

many noise pairs. When N� 21 and a� 0.6, the discrepancy

is about 1% or less. The standard deviation of the distribu-

tion of c is not a monotonic function of a. It is maximum for

a in the range 0.2 to 0.4. The standard deviation for a greater

than or equal to 0.6 can be computed using the zero-lag

limit, as noted in Sec. VI A 4 below.

3. Target correlation of zero

The coherence from numerical experiments on the fi-

nite-lag correlation in the important case of a¼ 0 (com-

pletely independent left and right noises) is plotted in Fig. 6.

The figure shows that the ensemble-average coherence is

well approximated by the formula hci¼ 0.92/
ffiffiffiffi
N
p

over the

range 5�N� 161. This formula is likely to continue to hold

good for N> 161, and it is likely to fail for N< 5. For N¼ 5,

the ensemble average coherence is about 0.4, as indicated by

the formula, but for individual noise pairs the coherence can

be larger than 0.9. Such large values of coherence from

waveforms that are constructed to be entirely incoherent

arise as a consequence of the maximizing computation,

required by the definition of finite-lag coherence. When lag s

can be varied, there are many opportunities to obtain a large

value of the correlation function, and the coherence is the

largest of these.

The large variability for a¼ 0 can be expected to have

experimental consequences. Akeroyd and Summerfield

(1999) devised a binaural analog to gap detection using noise

that targeted a¼ 0. Such noise is normally called

“completely uncorrelated” in the literature and is given the

designation “Nu.” Because the bands were narrow, the effec-

tive value of N was small, and one expects that large values

of coherence can occur by chance in individual noises. Simi-

lar effects would be expected in the narrow-bandwidth Nu

experiments by Pollack and Trittipoe (1959a,b) and Gabriel

and Colburn (1981). For larger bandwidth (e.g., Schubert

and Wernick, 1969; Perrott and Buell, 1982) equivalent to

larger values of N, c is more narrowly distributed about the

mean. The numerical experiments show that the standard

deviation of the distribution of c for a¼ 0 is approximately

0.44/
ffiffiffiffi
N
p

, as shown in Fig. 6.

4. Approaching the zero-lag limit

When a is large, the numerator of Eq. (32) for q(s) is

dominated by ax1ðsÞx1, and this term is largest when s¼ 0.

Therefore the coherence is given by q(0). Numerical experi-

ments with the general q(s) showed that the coherence is

accurately given by q(0) for a greater than or equal to 0.6.

This useful simplifying result appears to hold good for all

values of N tested, namely N� 5.

B. Three-generator method

Everything that was written in the preceding text about

coherence for the two-generator method holds good for the

three-generator method as well. Figure 6 compares calcula-

tions for the two methods for the special case that the target

FIG. 6. Computed coherence for finite-lag correlation as a function of the

number of spectral components when the target coherence is zero. Five

hundred waveforms were computed for the three different generators.

Symbols show the average, and error bars are two standard deviations in

overall length. Symbols are in pairs illustrating two different random

starts. They are slightly jogged horizontally for clarity. The solid line is

the function 0.92/
ffiffiffiffi
N
p

, and the dashed lines are the same function plus and

minus 0.44/
ffiffiffiffi
N
p

.
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correlation is zero (a¼ 0). Each symbol appears twice, corre-

sponding to two different random starts of the computation.

C. Symmetric-generator method

The coherence values for the symmetric generator are

also shown in Fig. 6, plotted as diamonds. They are consider-

ably closer to the target value of zero than the values for the

asymmetrical generators, but the standard deviations (not

shown) are the same as for the asymmetrical generators as

shown by the error bars.

VII. CAVEATS

The equations for the overlap integrals in terms of com-

ponent amplitudes and phases [e.g., Eq. (18) for x1ðsÞx2� are

valid if the signal duration and the component frequencies

are matched (Hartmann and Wolf, 2009). For instance, a du-

ration of 1 s is matched by component frequencies that are

integer numbers of hertz, i.e., components can be separated

by 1 Hz, or by 2 Hz, etc. A duration of half a second can be

matched only if the frequencies are all integer multiples of 2,

and so on. Matching means that the sines and cosines of the

component frequencies are all orthogonal on a rectangular

time interval equal to the duration. The equations that

depend on matched components, like Eq. (18), greatly sim-

plified the computations of this article and made it easy to

average over 100 000 trials. The results of these simplified

computations were tested by long computations, computing

waveforms as functions of time using integer frequencies,

and then calculating their correlations over a duration of 1 s.

These long computations and the simplified computations

agreed perfectly, validating the simplified calculations. How-

ever, the simplified calculations were valid only for matched

conditions.

If the component frequencies are not matched to the du-

ration, the relationship between the targeted correlation and

the actual correlation becomes much more variable. This

effect was studied by repeating the long calculations for q(0)

in the asymmetric two-generator method using time-depend-

ent waveforms and successive-integer frequencies as before,

but reducing the duration of the signals to TD¼ 500 ms, 250

ms,… 32 ms. The plots of SD�
ffiffiffiffi
N
p

had the same shape as

shown in Fig. 3, but instead of a limit of 1/
ffiffiffi
2
p

for a¼ 0, the

limit increased monotonically with decreasing duration up to

a value near 2.7 for TD¼ 32 ms.

For the results of this article to apply to digitally gener-

ated noises, the frequencies in the noises must match the du-

ration. Matching is all that is required for the standard

deviation to be well approximated by the generally useful

function shown by the dashed line in Fig. 3. For instance, if

the duration is 250 ms and the frequencies are all integer

multiples of 4 Hz, the standard deviation agrees with the

heavy dashed line in Fig. 3 when the number of components

is 20 or greater.

VIII. SUMMARY

Partially correlated noise has been used in the study of

binaural hearing to control the cross correlation. It is gener-

ated by adding the outputs of independent elemental noise

generators. With digital methods, Gram–Schmidt orthogon-

alization can be used together with the strong equal-power

assumption to control the cross correlation precisely. How-

ever, for experiments using analog generators, or for those

experiments using digital techniques without orthogonaliza-

tion, the cross correlation is not precisely controlled. To

design new experiments or to evaluate old experiments from

the literature, it is helpful to know the variability in cross

correlation that can be expected when the experiment targets

a particular correlation.

In this article, the variability was computed for the

three noise generation methods that have been used in psy-

choacoustical and physiological research: the asymmetric

two-generator, the asymmetric three-generator, and the

symmetric generator. Computations were done using two

different assumptions about the power of the elemental

generators. With the weak equal-power assumption, the

elemental generators have equal power only on the ensem-

ble average. Numerical experiments discovered that all

three generation methods lead to the same standard devia-

tion in the correlation, varying as 1/
ffiffiffiffi
N
p

in the limit of

large N, where N is the number of spectral components.

That standard deviation is shown as a function of the target

coherence in Fig. 2 and by the vertically hatched regions

in Figs. 3 and 4.

With the strong equal-power assumption, the elemental

generators have equal power in every experimental trial.

That assumption led to considerable mathematical simplifi-

cation, and analytic results could be obtained leading to

insight into the numerical results. The numerical experi-

ments found that the standard deviation of the correlation

was the same when the amplitudes of the spectral compo-

nents were Rayleigh distributed and when they were all

made equal. Figure 3 is an example. The experiments found

that the standard deviation of the correlation was approxi-

mately the same for both of the two asymmetrical genera-

tors, as shown in Fig. 4.

With the strong equal-power assumption, the symmet-

ric generator led to uniquely small standard deviations,

varying as 1/N. The difference between the symmetric gen-

erator and the asymmetric generator is striking. Example

for the asymmetric two-generator: If the target correlation

is 0.2 and the number of components is N¼ 9, then from

Fig. 3,
ffiffiffi
9
p

SD¼ 0.68, so that the standard deviation is 0.23.

Example for the symmetric generator: If the target correla-

tion is again 0.2 and the number of components is again

N¼ 9, then from Fig. 5 9SD¼ 0.075, so that the standard

deviation is 0.0083, smaller by a factor of 28.

This article briefly considered the finite-lag cross cor-

relation function, particularly the coherence, which is the

maximum cross correlation across all allowed values of the

lag. The coherence can differ hugely from targeted values

when the targeted value of coherence is small. When the

targeted value is greater than 0.6, the statistical variability

of the coherence becomes the same as for zero lag. This

leads to the useful result that the standard deviation of the

coherence becomes the same as the standard deviation for

cross correlation.
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As noted in Sec. VII, all the calculations presented in this

article depend on matched conditions. The spacing between the

frequency components in the noise waveform must be an inte-

ger multiple of the inverse of the noise duration.
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