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Abstract It is well known that significant metabolic

change take place as cells are transformed from normal to

malignant. This review focuses on the use of different

bioinformatics tools in cancer metabolomics studies. The

article begins by describing different metabolomics tech-

nologies and data generation techniques. Overview of the

data pre-processing techniques is provided and multivariate

data analysis techniques are discussed and illustrated with

case studies, including principal component analysis,

clustering techniques, self-organizing maps, partial least

squares, and discriminant function analysis. Also included

is a discussion of available software packages.

Keywords Metabolomics � Cancer �Metabolite

profiling � NMR �Mass spectrometry � Bioinformatics

1 Introduction

A significant role in cancer initiation and progression is

attributed to changes in RNA and protein expression levels

and regulation (Byrum et al. 2010; Chari et al. 2010; Fink-

Retter et al. 2009; Korkola and Gray 2010; Larkin et al.

2010). However, changes in small molecules also provide

important mechanistic insights into cancer development.

There is a strong body of evidence supporting the impor-

tant role of metabolic regulation in cancer. Malignant cells

undergo significant changes in metabolism including a re-

distribution of metabolic networks (Boros et al. 2003).

These metabolic changes result in different metabolic

landscapes in cancer cells versus normal cells. Metabolo-

mics, as a global approach, is especially useful in identi-

fying overall metabolic changes associated with a

particular biological process and finding the most affected

metabolic networks. Moreover, metabolomics provides an

additional layer of information that can be linked with

transcriptomics and proteomics data to obtain a compre-

hensive view of a biological system.

Metabolomics is a relatively new field in genomics

research but it is gaining broader recognition in the cancer

community. Most cancer metabolomics studies to date

have been done using metabolic fingerprinting or profiling

with NMR spectroscopy of tissue extracts or in vivo

magnetic resonance spectroscopy. Using NMR spectros-

copy techniques it is possible to differentiate several tumor
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types in humans and in animal models (Beckonert et al.

2010; Cheng et al. 1996; Devos et al. 2004; Lukas et al.

2004; Merz and Serkova 2009; Tate et al. 1998, 2000). But

while techniques based on magnetic resonance have the

advantage of being non-invasive, they have low sensitivity

and cannot detect molecules at low concentrations. Mass

spectrometry methods provide advantage of higher sensi-

tivity and are more appropriate for in vitro studies

(Patterson et al. 2010; Qiu et al. 2010; Sugimoto et al.

2010; Urayama et al. 2010; Want et al. 2010).

Similar to transcriptomics and proteomics, metabolo-

mics generates large amounts of data. Storing, pre-pro-

cessing and multivariate statistical analysis of these data

provide a significant challenge and require specialized

mathematical, statistical and bioinformatics tools

(reviewed in (Katajamaa and Orešič 2007; Madsen et al.

2010; Shulaev 2006)). Metabolomics experiments generate

a large volume of specialized data that are complex and

multi-dimensional. Storing, organizing and retrieving the

data and associated metadata requires properly designed

databases. The analysis of these data sets is equally chal-

lenging and new analysis algorithms are still being devel-

oped. Multivariate statistical analysis of the metabolomics

data in many cases utilizes the same approaches as the

analysis of other genomic data. However, metabolomics

has unique bioinformatics needs in addition to others

common in microarray or proteomics data due to the fact

that it is generated by multiple analytical platforms and

requires extensive data pre-processing. Major areas where

developments in data analysis techniques are crucial for

further progress of metabolomics include: data and infor-

mation management, raw analytical data processing, met-

abolomics standards and ontology, statistical analysis and

data mining, data integration, and mathematical modeling

of metabolic networks within the framework of systems

biology.

This article aims at providing a basic overview of

metabolomics data analysis, including practical applica-

tions and metabolomics software, as it is being used for

cancer research. We discuss major multivariate data anal-

ysis techniques, including principal component analysis,

clustering techniques, self-organizing maps, partial least

squares, and discriminant function analysis., and illustrate

them with case studies.

2 Metabolomics technology and data generation

There are three major approaches used in metabolomics

studies: targeted analysis, metabolite profiling and meta-

bolic fingerprinting (Fiehn 2002; Shulaev 2006). Targeted

analysis is used to measure the concentration of limited

numbers of known metabolites precisely. It is a truly

quantitative approach and provides low limits of detection

for known metabolites. Metabolite profiling usually is an

untargeted high throughput measurement of the levels of a

large number of metabolites. The advantage of metabolite

profiling is that, unlike targeted analysis, it does not require

the compounds of interest to be known a priori and

therefore it can be used to identify novel metabolic bio-

markers or survey the global metabolic changes in the

system. Metabolic fingerprinting considers the total

metabolite profile, or fingerprint, as a unique pattern

characterizing a snapshot of the metabolism in a particular

cell line or tissue.

Analytical techniques used for metabolite profiling

include nuclear magnetic resonance (NMR) (Jordan and

Cheng 2007; Serkova and Glunde 2009), Gas Chroma-

tography–Mass Spectrometry (GC–MS) (Asiago et al.

2010; Qiu et al. 2010; Yang et al. 2007), Liquid Chroma-

tography–Mass Spectrometry (LC–MS) (Chen et al. 2009;

Kind et al. 2007; Yang et al. 2010), Capillary Electro-

phoresis–Mass Spectrometry (CE–MS) (Soga 2007), and

Fourier transform infrared spectroscopy (FT-IR) (Johnson

et al. 2003; Kim et al. 2010). Advantages and downside of

each techniques for metabolomics were reviewed else-

where (Fiehn 2002; Shulaev 2006; Sumner et al. 2003).

Due to diversity in cellular metabolites’ chemical and

physical properties there is no single analytical technique

that can analyze all metabolites simultaneously. Usually a

combination of analytical techniques is used to cover as

broad a range of metabolites as possible. This presents a

unique challenge for data analysis since each analytical

technique generates a specific data structure and has to be

processed with a specialized informatics tool.

3 Metabolomics standards and metadata

Metabolomics, like other genomics research areas, requires

standards of data management, analysis and reporting to be

adopted by community (Bino et al. 2004; Castle et al. 2006;

Griffin and Steinbeck 2010; Jenkins et al. 2004; Lindon

et al. 2005; Sansone et al. 2007). This is critical consid-

ering the growing number of metabolomics studies, the

urgent need to store metabolomics data in genomics dat-

abases, and the ability to compare data generated in dif-

ferent labs (Castle et al. 2006). Metabolomics Society

(http://www.metabolomicssociety.org/) working group is

currently working on the development of metabolomics

standards to be adopted by the community (http://

www.metabolomicssociety.org/mstandards.html). The first

step in devising standards for metabolomics experiments

was the development of the Minimum Information about a

Metabolomics Experiment (MIAMET) (Bino et al. 2004).

MIAMET defines the minimum information required to
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report from metabolomics experiment including experi-

mental data and metadata (data about the experiment).

4 Metabolomics data analysis

Major steps in metabolomics data analysis include raw data

pre-processing, spectral deconvolution and component

detection, data normalization and multivariate statistical

analysis.

4.1 Raw data pre-processing

The first step in metabolomics data analysis is the pro-

cessing of the raw data and it involves several steps

depending on the methodology used (Hansen 2007). Due to

the complex nature of metabolomics data, when the

objective is to identify and measure as many different

metabolites as possible, raw data processing is a very

important step in data analysis. Raw data processing for

different techniques used in metabolomics have been

extensively reviewed (Hansen 2007; Katajamaa and Orešič

2007; Scalbert et al. 2009; Schripsema 2010; Spraul et al.

1994). Therefore, here we will just introduce the major

concepts on how the raw data can be processed and

transformed into the format suitable for multivariate sta-

tistical analysis or machine learning techniques. More

detail on the individual raw data processing techniques the

reader can find in the referenced manuscripts.

Typically NMR data show variation in peak width,

shape and position due to differences in sample matrix (i.e.,

pH or ionic strength) or variations in instrument perfor-

mance. Therefore, raw data should be pre-processed to

correct these variations. NMR data pre-processing usually

include correction of line width using line broadening

parameter (i.e., using tuned exponential multiplication),

Fourier transformation, phase correction with user prede-

fined phase constants, and positioning and scaling

(Lommen et al. 1998). NMR data processing techniques

include binning, peak picking, and spectrum deconvolution

(Schripsema 2010). Binning or bucketing is the most

common routine for NMR data processing prior to multi-

variate statistical analysis or fingerprinting (Beckwith-Hall

et al. 1998; Spraul et al. 1994). Binning is achieved by

separating the spectra into multiple discrete regions (hixels

or buckets) which are than averaged and integrated. This

leads to substantial information loss but corrects the data

for peak shifts due to pH or ionic strength variation among

samples. The other advantage of binning is significant data

reduction which simplifies subsequent data analysis. Usu-

ally the bucket width is fixed to 0.04 ppm resulting in the

reduction of the high resolution NMR spectrum from of 16

to 64 K data points to on average of 250 data points.

Binned data can be directly imported into numerous sta-

tistical packages for multivariate analysis. The other

approach to NMR data pre-processing is spectra alignment

and peak picking. Several NMR spectral alignment algo-

rithms can be found in the literature, including linear fit

method, described by Vogels et al. (1996), or automatic

removal of frequency shifts in spectra by PCA, described

by Brown and Stoyanova (1996).

The other approach to NMR data processing is to de-

convolute the spectra into individual components (see

review by Schripsema (2010)). This approach has an

advantage over other pre-processing approaches as it

allows the identification and quantitation of individual

components in the mixture from the complex NMR spec-

trum. Weljie et al. (2006) described a novel technique of

deconvoluting complex spectra based on mathematical

modeling of individual NMR resonances from pure com-

pound spectra to create a component database followed by

database search to identify and quantify metabolites in

complex spectra of biological matrices. Authors defined

this approach as ‘‘targeted profiling’’ and validated it

against a ‘‘spectral binning’’ analysis. The technique

proved to be very stable in PCA-based pattern recognition

analysis, insensitive to water suppression effects, relaxation

times, and scaling factors. As unambiguous compound

identification from the complex one-dimensional 1H-NMR

spectrum can be complicated; several two-dimensional

NMR techniques, including 2D-COSY (Correlation Spec-

troscopy), 2D-HMBC (Heteronuclear Multiple Bond

Coherence), 2D-HSQC (Heteronuclear Single Quantum

Coherence), 2D-TOCSY (Total Correlation Spectroscopy)

(Ludwig et al. 2009), 2D-HRMAS (High Resolution Magic

Angle Spinning)(Bayet-Robert et al. 2010) and 2D-JRES

(J-resolved spectroscopy) (Fonville et al. 2010), were used

in metabolomics studies to increase metabolite specificity

and improve quantitation (Ludwig and Viant 2010;

Schripsema 2010). Application of two-dimensional tech-

niques in metabolomics studies is rather limited due to a

long time required to acquire 2D spectrum (i.e., it requires

close to 20 h to acquire typical 2D TOCSY spectrum to

achieve the same sensitivity as 1D spectrum acquired in

few minutes (Tang et al. 2004). 2D-JRES NMR spectros-

copy provides analysis speed advantage over other two-

dimensional techniques. It takes about 20 min to acquire a

2D spectrum of a metabolite mixture with relatively little

convolution of signals at the same time significantly

improving spectral assignment and accurate quantitation

(Ludwig and Viant 2010).

Mass spectrometry data processing involves noise

reduction, spectrum deconvolution, peak detection and

integration, chromatogram alignment, component detec-

tion, identification and quantitation (Katajamaa and Orešič

2007). Raw mass spectrometry data, in addition to real
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spectral data, contains background and noise. Background

is a slowly varying part of the spectral signal, while noise

includes rapid spikes in the intensity of the signal. To

remove noise from data several algorithms have been

developed and are currently implemented in both com-

mercial and publicly available software. Typically, moving

window filters are most often used to remove the noise

from the data (Hansen 2007). Other noise filtering algo-

rithms include median filtering (Hastings et al. 2002),

Savitsky-Golay filter based on polynomial regression

(Savitzky and Golay 1964), and wavelet transform (Chen

et al. 2010; Coombes et al. 2005). Next step in raw data

processing is spectral deconvolution. Deconvolution or

component detection is used to separate two or more co-

eluting (or overlapping) components in the mass spectral

data. Several deconvolution algorithms are implemented in

both commercial and public software. GC–MS data are

often processed using AMDIS (Automated Mass Spectral

Deconvolution and Identification System, http://chemdata.

nist.gov/mass-spc/amdis/) software that utilizes well des-

cribed algorithms, has proven to be extremely useful in

processing of the GC–MS data (Halket et al. 1999). ESI-

LC–MS data can be processed using variety of algorithms,

including component detection algorithm (CODA) (Windig

et al. 1996), ‘‘windowed mass selection method’’ (WMSM)

(Fleming et al. 1999), singular value decomposition

(SVD), sequential paired covariance (SPC) (Muddiman

et al. 1995), or higher order sequential paired covariance

(HO-SPC) (Muddiman et al. 1997).

Following the deconvolution process it is necessary to

define, integrate and quantitate the peaks corresponding to

individual components. Peak detection approaches in mass

spectrometry data were recently reviewed by Katajamaa

and Orešič (2007) who reviewed three major strategies to

feature detection: (1) peak detection performed separately

in two dimensions (retention time and m/z), (2) by

extracting each individual ion chromatogram and process-

ing them independently, and (3) fitting a model to the data.

The first method identifies the features with the intensities

above the defined threshold independently in the retention

time and m/z directions and the ones that meat both

threshold criteria are defined as peaks. Second method

relies on identifying peaks in a discrete set of extracted ion

chromatograms, each representing a small range of m/z

values. The third strategy is based on fitting two- or three-

dimensional model of isotope pattern to raw signal. All

these approaches allow generating peak lists with quanti-

tative information on individual metabolites/components

for subsequent multivariate analysis of datasets.

A typical metabolomics experiment involves a large

number of samples. Due to many variations, such as

instrument or chromatographic column performance, buf-

fer composition, matrix complexity, or environmental

conditions, retention time fluctuates over a set of chro-

matograms. To correct for this retention time fluctuations,

chromatogram should be aligned to compare same features

in a dataset. Detailed review of the different alignment

strategies and algorithm can be found in recent review of

mass-spectrometry data processing in metabolomics by

Katajamaa and Orešič (2007). Alignment allows compar-

ing large datasets where samples were analyzed over per-

iod of time and sometime on different instruments.

4.2 Multivariate analysis

Metabolomics data can be analyzed with a wide range of

statistical and machine-learning algorithms. These can be

classified in two major classes: unsupervised and super-

vised algorithms (Mendes 2002).

Unsupervised methods that have been used in analyzing

metabolomics data are principal component analysis (PCA)

(Odunsi et al. 2005), hierarchical clustering (Eisen et al.

1998), and self-organizing maps (Tamayo et al. 1999).

Supervised methods include ANOVA (Churchill 2004),

partial least squares (PLS) (Musumarra et al. 2003), sup-

port vector machines, k-Nearest neighbors, and discrimi-

nant function analysis (DFA) (Raamsdonk et al. 2001).

Several excellent textbooks (Hastie et al. 2001; Johnson

and Wichern, 2007; Quinn and Keough 2002; Tettamanzi

and Tomassini 2001; Wilcox 2005) provide extensive

discussion on both the mathematical and practical aspects

of the different statistical and machine learning algorithms

for data analysis, mining, inference and prediction; there-

fore, here we will only outline major methods widely used

for metabolomics data analysis and illustrate them with

case studies from cancer research.

4.2.1 Data normalization, scaling and dimensionality

reduction

Before statistical analysis metabolomics data have to be

normalized to account for differences in metabolite

recoveries during the extraction process or systematic

errors due to instrument performance. Normalization can

be achieved by either using single or multiple internal

standards spiked into the sample prior to or during the

extraction or by using various normalization factors (Sysi-

Aho et al. 2007).

Metabolomics data, like other ‘‘omic’’ data, are under-

determined, meaning that they contain many more vari-

ables than samples (Kohane et al. 2003). In a typical

‘‘omic’’ experiment an average of several hundreds to tens

of thousands of variables are measured (i.e., all the genes in

a microarray experiment, or hundreds of metabolites in a

metabolomics study), but only a relatively small number of

samples are collected to examine this high-dimensional
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space. For proper statistical analysis of these data it is

necessary to reduce the number of variables in order to

obtain uncorrelated features in the data. This can be best

achieved either through significance methods in ANOVA

and t-tests, through linear combinations of variables in

PCA, or by using evolutionary algorithms such as genetic

algorithms or genetic programming. Evolutionary algo-

rithms are usually carried out in combination with a second

analysis algorithm (e.g., PLS or DFA) that search for

combinations of variables most effective in the secondary

algorithm, and are guided by principles of evolution and

selection of species (reviewed by Pena-Reyes and Sipper

2000). Evolutionary algorithms have been successfully

applied to metabolomics data (Kell 2002).

4.2.2 Principal component analysis (PCA)

PCA is an unsupervised statistical data analysis method

that is used for dimension reduction and visualization of

the data. The goal is to find a way to represent high

dimensional data by a projection into a small dimensional

subspace, without losing the important features of the data.

PCA finds a small dimensional subspace such that the

orthogonal projection of the data into this subspace moves

the data points as little as possible. This produces a small

dimensional representation of the original data that can be

used for visualization or more sophisticated methods of

data analysis. Since we are minimizing the displacement of

the points, we can hope that the small dimensional repre-

sentation captures some important features of the data.

An equivalent way of looking at PCA is that it finds a

small dimensional subspace such that the orthogonal pro-

jection of the data into this subspace captures as much

variance of the original data as possible.

More precisely, PCA starts by finding the one dimen-

sional subspace that captures the most variance. This

subspace is called the first Principal Component (PC). We

think of the variance in the data that is not captured by the

first PC as left-over variance. Next PCA finds the one

dimensional subspace that captures as much left-over var-

iance as possible. This subspace is called the second

Principal Component. The process can be repeated to

generate as many PCs as desired. It is also possible to have

PCA generate as many principal components as necessary

to capture a certain percentage of the variance in the data,

as opposed to generating a fixed number of PCs.

Each Principal Component is orthogonal (perpendicular)

to all other PCs. The best two dimensional subspace for

capturing variance is the span of the first two PCs. The best

three dimensional subspace is the span of the first three PCs

and so on. Equivalently, these are the best subspaces for

minimizing the displacement that orthogonal projection

onto this subspace causes.

Advantages of using PCA: PCA has been extensively

used in metabolomics data analysis and it is a well estab-

lished method and can be performed with a variety of

statistical analysis packages. PCA has a very natural geo-

metrical interpretation in terms of minimizing the dis-

placement caused by projection of the data onto a small

dimensional subspace. It provides a good visualization tool

for the data, by looking at the projection into the best two

(or three) dimensional subspace. Since the Primary Com-

ponents are orthogonal to each other, this is often referred

to as plotting PCs against each other.

Downside of using PCA: The principal components are

linear combinations of variables that explain the most

variance. As such PCA is inherently biased toward

selecting (assigning large coefficients/weights) the vari-

ables with large variance. The variables that are good

differentiators but have relatively small variance are unli-

kely to be picked up by PCA. Since metabolomics strives

to analyze the whole metabolome, it is actually likely that

there are many variables unrelated to the problem in

question that possess large variance. These variables will

obscure the true differentiating variables when using PCA.

Another important disadvantage is that the Primary

Components are linear combinations of all the variables.

Therefore, PCA is not effective in singling out a small

group of important metabolites. It is possible to use

VARIMAX rotation to find new orthogonal axis that have

the same span as PCs, but are combinations of fewer

variables. However, this is not guaranteed to substantially

improve results.

4.2.2.1 Example of using PCA: detecting epithelial ovar-

ian cancer In Odunsi et al. (2005) metabolic profiles of

human serum were used in detecting Epithelial Ovarian

Cancer (EOC). Samples were obtained from 53 individuals

with EOC, 12 patients with benign cysts and 38 healthy

women. The samples were analyzed using 1H-NMR spec-

troscopy and each spectrum was reduced to 200–250 inte-

gral segments of equal width. Each variable was Pareto-

scaled to dampen the tendency of PCA to select the

variables with highest variance. In Pareto scaling a variable

is divided by the square root of its variance. This does not

eliminate high variance entirely, which may be undesirable,

but it gives variables with lower variances a better chance to

be detected by PCA.

The data was separated into three different subsets:

premenopausal women and cancer patients, postmeno-

pausal women and cancer patients and one with benign cyst

and cancer patients. PCA was applied to each of the subsets

and two dimensional plots of PC1 versus PC2 were gen-

erated and analyzed.

The plots showed that the projection onto the first two

Primary Components was effective in separating cancer

Bioinformatics tools for cancer metabolomics 333

123



samples from non-cancer samples in each of the three

cases. When all samples were analyzed together the

patients with benign cysts overlapped with healthy patients,

but there was separation between cancer and non-cancer

samples. This suggests that metabolomics may be useful in

early detection of epithelial ovarian cancer. The loadings

(coefficients) used in PCA were studied in search of

markers that distinguish EOC from normal samples. Sev-

eral potential markers with high loadings such as sugar

hydrogens and 3-hydroxybutyrate were identified, sug-

gesting how the metabolic profile of cancer patients is

altered by the disease.

4.2.3 Partial least squares (PLS)

PLS is a regression based method of data analysis. The

underlying idea of PLS is that although we collect highly

multidimensional data, the phenomenon under investiga-

tion can be explained using a relatively small number of

factors. PLS computes these factors to which linear

regression is then applied.

In data analysis linear regression is used to find the best

linear predictor of some variables Y based on the dependent

variables X (sample readings). For example, we can try to

build a regression model to predict the risk of developing

heart disease based on cholesterol readings and weight of

the patient, along with other factors.

When we are concerned with classification problems,

such as cancer versus non-cancer or distinguishing differ-

ent types of cancer, we do not have quantitative measure-

ments for the variable that we are trying to predict, only the

division of samples into different classes. In this case we

set the variable Y to have entry 0 for all samples in the first

class, entry 1 for all samples in the second class and so on.

In case of PLS, this is called PLS Discriminant Analysis or

PLS-DA. Unlike PCA, this is a supervised method of data

analysis, the separation of samples into different groups is

crucial to building the model.

PLS differs from the usual linear regression in that PLS

does not just predict independent variables Y based on the

dependent variables X. Instead, PLS tries to find a small

dimensional subspace, such that the projection into this

subspace does not change the dependent variables X very

much, and at the same time, the coordinates of this new

subspace are good predictors of Y. This corresponds to the

idea that the variables Y can be predicted using a small

number of factors (thus a projection to a small dimensional

subspace).

In this way PLS is related to the Principal Component

Regression, where Principal Components of X from PCA

are used to predict the independent variables Y. This also

allows PLS to handle data sets with highly correlated

variables, which is often the case in metabolomics. Linear

Regression tends to not work well in these instances.

The output of PLS is similar to the output of PCA. PLS

generates a list of orthogonal vectors (components), which

we can think of as PLS version of Principal Components of

PCA. The PLS components are the factors that ‘‘best

explain’’ the behavior of independent variables Y and they

span the subspace onto which the dependent variables X are

projected. We can choose the number of PLS components

to be used.

The projection of the data on the first several compo-

nents can be used for visualization or dimension reduction

in the same way as with PCA. The PLS components are

further used to construct a linear regression model for the

independent variables Y. The regression model is used in

predicting the classes of unknown samples.

Advantages of using PLS: PLS is a well established

method in the field of chemometrics and it has also been

applied in bioinformatics, social sciences and other fields.

There are available software packages that perform PLS,

although it is not as ubiquitous as PCA. PLS does not have

the same tendency to gravitate toward high variance vari-

ables that PCA does. However, it does not have the simple

geometrical interpretation of PCA. PLS provides a tool for

visualization and dimension reduction in the same way as

PCA.

Downside of using PLS: PLS shares the other disad-

vantage of PCA in that its components are linear combi-

nations of all the variables. It is often not possible to single

out a small group of variables that are responsible for

classification into different groups.

4.2.3.1 Example of using PLS: using 1H-NMR-based

metabolomics for prognosis of high risk leukemia

patients Chronic lymphocytic leukemia (CLL) is a dis-

ease with varying clinical course and survival rates.

Roughly one third of the patients require immediate

treatment while another third do not require treatment and

have long survival rates. The remaining third exhibits a

passive phase followed by disease progression. An early

diagnostic method for predicting disease progression is

therefore of utmost importance.

The mutational status of the immunoglobulin heavy

chain variable region (IGHV) of CLL cells has been shown

to provide useful prognostic information. However, the

cost and difficulty of IGHV sequencing led to a search for

alternative prognostic markers.

MacIntyre and co-authors (MacIntyre et al. 2010) used

metabolic profiles of serum of leukemia patients to provide

an alternative method of predicting IGHV mutation.

Twenty nine samples were gathered from untreated early

stage leukemia patients along with nine control samples. Of

the 29 leukemia samples 19 came from patients with
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mutated IGHV region and ten from patients with non-

mutated IGHV region.

The samples were analyzed using 1H-NMR Spectros-

copy. As a first step PCA was applied to the resulting data.

However, PCA failed to reveal clustering based on disease

status. Further analysis of the loadings of first two principal

components revealed that majority of the variation came

from differences in glucose concentration.

PLS discriminant analysis (PLS-DA) was then applied

to the data. The analysis of the first three components

revealed clear separation between CLL and healthy sam-

ples. The loadings were studied and it was found that

increased levels of pyruvate, glutamate, proline, pyridoxine

and decreased concentration of isoleucine in CLL patients

were mainly responsible.

The possibility of using metabolomics analysis as a

predictor of IGHV status was then analyzed. Again PCA

was initially applied to the 19 CLL samples and mild

clustering was observed. Further analysis with PLS-DA

showed clear separation between the two groups. The

PLS-DA loadings showed that the unmutated IGHV sam-

ples had higher levels of cholesterol, lactate, uridine and

lower levels of pyridoxine and glycerol, among others.

Further NMR quantification revealed statistically signifi-

cant differences in concentrations of cholesterol, lactate,

methionine and pyridoxine between mutated and unmu-

tated IGHV patients.

4.2.4 Clustering

Cluster analysis, or clustering, refers to a whole host of

different algorithms that aims at dividing observations into

classes, or clusters based on a distance function. The goal

of a clustering algorithm is to partition the data into groups

so that the distances between the samples within each

group are small when compared to distances between

samples from different clusters.

The distance function is thought of as a measure of

dissimilarity. Different distance functions may be used;

the Euclidean distance is most often used in practice;

Manhattan distance is sometimes used as well.

Clustering algorithms can be divided into two types:

hierarchical and non-hierarchical. A non-hierarchical

clustering algorithm simply divides the data into clusters.

An example of this is K-means Clustering. We think of the

mean of samples in a cluster as the center of this cluster.

The K-means clustering algorithm divides the data into a

prescribed number of clusters (K) so that for each sample

the closest cluster center is the center of the cluster that it

belongs to. The number of clusters K comes from the data,

for example, if we want to divide into disease and healthy

groups, we would use two clusters, but if we have different

species or phenotypes then we can use a higher K.

In hierarchical clustering we start by thinking of each

sample as its own cluster. Then two closest clusters are

merged together and the process is repeated until all sam-

ples are in the same cluster. The way of deciding which

two clusters are closest depends on the hierarchical clus-

tering method used. For example, in Single Linkage hier-

archical clustering the distance between cluster A and

cluster B is the shortest distance between any sample in

cluster A and any sample in cluster B. Many other mea-

sures are possible, some of which involve distance between

centers of clusters as well distances between individual

samples.

A hierarchical clustering method outputs a dendrogram,

which records which clusters were joined together and at

what distance. This provides a visual description of the

evolution of the clusters.

Clustering methods are typically unsupervised. The

samples are divided into groups based on the distance

between them, without taking into account class labels. If

the data divides into groups along the lines of class labels

then this is a strong indication that the class division is

reflected in the data.

Clustering has been extensively used in genomics

studies and, therefore, can be readily adopted to study

metabolomics data.

Advantages of using clustering: Clustering is a well

established method and its various incarnations are avail-

able in a great variety of packages.

Downside of using clustering: Metabolomics data typi-

cally has variables of very different values. If the variables

are not rescaled then the various clusters will be deter-

mined by variables with large variance. The problem will

be similar to the one we encountered with using PCA: by

its nature metabolomics data have many extraneous vari-

ables, many of which will possess large variance. These

variables will strongly influence the performance of the

clustering algorithms.

Genomics data is typically log-transformed, thereby

greatly reducing the difference in values and variance

between the variables. However, log-transformation is

usually not performed with metabolomics data. A rescal-

ing, such as Pareto scaling we have seen in the PCA

application example, often needs to be performed to at least

partially eliminate the difference in variance between the

variables.

4.2.4.1 Example of using clustering: recognizing different

cancer cell lines from metabolomics data In Cuperlovic-

Culf et al. (2009) fuzzy K-means clustering was applied to

metabolomics data from breast cancer cell lines gathered

with 1H NMR spectroscopy. ‘‘Fuzzy’’ refers to the fact that

samples are not simply partitioned into K clusters, but

instead each sample is assigned a vector of K numbers,
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with each number denoting the probability that the sample

belongs to the corresponding cluster. We can also think of

these numbers as denoting the membership value between

the sample and each of the K clusters; the higher the

membership value the more likely the sample is to belong

to that cluster.

Five cell lines were used for the experiment, two cell

lines were grown from normal cells and three from cancer

cells; two of the cancer cell lines were from invasive

metastatic cancer and one from non-invasive cancer. Five

replicates were gathered for each cell line and the samples

were analyzed using 1H NMR spectroscopy. The spectrum

for each sample was separated into major peaks and the

peaks were matched with compounds using existing liter-

ature. Each peak was then integrated to calculate the total

presence for each compound.

When PCA was applied to these data and the two first

principal components were plotted against each other it

was observed that there was clear separation between the

two normal cell lines and the three cancer cell lines. The

two normal cell lines were also separated from each other.

However the three cancer cell lines were mixed. Similar

results were observed when applying hierarchical cluster-

ing: the two normal cell lines formed crisp separated

clusters but the three cancer cell lines formed mixed

clusters. When regular K-means clustering (here with

K = 5 for the five cell lines) was applied the results were

inconclusive with different cell lines mixing between

clusters.

However, when the fuzzy K-means clustering was used

the two normal cell lines as well as the non-invasive cancer

cell line formed separate clusters based on the top mem-

bership value. The two invasive cell lines were mixed

based on the top membership value. However, the invasive

cell lines were clearly separated into two clusters based on

the second highest membership value. This shows the

potential of fuzzy clustering to not only divide the data into

a fixed number of clusters but further subdivide it based on

phenotypes or other relevant characteristics.

4.2.5 Self organized maps

Self-Organized Map is a method of two-dimensional

visualization of the data. It is based on a specific kind of

neural network, where the neurons are arranged in a planar

or toroidal grid. We have already seen two methods of

two dimensional visualization: plotting two Principal

Components of PCA or PLS against each other. Both of

these methods are simply linear projections of the data.

Self-Organizing Map also generates a two dimensional

representation of the data, but it is capable of more com-

plex pattern recognition. The goal of SOM is to find a good

two-dimensional representation of the data that is capable

of exploiting non-linear phenomena in the data. Since we

want not to just build a classification ‘‘black box’’, but to

also understand the underlying biology of the problem, a

visualization of the data can provide very valuable insights.

SOM is an unsupervised method since it does not use

class labels in the construction of the map. A rectangular or

hexagonal grid of appropriate size needs to be chosen. A

typical SOM procedure consists of learning, where the

network is fed data from representative samples and visu-

alization where the network arranges new data based on

learned patterns.

An output of SOM is a 2-dimensional ‘‘map’’ where

samples that are similar to each other according to the data

analysis are placed in a similar region.

Advantages of using SOM: Self-Organizing Map pro-

vides a good visualization tool for the data. Unlike plots of

Principal components of PCA and PLS it can be used to

detect non-linear relationships in the data. It also does not

suffer from the tendency to select variables based on high

variance.

SOM is a very well established method with applica-

tions in many fields. The original application of SOM was

to voice recognition, but it has been extensively applied in

bioinformatics and medicine. There are a variety of soft-

ware packages that will build SOM from data.

Downside of using SOM: While SOM is capable of

exploiting non-linear relationships in the data, the indi-

vidual variables (metabolites) that are most responsible for

the classification are not always easily read off. While GA

methods are specifically geared toward producing small

classification models and it is possible to study the loadings

in PCA or PLS, the most important metabolites for SOM

are more hidden.

4.2.5.1 Example of SOM: examination of metabolic

changes in breast cancer tissue In study by Beckonert

and co-authors (Beckonert et al. 2003) metabolic changes

in human breast cancer tissue were examined. A total of 88

samples were collected consisting of 49 cancer tissue of

varying grade and 39 healthy samples. The samples were

analyzed using 1H NMR Spectroscopy. The resulting NMR

data for each sample was a vector of 1,057 components,

with 655 components corresponding to water-soluble

metabolites and 402 components corresponding to lipids.

Subsequently, feature selection was performed using

3-Nearest Neighbor Clustering to identify 62 metabolites

(features) that were promising in separating different

grades of cancer and healthy tissue. Three Nearest

Neighbor Clustering was used instead of PCA in hopes that

some low variance metabolites would be selected and

prove successful in differentiating different grades of

breast cancer and healthy tissue.

336 G. Blekherman et al.

123



A Self Organizing Map on a rectangular grid was built

with the 62 selected parameters. The map provided distinct

separation between the various grades of cancer. The upper

part of the map was taken up by the control samples, with

intermediate malignancy samples (grade 2) on the lower left

and high malignancy samples (grade 3) on the lower right.

Furthermore, the 62 underlying metabolites were ana-

lyzed to see whether each individually provides a picture

similar to the map built using the combination of all 62. For

each metabolite a different ‘‘concentration map’’ was built.

The concentration of a compound in a sample was shown

on the map as shade of gray, with white corresponding to

low concentration and black corresponding to high con-

centration. The compounds whose ‘‘concentration map’’

provided a picture similar to the SOM were judged to most

responsible for the classification.

In water soluble metabolites it was seen that glucose and

myo-inositol were among the best differentiators between

healthy and malignant tissues, which was consistent with

earlier findings. Other potentially interesting differentiating

metabolites such as UDP sugar derivatives were identified.

In lipids there was a general increase in fatty acid con-

centration with tumor grade. Concentration of cholesterol

and glycerol, for example, showed a strong propensity to

increase in grade 3 tumors. The general picture of increase in

fatty acids from healthy to tumor cells was again consistent

with earlier findings and gives evidence to the hypothesis

that fatty acids are synthesized within the tumor cells.

4.2.6 Genetic algorithms based methods

Genetic Algorithms (GA) methods are used to find small

subsets of metabolites that are promising for distinguishing

between groups of samples, such as identifying cancer versus

healthy samples. Unlike the methods discussed previously,

we not only want to build a classification model, but we want

to require that the model only uses a few metabolites. The

goal of these methods is more toward ‘‘biomarker discov-

ery’’, rather than just a classification system.

When using PCA and PLS even if the data analysis

method is effective in classifying samples into groups, it is

not easy to single out a small subset of metabolites that is

responsible for the separation. The Principal Components

of PCA and PLS are linear combinations of all the vari-

ables, while in fact we expect to measure many parameters

that are unrelated to our problem when looking at the

entirety of the metabolome.

To address this problem, we can try to pick small sub-

sets of variables, and build a classification model using just

these variables. The method used for building the small

model is up to the modeler; in practice Discriminant

Function Analysis (DFA) has been popular. However,

regardless of the method used, it is not computationally

possible to exhaustively search even all four or five vari-

able subsets, since the total number of variables we have is

in hundreds or thousands. This is where Genetic Algo-

rithms come in.

We do not need to try all the possible subsets, we just

need to produce the subsets that perform best for classifi-

cation purposes. Genetic Algorithms provide an optimiza-

tion heuristic when exact optimization or exhaustive search

are computationally impossible.

GA based methods start with a small population of

subsets. For each subset a classification model is built,

using a method such as DFA, and the accuracy of the

model or some other related property is used as its score.

Then the population is changed according to Genetic

Algorithm methods to try to optimize the choice of subsets

to provide the best classifying models. The algorithms

typically run for a fixed number of steps after which the top

scoring subset is produced.

Genetic algorithms consist of three major steps: selec-

tion, crossover and mutation. During selection a subset of

the existing population is selected for reproduction. The

selection is based on a fitness function, so in our case, the

best performing classifying small subsets are selected.

Typically, there is some randomness built in the selection

process to keep the algorithm from settling on a globally

poor local optimum.

In crossover a pair of ‘‘parent’’ subsets produces a new

‘‘child’’ subset. Then the subsets undergo mutation, where

a random change is made to the subset with a very small

probability. Once crossover and mutation are done, the

algorithm is repeated, until a fixed number of iterations

(generations) is reached.

Due to the stochastic nature of Genetic Algorithms we

are unlikely to produce the same small subset of variables

every time. Instead the algorithm is run many times and we

analyze what variables are repeatedly chosen for the small

classification models. The subsets of variables that are

chosen together in a high percentage of models are deemed

important for classification.

Advantages of using GA methods: The main advantage

of GA based methods is that they produce classifying

models that use a small number of distinguishing variables

(metabolites). GA methods also do not suffer from the

propensity toward selecting variables with high variance,

which affects PCA.

Genetic Algorithm methods have been applied in many

fields, including analysis of microarray data, sequence

alignment, food science and civil engineering.

These methods also offer a lot of flexibility; the Genetic

Algorithms can be coupled to any other supervised data

analysis method to produce a classification model based on

a small subset of variables. The scoring of the models can

also be customized to improve performance.
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Downside of using GA methods: Due to the large num-

ber of variables in metabolomics data it is typical that

many small subsets are well suited for classification. Some

subsets are present due to sheer randomness and small

sample size, while some are biologically meaningful. This

presents an added challenge in metabolomics since the

majority of peaks are unidentified. Therefore, it is not

always possible to decide whether a small subset has bio-

logical meaning without a major effort in terms of com-

pound detection. However, this is still a much better

situation than having a linear combination of all the vari-

ables, in which case we cannot hope to identify all of the

metabolites.

The flexibility of GA models also has a downside since

there is no standard protocol and particular choices in the

implementation of the Genetic Algorithm, the classification

method to be used, or method used to score the models will

influence performance of the data analysis. There is

available software that can perform, for example, GA-

DFA, but to our knowledge there are no packages that

would allow users to actually changes some of the

parameters we listed above and to see what impact these

changes will have.

4.2.6.1 Example of using genetic algorithms combined

with clustering: diagnosing ovarian cancer from serum

In Petricoin et al. (2002) Genetic Algorithms were com-

bined with clustering techniques to produce a method for

detection of early stage ovarian cancer based on patients’

serum. The method was constructed based on a data set of

100 patients, with 50 having various stages of ovarian

cancer and 50 control patients. None of the control samples

came from patients with gynecological disease or non-

gynecological inflammatory disorders. The serum was

analyzed using a SELDI-TOF mass spectrometer and for

each of the 100 samples a range of 15,200 m/z ratios with

corresponding intensities was calculated.

A genetic algorithm was applied to find a small subset of

m/z ratios that best separates the cancer samples from

controls. The algorithm started with hundreds of random

choices of discriminating subsets consisting of five to

twenty m/z ratios each. The discriminating power of each

subset was analyzed using a clustering fitness function. The

best fit subsets were selected and their m/z ratios were

reshuffled to form new subsets until a fully discriminating

subset emerged.

The validation was performed using a set of 116 masked

samples, with 50 coming from patients with ovarian cancer

and 66 controls. The clustering technique, using the dis-

criminating m/z ratios constructed from the initial set, was

applied to the classification of the samples in the masked

set. The samples were classified as either healthy, cancer or

new cluster if they were outside the margin error of either

cancer or healthy clusters of the initial set. The above

method correctly identified all 50 patients with ovarian

cancer. Of the 66 control samples 9 out of 10 patients with

gynecological disease were put into a new cluster, while

the 10th was put into the healthy cluster. Seven out of

seven patients with non-gynecological inflammatory dis-

order were placed into a new cluster. For the patients with

benign ovarian cysts, 24 out of 25 were correctly classified

as healthy and one classified as cancer. In the remaining 24

control samples 22 were correctly identified as healthy and

two were identified as cancer. The method achieved 100%

sensitivity on both the initial set and the masked set and

95% specificity. This example shows the power of genetic

algorithm methods, combined with supervised data analy-

sis, to find a small discriminating subset and build a pre-

dictive model based on this subset.

5 Data integration

The proper tools to integrate data from different ‘‘omics’’

platforms is important as ‘‘omics’’ research is more widely

used as part of a systems biology approach and high

throughput platforms generate data for mathematical

modeling biochemical networks (for a recent review see

Mehrotra and Mendes 2006). The ability to analyze data

obtained at different levels, including transcripts, proteins

or metabolites, can provide deeper mechanistic insight into

biological systems. Integrated analysis of metabolite and

transcript or metabolite and protein levels has been used in

many systems and already identified important features of

metabolic regulation on different levels. Currently, most

metabolomics studies use largely either one, or a combi-

nation of two approaches, while integrated studies using a

combination of all three approaches are just appearing.

This, in many ways, is limited by the lack of proper data

analysis tools for integrated analysis of data from multiple

levels.

6 Software for metabolomics

By its nature metabolomics requires automated data pro-

cessing solutions. Although a series of commercial and

public tools exist, none of them provides a comprehensive

solution to meet the challenges of metabolomics. Selected

commercial and freely available software for metabolomics

is listed in Tables 1 and 2. More detail on each software

package can be found in a recent review by (Katajamaa and

Orešič 2007) and in the references listed in the tables.

Many commercial software packages provide tools for

basic raw data processing as well as some kind of statistical

data analysis. Some packages incorporate unique and
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powerful algorithms for data analysis not found in other

commercial or public software. The major limitation of

most commercial software supplied by equipment manu-

facturers is that it only works with a specific data format.

LECO Corporation’s ChromaTOF software package, for

example, provides superior deconvolution algorithms, but

it only works with the proprietary file format generated by

the LECO GC-TOF and LC-TOF instruments. This is a

major limitation for many metabolomics laboratories that

often utilize multiple analytical platforms and employ

instrumentation from different vendors. The other limita-

tion of the commercial software is that often the description

of a particular data processing algorithm is not available.

Recent development of publically available software

packages, including MZmine (Katajamaa et al. 2006),

XCMS (Smith et al. 2006), XCMS2 (Benton et al.

2008), MathDAMP (Baran et al. 2006), and Met-IDEA

(Broeckling et al. 2006), expands vendor independent

bioinformatics solution for metabolomics data analysis.

MZmine software (Katajamaa et al. 2006) employs a

modular infrastructure with the ability to integrate new

algorithms and applications. Another publically available

package, XCMS (Smith et al. 2006), is implemented in R

language and is also available for download under GNU

General Public License. It provides noise filtering, peak

detection, and non-linear spectral alignment algorithms as

well as statistical analysis of the data. The software can

process both GC–MS and LC–MS data. Recent extension

of the XCMS package called XCMS2 added the capability

of automated searching of high quality MS–MS data

against METLIN database (Benton et al. 2008). In addition

to specialized software packages that were designed for

metabolomics application, several mass spectrometry data

processing software packages that were developed for

proteomics can also be used to process metabolomics data.

These include, among others, SpecArray (Li et al. 2005,

Table 1 Selected commercial software for metabolomics

Software Vendor Vendor web site

ACD MS Manager with IntelliXtract ACD/Labs http://www.acdlabs.com

ChromaTOF LECO www.leco.com

Genespring-MS Agilent http://www.opengenomics.com/

Ion Signature Quantitative Deconvolution

Software for Mass Spectrometry

Ion Signature Technology, Inc. http://ionsigtech.com/index.php

Ingenuity Pathways Analysis

(IPA)-IPA-MetabolomicsTM Analysis

Ingenuity Systems http://www.ingenuity.com/products/

ipa-metabolomics.html

MarkerLynx Waters http://www.waters.com/

MarkerView AB Sciex http://www3.appliedbiosystems.com/i

Mass Frontier ThermoFisher http://www.thermo.com/

Metabolomics Edition Bio-Rad http://www.bio-rad.com

SIEVE ThermoFisher http://www.thermo.com/

Table 2 Selected open access tools for complex LC/MS data analysis

Software name Reference Web address

BL-SOM (Kanaya et al. 2001) http://prime.psc.riken.jp/?action=blsom_index

Chrompare (Frenzel et al. 2003) http://www.chrompare.com/chrompare/

COMSPARI (Katz et al. 2004) http://www.biomechanic.org/comspari/

MathDAMP (Baran et al. 2006)

MeMo (Spasic et al. 2006) http://dbkgroup.org/memo/

MET-IDEA (Broeckling et al. 2006) http://noble.org/

MSFACTs (Duran et al. 2003) http://noble.org/

MZmine (Katajamaa and Orešič 2005) http://mzmine.sourceforge.net/

TagFinder (Luedemann et al. 2008) http://www-en.mpimp-golm.mpg.de/

03-research/researchGroups/01-dept1/

Root_Metabolism/smp/TagFinder/index.html

XCMS (Smith et al. 2006) http://metlin.scripps.edu/download/

XCMS2 (Benton et al. 2008) http://mathdamp.iab.keio.ac.jp/
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http://tools.proteomecenter.org/wiki/index.php?title=Soft

ware:SpecArray), MSight (Palagi et al. 2005, http://

www.expasy.org/MSight/), and MapQuant (Leptos et al.

2006, http://genepath.med.harvard.edu/mw/MapQuant).

7 Summary

Metabolomics, being a relatively new area of genomics

research, is rapidly gaining acceptance in many areas of

biomedical research, including cancer research. Recent

studies on metabolome changes during cancer develop-

ment and progression have already shown the feasibility

of using metabolomics for cancer diagnostics and prog-

nosis and identifying new targets for anticancer therapy

(Bathe et al. 2010; Borgan et al. 2010; Cascante et al.

2010; Catchpole et al. 2009; Howell, 2010; Madhok et al.

2010; Mamas et al. 2010; Slupsky et al. 2010; Sreekumar

et al. 2009; Wang et al. 2010; Zitvogel et al. 2010).

Despite the availability of many chemometric, statistical,

and machine learning tools for the analysis of metabolo-

mics data, many of them have important limitations, and,

therefore, there is an urgent need for better tools and

software. Further progress in cancer metabolomics greatly

depends on the improvement of analytical and bioinfor-

matics platform to improve sensitivity, specificity, me-

tabolome coverage and provide spatial and temporal

resolution for important metabolic changes in normal in

diseased state.
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for processing and visualization of mass spectrometry based

molecular profile data. Bioinformatics, 22, 634–636.
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