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Abstract
Background and Aims—Genomic instability, as reflected in specific chromosomal
aneuploidies and variation in the nuclear DNA content, is a defining feature of human carcinomas.
It is solidly established that the degree of genomic instability influences clinical outcome. We
have recently identified a 12-gene expression signature that discerned genomically stable from
unstable breast carcinomas. This gene expression signature was also useful to predict, with high
accuracy, the clinical course in independent multiple published breast cancer cohorts. From a
biological point of view, this result confirmed the central role of genomic instability for a tumor's
ability to adapt to external challenges and selective pressure and hence, for continued survival
fitness. This in turn prompted us to investigate whether this genomic instability signature could
also predict clinical outcome in other cancer types of epithelial origins, including colorectal
tumors, non-small cell lung carcinomas, and ovarian cancer.

Results—The results show that the gene expression signature that defines genomic instability
and poor outcome in breast cancer contributes significantly more accurate (P < 0.05; compared
with random prediction) prognostic information in multiple cancer types independent of
established clinical parameters. The 12-gene genomic instability signature stratified patients into
high- and low-risk groups with distinct post-operative survival in three non-small cell lung cancer
cohorts (n = 637) in Kaplan-Meir analyses (log-rank P < 0.05). It predicted recurrence in colon
cancer patients (n = 92) with an overall accuracy greater than 69% (P = 0.04) in cross-cohort
validation. It quantified relapse-free survival in ovarian cancer (n = 124; log-rank P < 0.05).
Functional pathway analysis revealed interactions between the 12 signature genes and well known
cancer hallmarks.

Conclusion—The degree of genomic instability has diagnostic and prognostic implications. It is
tempting to speculate that pursuing genomic instability therapeutically could provide entry points
for a target that is unique to cancer cells.
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Introduction
Aneuploidy, chromosomal instability, and resulting genomic imbalances are one of the
hallmarks of human cancers of epithelial origin (1). While specific chromosomal imbalances
are usually acquired before the transition to invasive disease, global destabilization of the
genome occurs at later stages (2). The degree of destabilization, measured for instance by
the number of chromosomal aberrations or the amount of variability in the nuclear DNA
content from one cell to another is an important predictor of clinical outcome, independent
of conventional morphological or clinical parameters. For instance, women with
genomically stable breast carcinomas have considerable prolonged disease free survival
times compared to women whose tumors are genomically unstable (3). A similar picture
emerges in prostate carcinomas (4). More recently, the search for predictors of clinical
outcome was extended to embrace global gene expression profiling, and numerous
signatures of poor prognosis or treatment failure were described (5-7). In an attempt to
understand the biological basis of these signatures we analyzed, using gene expression
profiling, breast carcinomas that had been characterized as genomically stable or unstable,
hence, of good and poor prognosis, respectively (8). These analyses let us to identify a set of
12 genes, which were differentially expressed between stable and unstable tumors (8). The
biological and clinical relevance of these genes, i.e., the gene expression signature of
genomic instability, was validated with large independent data sets and resulted in an
excellent prediction of the clinical course. Inversely, when using established signatures of
poor prognosis to predict the degree of genomic instability in our dataset, the results were
equally convincing. That means that the basis for clinically used gene expression signatures
of poor prognosis is biologically linked to chromosomal instability, which ultimately
determines outcome. Since most solid tumors are defined by aneuploidy, we were interested
to explore whether the gene expression signature of genomic instability that determines
outcome in breast cancer is also useful for the prediction of the clinical course in other
entities of carcinomas, namely colorectal, lung, and ovarian cancer.

Material and Methods
Patients and Samples

Colon Cancer—The first cohort contained 50 patients with stage II colon adenocarcinoma
(9). None of the patients had emergency surgery or received any adjuvant chemotherapy.
Twenty-five patients developed a distant metastasis (liver in 20 patients, lung in five
patients) within 52 months. The other 25 patients remained disease free for at least 60
months, with mean follow-up of 79 months. The second cohort contained 24 patients with
stage II colon adenocarcinoma (10). None of these patients received adjuvant chemotherapy.
Ten patients developed a liver metastasis within 55 months. The other 14 patients remained
disease free for at least 60 months, with mean follow-up of 72.2 months. The third cohort
contained 18 patients with colon adenocarcinoma (11). A total of 10 patients had no lymph
node metastasis (stage II) and did not receive any chemotherapy. The other eight patients
had lymph node metastasis (stage III) and received 6-month adjuvant chemotherapy, with 5-
FU and levamisole. Patients were evaluated at 3-month intervals for the first postoperative
year and at 6-month intervals thereafter. Nine of the 18 patients (five stage II patients and
four stage III patients) developed a distant metastasis within 53 months. The other nine
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patients remained disease-free for at least 60 months, with mean follow-up of 75 months. A
summary of patient clinical characteristics is provided in Table 1.

Non-small Cell Lung Cancer—The cohort from Bild et al. (12) contained 111 patients
of which 67 were of stage I, 18 of stage II, 24 of stage III, and two of stage IV. There were
two cell types in this cohort: lung adenocarcinoma (n = 58) and squamous cell lung cancer
(n = 53). The cohort from Bhattacharjee et al. (13) contained 84 patients with lung
adenocarcinoma. Sixty-two patients were of stage I, 14 of stage II, and eight of stage III.
Twenty-six tumors were well differentiated, 43 moderately differentiated, and 15 poorly
differentiated. The cohort from Shedden et al. (14) contained 442 lung adenocarcinomas
collected from multiple cancer centers and institutes. Two hundred and seventy-six patients
were in stage I, 94 in stage II, and 68 in stage III and four patients with undefined stage. A
summary of clinical characteristics including age, gender, and median follow-up time for
each cohort is given in Table 2.

Ovarian Cancer—The ovarian cancer cohort (n = 124) was retrieved from Bild et al. (12)
94.4% (117/124) of these ovarian cancer patients had advanced stages (III and IV). The
cohort was randomly partitioned into training and test sets of equal size. Table 3 presents the
median follow-up time and the distribution of tumor stage for the training and test cohorts.

DNA Microarray Analysis
The RNA extraction and cDNA preparation in these studies was described in their original
publications (9-14). Three colon cancer datasets were all generated with Affymetrix U133A
arrays. The lung adenocarcinoma dataset from Bhattacharjee et al. (13) were measured on
Affymetrix U95A arrays. The non-small cell lung cancer dataset from Bild et al. (12) was
quantified with Affymetrix U133 Pus 2.0 arrays. The lung adenocarcinoma datasets from
Shedden et al. (14) were generated with Affymetrix U133A. The ovarian cancer dataset
from Bild et al. (12) were assayed with Affymetrix U133A (retrieved with record GSE3149
from Gene Expression Omnibus).

Computational methods for prognostic classifications
RIPPER—RIPPER is a propositional rule learning algorithm proposed by Cohen (15) with
improvements over original incremental reduced error pruning (IREP). In RIPPER
algorithm, after an initial rule set is learned from IREP, the rule set is further pruned
repeatedly based on a different metric and stopping condition on randomized data. The
repeated pruning stops when the rule set learned from IREP is refined into a rule set with
optimized size and performance. JRip learner with WEKA 3.4 (16) was employed in the
analysis.

Cox proportional hazard model—In survival analysis, the hazard function assesses the
instantaneous risk of death at time t, condition on survival to that time point:

where T is the variable represents the survival time with cumulative distribution function
P(t) = Pr(T ≤ t).

A Cox proportional hazard model defines the relationship between the survival of patients
and a set of variables, such as gene expressions. The Cox model gives the hazard at time t
for an individual with a given set of predictors denoted by X:
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A hazard ratio is defined as the hazard for one individual divided by the hazard for a
difference individual:

where X* denotes the set of predictors for one individual and X denotes the set of predictors
for the other individual (17).

In our analysis, the hazard ratio represents the ratio of hazard (i.e., death from cancer)
between the average risk scores of two prognostic groups.

Prognostic Prediction of Recurrence in Colon Cancer
The matching genes in the 12-gene genomic instability signature were identified with
Affymetrix IDs. Nine common genes were found in each of the three colon cancer cohorts
with six genes having matches to multiple probes. The mean expression of the duplicate
probes for each gene was used in this study. The patient cohort from Barrier et al. (9) was
used as training set (n = 50), while the cohorts from another two papers by Barrier et al.
(10;11) were combined into an independent validation set (n = 42). A training model was
built with the 9 signature genes to classify recurrence in colon cancer patients using a rule-
based learner RIPPER. A 10-fold cross validation was used to evaluate the performance of
the training model. This training model was used to predict recurrence in each patient in the
validation set.

Prognostic Categorization of Non-Small Cell Lung Cancer
The DNA microarray data were generated on three lung cancer cohorts using different
Affymetrix platforms. So, gene symbols were used to find the matching genes in the
signature. In each patient cohort, a Cox proportional hazard model was constructed by using
the matching genes as covariates to predict lung cancer survival after the initial treatment.
The non-small cell lung cancer cohort (n = 111) from Bild et al. (12) was used as training
set. A risk score was generated for each patient in this cohort. A high risk score represents a
high probability of postoperative treatment failure, and similarly for a low risk score. Based
on the distribution of the risk scores in this cohort, a cutoff point was identified to stratify
patients into high- or low-risk groups. This cutoff risk score was applied in prognostic
categorization in the two lung adenocarcinoma patient cohorts from Bhattacharjee et al. (13)
(n = 84) and Shedden et al (n = 442) (14). In each cohort, the survival probability of each
prognostic group was assessed with Kaplan-Meier analysis. The difference between the
survival probabilities in the two groups was estimated with log-rank tests. These analyses
were performed with software packages in R (17).

Patient Stratification in Ovarian Cancer
The ovarian cancer patient cohort (n =124) from Bild et al. (12) was randomly partitioned
into a training set (n = 62) and a testing set (n = 62). Using the training set, a Cox model was
built based on the 12-gene genomic instability signature as covariates. A risk score was
generated for each patient. Based on the distribution of the risk scores in the training model,
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a cutoff value was identified for patient stratification. This training model and cutoff value
were applied to the testing set.

Biological Pathway Analysis
Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, Redwood City, CA) is a
proprietary web-based curated database which provides contents of gene and protein
interactions reported in the literature. In this study, we used IPA to delineate molecular
networks of genes interacting with the 12-gene signature. Core analysis was used to identify
the most significant biological processes and functions from the merged network related to
the 12-gene signature in human tissues and cell lines.

Results
Genomic instability is a defining feature of human cancers of epithelial origin (1;2). We
have previously established a biological relationship between the degree of genomic
instability, poor prognosis gene expression signatures and clinical outcomes in patients with
breast cancer (8). A set of 12 genes that was differentially expressed between genomically
stable and unstable tumors predicted recurrence-free survival (including metastasis and
relapse) and overall survival in multiple independent breast cancer cohorts. In the present
study, we sought to investigate whether this genomic instability gene signature also predicts
clinical outcomes in other cancer types of epithelial origins, including colon cancer (n = 92),
non-small cell lung cancer (n = 637), and ovarian cancer (n = 124). The signature genes are
listed in Table 4.

Genomic instability signature is an independent predictor of colon cancer recurrence
To construct a molecular classifier to predict colon cancer recurrence, 50 patients with stage
II colon adenocarcinoma (9) were used as training cohort. Nine genes within the 12-gene
genomic instability signature were identified from the DNA microarray data. These
signature genes were used to classify recurrence in each patient with the JRip algorithm. The
performance of the classifier was evaluated in a 10-fold cross validation on the training set
(Table 5). The genomic instability signature correctly predicted recurrence in 72% (36/50)
of patients, with a sensitivity of 68% (17/25) and a specificity of 76% (19/25). The model
identified in the training cohort was applied to predict recurrence in each patient in the
validation cohort (n = 42), combining patients retrieved from Barrier et al (10;11). In the
validation, the genomic instability signature correctly predicted recurrence in 69.1% (29/42)
of patients, with a sensitivity of 73.9% (14/19) and a specificity of 65.2% (15/23). The
cohorts from Barrier et al. (9;10) contained only stage II lymph node negative colon
adenocarcinomas. These results indicate that the 12-gene genomic instability signature
provided independent prognostic information in addition to tumor stage. Once validated in
larger, independent cohorts this signature could be potentially used to select lymph node-
negative patients for receiving adjuvant chemotherapy.

Genomic instability signature predicts lung cancer survival
To explore the clinical relevance of the 12-gene genomic instability signature for the
prognostication of patients with non-small cell lung cancer, the lung cancer cohort retrieved
from Bild et al. (12) was used as a training cohort. A Cox model of overall survival was
constructed based on the 12-gene signature, with each gene variable as a covariate. A
survival risk score was generated for every patient, with a higher risk score representing a
greater probability of treatment failure (i.e., death). Based on the histogram representing
distribution of gene expression-defined risk scores in this cohort (Fig. 1A), a cutoff value of
zero, the peak value in the histogram, was used to stratify patients into high- and low-risk
groups. This cutoff value represents the linear additive expression levels of all the signature
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genes in lung cancer patients. This stratification separated patients into two groups with
distinct overall survival (log-rank P = 0.0005) in Kaplan-Meier analysis (Fig. 1B). This
cutoff risk score was applied to two additional cohorts from Bhattacharjee et al. (13) (n =
84) and Shedden et al. (14) (n = 442). The 12-gene signature generated significant
prognostic categorization in both lung adenocarcinoma cohorts from Bhattacharjee et al.
(13) (log-rank P = 0.05; Fig 1C) and Shedden et al. (14) (log-rank P = 0.01; Fig. 1D) in
Kaplan-Meier analyses. In all three studied non-small cell lung cancer cohorts, the low-risk
groups had above 80% of 2-year postoperative survival rate, representing a significantly
better prognosis compared with the corresponding high-risk groups for which the 2-year
survival was ranging from 38% to 58%. Furthermore, the 12-gene genomic instability
signature had a significant hazard ratio (HR ≥ 1.55, p <0.05) in predicting poor-prognosis in
all three studied lung cancer cohorts (Table 6). The results show that the expression patterns
of the 12-gene genomic instability signature could be used to predict postoperative survival
in non-small cell lung cancer patients.

Genomic instability signature predicts ovarian cancer outcome
Ovarian cancer is a common malignancy in women, whose prognosis is bleak due to a
usually advanced disease stage at the time of diagnosis. In order to extent the potential
usefulness of our genomic instability signature we explored its value for predicting clinical
outcome in patients with ovarian cancer. The ovarian cancer cohort (n = 124) from Bild et
al. (12) was randomly split into a training set (n = 62) and a testing set (n = 62). A Cox
model was built on the training set using the signature genes as covariates. A survival risk
score was generated for each patient. A cutoff value was identified based on the histogram
of the risk scores in the training set (Fig. 2A). Patients with a risk score greater than the
cutoff were stratified into the high-risk group, and otherwise, into the low-risk group. The
high- and low-risk groups had significantly (log-rank P = 0.02) different relapse-free
survival in the training cohort in Kaplan-Meier analysis (Fig. 2B). This training model and
stratification scheme were applied to the testing set, and generated significant prognostic
stratification (log-rank P = 0.015) in Kaplan-Meier analysis (Fig. 2C). The survival risk
score estimated by the model also showed strong association with the ovarian cancer
relapse-free survival (hazard ratio = 2.08, 95% CI: [1.00-4.29]) in the test set (Table 6).
These results demonstrate that the 12-gene genomic instability signature could indentify
more aggressive ovarian cancers that were more likely to develop recurrence after surgical
resections and initial treatment. The high risk patients defined with this genomic instability
gene signature might benefit from second line chemotherapy.

Functional pathway analysis
The 12-gene genomic instability signature was able to distinguish more aggressive tumors in
multiple cancer types, indicating that this signature might be involved in important
mechanisms of tumor genesis and progression. Functional pathway analysis was performed
based on curated database of molecular interactions reported in the literature using Ingenuity
Pathway Analysis. The results show that the signature genes interact with multiple
prominent cancer signaling pathways, including the oncogenes NFKBIA, MYC, BCL2,
CDK1 (CDC2), E2F1, and SOD2 as well as the tumor suppressor genes TP53 and CASP9
(Fig. 3). Specifically, Aurora-A (AURKA) is an essential regulator of mitosis and is
frequently amplified in human cancer. Aberrant expression of Aurora-A (AURKA) in
mammalian cells induces centrosome amplification, genomic instability, and transformation.
The E2 ubiquitin ligase UBE2N binds specifically to the Aurora-A (AURKA) Phe-31
variant (18) and stimulates ubiquitination of Aurora-A (AURKA) both in vitro and in vivo
(19). In MCF7 cells, human Aurora-A (AURKA) protein increases polyubiquitination of
human IKBA (NFKBIA) protein (20). The p14ARF (CDKN2A)-induced G2 arrest and
subsequent apoptosis inhibits the growth of human tumoral cells lacking functional TP53,
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which correlated with inhibition of CDC2 (CDK1) activity (21). Studies showed that human
p14ARF (CDKN2A) protein activates Caspase9 (CASP9) and mitochondrial apoptosis
pathway entirely independent of TP53, and these caspase-9-like activities were greatly
enhanced in cells lacking functional p21 (CDKN1A) (22). Furthermore, overexpression of
SOD2 decreases accumulation of CDKN2A during confluent growth of fibroblasts (23).
BCL-2 is a direct target of c-Myb, and overexpression of c-Myb was accompanied by up-
regulation of BCL-2 expression (24). Methylation of E2F elements derived from the
dihydrofolate reductase, E2F1, and CDC2 promoters prevents the binding of all E2F family
members tested (E2F1 through E2F5) (25). In contrast, methylation of the E2F elements
derived from the c-Myc and c-Myb promoters minimally affects the binding of E2F2, E2F3,
E2F4, and E2F5 but significantly inhibits the binding of E2F1 (26). CCL18 is one of the
most abundant chemokines produced by immature dendritic cells, and may be part of an
inhibitory pathway to limit specific immune responses at peripheral sites. In maturing
human dendritic cells (27). TNF-α (TNF) protein decreases expression of CCL18 mRNA
(28).

Discussion
Genomic instability is a defining and ubiquitous feature of human cancers (1;2). In many
instances the degree of genomic instability is correlated to the clinical course, with highly
unstable tumors showing an in general poorer prognosis (3;29;30). Also, the degree of
genomic instability increases with cancer progression: pre-invasive dysplastic lesions
usually carry only few genomic imbalances, often in the form of gains and losses of entire
chromosomes or chromosome arms (2;31). These early changes can occur in an otherwise
stable genome. During tumor progression, additional imbalances accumulate, including
regional high-level copy number genomic amplification. Specific tumor entities can present
with different degrees of genomic instability. For instance, HNPCC-associated colorectal
carcinomas are karyotypically stable and present in general with a better prognosis
compared to sporadic tumors that are usually highly aneuploid (32-34). A similar situation
can be observed in breast carcinomas: here, patients with tumors that are diploid or close to
diploid fare considerably better then patients with aneuploidy carcinomas (3;30). In a recent
publication we explored whether that difference in the degree of genomic instability and its
profound correlation to prognosis is biologically related to gene expression signatures of
poor prognosis that were identified over the past few years in large cohorts of breast cancer
patients. In order to test this hypothesis, we profiled 48 breast tumors that were defined as
being genomically stable and unstable. This resulted in a 12-gene signature of genomic
instability that clearly separated the two groups (8). In addition, the 12-gene signature
predicted outcome in multiple independent data sets, and, conversely, the clinically used
poor prognosis signature correctly predicted the degree of genomic instability in our dataset.
This established a biological link between independently derived prognostic signatures
(5-7). We were now interested in exploring whether this signature would also assist
prognostication of disease outcome in cancer entities other then breast. In order to test this
hypothesis, we applied the signature to published datasets from lung (12-14), colorectal
(9-11), and ovarian carcinomas (12).

In each studied cancer type, a patient stratification scheme was developed based on the
expression of the 12-gene genomic instability signature, and was validated on independent
patient cohorts. Based on the clinical outcome provided in three colon cancer cohorts, a
machine learning algorithm JRip was used in the model construction on the training set (n =
50) with stage II colon carcinoma to predict patients’ recurrence after surgery. The model
accuracy was 72% on the training cohort in a 10-fold cross validation. This prognostic
model was applied to the combined testing set (n = 42) and achieved an overall accuracy of
69.1% in the cross cohort validation. These results are more accurate (P < 0.05) compared
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with random predictions. In the prognostic validation of non-small cell lung cancer, a
prognostic model was built with Cox model using the gene expression profiles as covariates.
The cutoff point for prognostic categorization was defined based on histogram of gene
expression defined-risk scores on the training cohort (n = 111). This stratification scheme
was applied to two additional patient cohorts (n = 526). In each patient cohort, the gene
signature separated patients into different prognostic groups with remarkably different (log-
rank P < 0.05) clinical outcomes in Kaplan-Meier analyses. Similarly, this scheme was used
in the prognostic validation on ovarian cancer. In both training and testing cohorts (n = 124),
the gene expression defined-model provided significant (log-rank P < 0.02) post-operative
prognostic stratification in Kaplan-Meier analyses. The 12-gene instability signature had
significantly higher hazard ration in poor prognosis groups over good prognosis groups in all
studied lung cancer and ovarian cancer cohorts.

Genome-wide association studies utilizing human tissue samples have enhanced the
prognostic capacity of cancer outcomes. Four breast cancer signatures, including intrinsic
subtypes (35), poor prognosis signature (MammaPrint®) (7), recurrence score (Oncotype
DX®) (36), and wound response (37), represent largely the same prognostic space (38). Our
identified 12-gene genomic instability signature predicted disease-free survival and overall
survival in multiple breast cancer patient cohorts with heterogeneous disease stage,
including both early stage and advanced breast cancers (8). In the evaluation, the 12-gene
genomic instability signature is comparable as Oncotype DX® and could potentially be
more accurate than the other above mentioned signatures in terms of predicting disease-free
survival and overall survival in van de Vijver's cohort (7). More importantly, the 12-gene
signature showed prognostic ability beyond early-stage breast cancer that constitutes the
patient group for MammaPrint® and Oncotype DX®. The 12-gene genomic instability
signature quantified disease-free survival and overall survival in a broad patient population
including those with advanced stage (T3/T4), tumor grade III, lymph node metastasis, or
negative estrogen receptor status (ER-) (8). The present study confirms that the identified
12-gene genomic instability signature predicted clinical outcomes in multiple tumor types.
Together, this 12-gene signature could extend breast cancer prognostic space defined by
MammaPrint® and Oncotype DX®, among other breast cancer signatures with potential
clinical utility (12;39-41).

This study demonstrates that our identified 12-gene genomic instability signature could
predict clinical outcomes in multiple cancer types with epithelial origins. Thus, it provides
further evidence linking genomic instability and associated gene expression, and disease
courses in human cancers. The functional pathway analysis with curated IPA database
delineated a biological network with tight connections between the signature genes and
numerous well established cancer hallmarks, indicating important roles of the genomic
instability gene signature in tumor genesis and progression. While it is clear that the degree
of genomic instability has diagnostic and prognostic implications, it is tempting to speculate
that pursuing genomic instability therapeutically could provide entry points for a target that
is unique to cancer cells.
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Figure 1.
The 12-gene genomic instability signature predicts overall survival in non-small cell lung
cancer. (A) Histogram of gene expression-defined risk scores in the training cohort from
Bild et al. (12). The peak value with risk score zero in the histogram was defined as the
cutoff in prognostic categorization. Gene expression defined-high and low risk groups had
significant post-operative survival in patient cohorts from (B) Bild et al. (12), (C)
Bhattacharjee et al. (13), and (D) Shedden et al. (14) in Kaplan-Meier analyses.
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Figure 2.
The 12-gene genomic instability signature predicts overall survival in ovarian cancer. (A)
Histogram of gene expression-defined risk scores in the training cohort from Bild et al. (12).
The peak value with risk score of -3 in the histogram was defined as the cutoff in prognostic
categorization. Gene expression defined-high and low risk groups had significant post-
operative ovarian cancer survival in both (B) training and C) testing cohorts.
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Figure 3.
Functional pathway analysis of the 12-gene genomic instability signature using Ingenuity
Pathway Analysis. The biological network showed genes interacting with the signature
genes as reported in the literature.
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Table 1

Clinical characteristics of colon cancer patient cohorts.

Barrier et al. (9) (n=50) Barrier et al. (10) (n=24) Barrier et al. (14) (n=18)

Mean follow-up (months)

    Patients with recurrence 52 55 53

    Patients without recurrence 79 72.2 75

Tumor Stage

    Stage II 100% 100% 55.6%

    Stage III 0% 0% 44.4%

Recurrence within 5-year after surgery

    Yes 50% 58.3% 50%

    No 50% 41.7% 50%

Int J Biol Markers. Author manuscript; available in PMC 2012 May 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mettu et al. Page 16

Table 2

Clinical characteristics of lung cancer patient cohorts.

Bild et al. (12) (n=111) Bhattacharjee et al. (13) (n=84) Shedden et al. (14) (n=442)

Histology

    Adenocarcinoma 52% 100% 100%

    Squamous cell 48%

Median follow-up (months) 31 38 47

Age (mean, S.D.*) 65 (10) 63 (11) 64 (10)

Sex

    Male 57% 43% 50%

    Female 43% 57% 50%

Tumor Stage

    Stage I 60% 74% 62%

    Stage II 16% 17% 22%

    Stage III 22% 9 % 15%

    Stage IV 2% - -

    Unknown - - 1%

*
S.D. denotes standard deviation
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Table 3

Clinical characteristics of ovarian cancer patient cohorts.

Bild et al. (12) (Training, n=62) Bild et al. (12) (Testing, n=62)

Median follow-up (months) 44 35

Tumor Stage

    Stage I 5% -

    Stage II 5% 2%

    Stage III 77% 80%

    Stage IV 11% 18%

    Unknown 2% -
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Table 4

The 12-gene genomic instability signature.

Gene symbol Gene description Clone ID Chromosome location

NXF1 Nuclear RNA report factor 1 1722870 11q12-q13

cDNA DKFZp762M127 Homo sapiens mRNA 1822809 11

P28 Dynein, axonemal, light intermediate 1998792 1p35.1

KIAA0882 KIAA0882 protein 2190664 4q31.1

v-myb Avian myeloblastosis viral oncogene 2555590 6q22-q23

CDKN2A Cyclin-dependent kinase inhibitor 2740235 9p21

unknown Human clone 23948 mRNA sequence 3123244 15q22.32

RERG RAS-like, estrogen-regulated; growth inhibitor 644989 12p13.1

SCYA18 Small inducible cytokine subfamily 690231 17q11.2

STK15 Serine/threonine kinase 15 2007691 20q13.2-q13.3

HNF3A Hepatocyte nuclear factor 3 171194 12p13.1

unknown Incyte EST 88935 N/A
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Table 5

Prediction accuracy of colon cancer recurrence using the 12-gene genomic instability signature.

Patients Sensitivity (Recurrence within
5-y)

Specificity (no recurrence within
5-y)

Overall Accuracy P-Value*

Training set (n=50) (9) All stage II 68% (17/25) 76% (19/25) 72% (36/50) 0.01

Validation set (n=42) (10;11) 73.9% (14/19) 65.2% (15/23) 69.1% (29/42) 0.04

*
P<0.05 represents the overall accuracy is significantly higher than that of random prediction (two-sided Z-tests).
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Table 6

Hazard ratio of prognostic model for lung cancer and ovarian cancer presented in Figure 1 and Figure 2.

Patient Cohort Hazard Ratio [95% CI]

Lung Cancer

    Bild et al. (12) (n=111) 2.87 [1.69, 4.87]

    Bhattacharjee et al. (13) (n=84) 2.63 [1.61, 4.29]

    Shedden et al. (14) (n=442) 1.55 [1.23, 1.96]

Ovarian Cancer

    Bild et al. (12) (Training, n=62) 16.82 [5.05, 56.06]

    Bild et al. (12) (Testing, n=62) 2.08 [1.00, 4.29]
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