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Abstract
Mitochondrial outer membrane proteins have been found to be ubiquitinated and degraded by the
proteasome. This process shares at least one component of the ERAD pathway of ER membrane
protein degradation, the AAA ATPase cdc48/p97/VCP, thought to extract integral membrane
proteins from the lipid bilayer and chaperone them to the proteasome. Proteasomal degradation of
the outer mitochondrial membrane protein Mcl-1 regulates apoptosis whereas Parkin-mediated
ubiquitination and degradation of Mitofusins can inhibit mitochondrial fusion and promote
mitophagy. The breadth of outer mitochondrial membrane ubiquitin/proteasome substrates and the
physiological relevance of their turnover is only beginning to be understood.

1. Introduction: mitochondrial protein quality systems
Mitochondria are the primary cellular sites of energy production. In addition, various vital
cellular events including apoptosis, Ca2+ buffering, and macromolecule synthesis are also
regulated by mitochondria. To eliminate surplus or dysfunctional mitochondrial proteins, or
whole damaged organelles that can negatively influence cellular homeostasis, regulated
mitochondrial biogenesis and clearance is required. Thus, to counteract continuously
occurring accumulation of defective components of mitochondria and functional
deterioration of these organelles a number of mitochondrial protein quality control
mechanisms operate in the cell.

It has been known for several decades that within the mitochondrial matrix, descendents of
bacterial ATP-stimulated mitochondrial proteases, including PIM1/Lon [1,2] i-AAA and the
m-AAA proteases (e.g. YME1L1 [3] and paraplegin [4]), mediate the turnover of inner
mitochondrial membrane (IMM) proteins. These proteases are essential for various aspects
of mitochondrial function, including mtDNA maintenance, mitochondrial fusion and
formation of mitochondrial respiratory complexes [1–4]. Since, aging- or disease-linked
impairments of these proteases have been suggested to contribute to mitochondrial failure
and subsequent cell deterioration (for reviews see [5,6]), they are thought to serve as
important mitochondrial protein quality control systems.
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Studies published more recently indicate that dynamic remodeling of mitochondrial
membranes, mainly through fusion and fission of these organelles, serves as another
essential mitochondrial quality system (for reviews see [7–9]). It has been proposed that
mixing of mitochondrial contents possibly through cycles of fusion and fission can serve as
a mechanism diluting local mitochondrial defects (through fusion) [10,11], as well as
eliminating damaged organelles from the mitochondrial network (through fission and
inhibition of fusion), and thus priming them for autophagosomal degradation [12, **13,14].
Supporting a critical role of mitochondrial membrane dynamics, impairments of
mitochondrial fusion and/or fission lead to mitochondrial and cellular dysfunction (for
reviews see [7–9]).

In addition to the above described quality control systems, recent evidence also indicates
that the ubiquitin (Ub)/proteasome system controls mitochondrial proteostasis, either by
regulating mitochondrial protein turnover, or controlling mitochondrial protein activities,
and can therefore be considered as a mitochondrial quality control mechanism. Although, as
we will discuss later, some studies support a role for the Ub/proteasome system in regulation
of intra-mitochondrial proteins (e.g. those localized in the IMM), the majority of evidence
points to the importance of ubiquitination and proteasomal degradation in the control of the
outer mitochondrial membrane (OMM) proteostasis.

2. Outer mitochondrial membrane associated degradation (OMMAD)
Given that the OMM serves as a barrier separating mitochondria from the cytosol and plays
vital roles for mitochondrial function, including regulation of metabolism, apoptosis and
mitochondrial membrane dynamics, the quality control of OMM-associated proteins is likely
to be of great importance for cell function. Notably, it has been shown that the majority of
known OMM-associated substrates of the Ub/proteasome system are proteins central for the
regulation of either apoptosis or mitochondrial membrane dynamics.

Proteins regulating mitochondrial steps in apoptosis
The most extensively studied OMM associated substrate of the Ub/proteasome system is an
anti-apoptotic protein in the Bcl-2 family, Mcl-1. Under normal growth conditions the half-
life of Mcl1 has been estimated to be in the range of ~40–60 min [15,16]. Upon induction of
apoptosis Mcl1 is rapidly degraded in a Ub and proteasome-dependent manner [15,17]. The
apoptotic degradation of Mcl1, as well as its turnover in non-apoptotic cells, is regulated by
the counteracting activities of the HECT-domain-containing Ub ligase ARF-BP1/Mule
(Mcl-1 Ub ligase E3) [18], and the deubiquitinase Usp9x [19]. Expression levels of ARF-
BP1/Mule and Usp9x appears to be critical for the maintenance of proper cellular balance of
anti- and pro-apoptotic proteins, and contributes to cell sensitivity to apoptosis and is linked
to tumor formation [18, *19].

In addition to Mcl1, turnover of other mitochondria-associated Bcl-2 family proteins,
including Bax and Bcl-2 [20, *21,22,23], is also under Ub/proteasome control. Bax, a pro-
apoptotic Bcl-2 family protein, is mainly localized in the cytosol in an apoptotically inactive
form (6A7-epitope negative) and it moves to mitochondria upon pro-apoptotic trigger-
induced change in its conformation (6A7-positive) [24–26]. Proteasome-dependent
degradation of Bax occurs specifically on the mitochondria [23], suggesting that the
apoptotic conformation of Bax might be recognized by the Ub conjugation machinery, and
serve as a degradation signal preventing the accumulation of potentially dangerous
apoptotically-active Bax in healthy cell mitochondria. Baxβ, a 24-kD splice variant of Bax
that has shorter half-life, and is a more efficient pro-apoptotic protein than the more
abundant 21-kD Baxα, is continuously degraded in a proteasome-dependent manner in non-
apoptotic cells [22]. Furthermore, as shown by Benard et al., degradation of 6A7-positive
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Baxα is also proteasome-dependent and is regulated by IBRDC2, an IBR-type RING
domain E3 Ub ligase [*21]. Based on these data, it has been proposed that a Ub-dependent
apoptosis checkpoint safeguards mitochondria from Bax-dependent damage, and cells from
unprompted apoptosis [*21,22]. Aside from Ub/proteasome-dependent regulation of Mcl-1
and Bax, several examples of other mitochondria-localized and mitochondria-interacting E3
Ub ligases, or Ub/proteasome-dependent regulatory events that influence mitochondrial
steps in apoptosis have been described. BRCA1-associated RING domain 1 (BARD1)
partially localizes to mitochondria, and it has been proposed that the apoptotic function of
BARD1 is associated with stimulation of Bax oligomerization at mitochondria [27].
Furthermore, ARTS a pro-apoptotic mitochondrial protein is regulated through Ub/
proteasome degradation [28]. Like Bax, high cellular levels of ARTS protein sensitize cells
toward apoptosis, and in healthy cells ARTS levels are kept low through constant Ub-
mediated degradation [28]. Moreover, in addition to Mcl-1 and Bax, ubiquitination of other
Bcl-2 family proteins, including Bcl-2 [29], and a truncated form of Bid [30], regulates their
expression and activity. Altogether, these data indicate a direct role for the Ub/proteasome
system in the regulation of mitochondrial steps in apoptosis, and therefore place the Ub/
proteasome system as a critical mitochondrial quality control system.

Mitochondrial membrane dynamics and mitochondrial autophagy
In Eukaryotic cells, turnover of Mitofusins (Mfn), integral GTPases of the OMM required
for mitochondrial fusion (reviewed in [8,9]), is also mediated by the Ub/proteasome system
[31–35]. Fzo1p, a yeast homologue of Mfn [36] is modified with proteasome-targeting
Lys-48-linked Ub chains [31,32,34], and the proteasome inhibitor, MG132 [33] as well as
aberrations in proteolytic activity (pre1 and pre2) of the 20S proteasomal core particle or the
ATPase subunit (cim3 and cim5) of the 19S regulatory complex of the proteasome [34,35]
suppressed the degradation of Fzo1p. In mammalian cells Mfn1 is relatively unstable, with a
half-life estimated in a range of ~4–6hr [**37]. Mammalian cell culture studies reveal that,
like Fzo1p in yeast, Mfn1 and Mfn2 are stabilized by proteasome inhibition [**13,**37]. In
addition, consistent with Ub-dependence, accumulation of ubiquitinated forms of these
proteins is detected in proteasome inhibitor-treated cells [**13,**37].

Under mitochondrial stress, Ub/proteasome-dependent degradation of mammalian Mfns
[**13,*38] and the D. melanogaster homologue dMfn [39,40] is mediated by Parkin, an
IBR-type RING domain E3 Ub ligase. Parkin translocates to functionally impaired
mitochondria [41], and prior to initiating their removal by mitochondria-specific autophagy,
Mfns are ubiquitinated and degraded in a proteasome-dependent manner [**13,**37,42].
Yet, since in cells deficient in Parkin expression the turnover of Mfns is also regulated by
Ub/proteasome system [**13,*38], it is likely that, in addition to Parkin, another E3 Ub
ligase mediates ubiquitination of these proteins. Interestingly, since inhibition of the
proteasome suppresses Parkin-dependent autophagy of dysfunctional mitochondria [**13], it
is likely that degradation of certain OMM-associated protein(s) initiates mitochondrial
assembly of autophagy components (Fig. 1). Since Parkin can initiate mitochondria-specific
autophagy in Mfn1/Mfn2−/− DKO cells [**13], OMM-associated substrates of the Ub/
proteasome system other than Mfns likely serve this purpose. Consistent with this, it has
been proposed that mitochondrial autophagy requires proteasomal degradation of the OMM
associated voltage-dependent anion-selective channel 1 (VDAC1) [43]. Yet, since this
process occurs in VDAC deficient cells [44], it is likely that degradation of other OMM-
associated substrate(s) of the Ub/proteasome system is critical for initiation of mitochondria-
specific autophagy.

In addition to Mfns, Drp1 a large GTPase essential for mitochondrial fission (for reviews see
[9,21]) is also targeted by Ub-conjugation. Based on co-immunoprecipitation experiments, it
has been proposed that MARCH5 (also known as Mitol or MARCH-V) [45–47], a
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mitochondria-associated RING-finger E3 Ub ligase promotes ubiquitination of Drp1. Yet, in
contrast to Mfns, MARCH5-mediated ubiquitination of Drp1 is not required for Drp1
degradation [45,46], but rather regulates Drp1 activity. Although RNAi downregulation, as
well as overexpression of wild type or RING-inactive mutants of MARCH5, did not induce
any detectable changes in the levels of Drp1 [45,46], expression of RING-inactive mutants
of MARCH5 inhibited subcellular trafficking of Drp1 associated with abnormal elongation
and interconnection of mitochondria [45]. It is important to examine the possibility that
degradation of other mitochondrial protein(s), is regulated by MARCH5-dependent
ubiquitination, and that this in turn affects cellular trafficking of Drp1. Notably, a large-scale
proteomic study of Ub-modified proteins in yeast revealed that Dnm1p, a yeast homologue
of Drp1 is also ubiquitinated [48], suggesting that Ub-dependent regulation of Drp1 might
be evolutionally conserved. Clearly, further mechanistic studies are required to reveal the
significance of the Ub/proteasome system in Drp1/Dnm1p and mitochondrial fission
regulation.

Non-OMM Ub/proteasomal substrates
Mammalian sperm mitochondria that are preordained for degradation during normal
development are tagged with Ub inside the oocyte cytoplasm and later subjected to
proteolysis [49]. Notably, prohibitin, an IMM-associated protein, is ubiquitinated in sperm
mitochondria [50]. Prohibitins regulate the stability of IMM proteins by protecting them
from degradation by the IMM associated, Ub-independent protein degradation systems.
Therefore, the Ub-dependent prohibitin turnover regulation might coordinate Ub-dependent
and Ub-independent proteolytic quality control mechanisms in the mitochondria.
Margineantu et al. [51] shows that a number of non-OMM mitochondrial proteins, including
the OSCP subunit of mitochondrial F1F0-ATPase can be detected as Ub conjugates.
Furthermore, since proteasome inhibition also induced an accumulation of certain IMM-
localized proteins (e.g. vital for the respiratory function of mitochondria: COXI, III, IV,
OSCP) [51] one might suggest that in addition to the OMM-associated proteins, the Ub/
proteasome system also frequently regulates the turnover of IMM-associated proteins.

3. Molecular steps of OMMAD
CDC48/p97/VCP-mediated retrotranslocation of the OMM proteins

Since most known OMM-associated substrates of the Ub/proteasome system are integral
membrane proteins, with one (e.g. Mcl1) or more (e.g. Mfns have two) transmembrane
domains inserted in the OMM, these proteins likely need to be extracted from the OMM
prior to proteasomal degradation. Consistently, in addition to ubiquitination machinery and
the proteasome, participation of other factors is required for OMMAD.

Recent studies have revealed that the cytosolic AAA ATPase CDC48/p97/VCP, that is
required for extracting ubiquitinated proteins from the ER and other cellular membranes
[52,53], regulates OMMAD both in mammalian and yeast cells [**13,**37, **54]. In
mammals p97 is required for turnover of Mcl-1 and Mfn1, two OMM-associated proteins
with relatively short half-lives [**13,**37]. Both of these proteins are stabilized on
mitochondria in cells depleted of p97 activity [**37], suggesting that p97 acts directly on the
OMM. A number of proteomic studies revealed that p97 associates with mitochondria in
unstressed mammalian cells [55–57], further suggesting a widespread role for p97 in
mitochondrial proteostasis. p97 is also required for Parkin-dependent stress-induced
degradation of Mfns and subsequent autophagy of dysfunctional mitochondria [**13].
Notably, in Parkin expressing cells p97 accumulates on dysfunctional mitochondria [**13],
confirming a direct mitochondrial role for this protein. Consistent with this, in response to
mitochondrial stress, Cdc48 a yeast homologue of p97 is also recruited to the OMM [54].
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Mitochondrial translocation of Cdc48 depends on, and occurs subsequently to mitochondrial
translocation of Vms1 (VCP/Cdc48-associated mitochondrial stress-responsive 1) [**54].
Yeast cells depleted of Vms1, and therefore deficient in mitochondrial translocation of
Cdc48, show progressive mitochondrial failure that is associated with increased sensitivity
to mitochondrial stress, as well as a significant delay in the degradation rate of Fzo1p
[**54]. Thus, the role for Cdc48/p97 in the regulation of OMM protein turnover appears to
be conserved. Interestingly, the Cdc48/Vms1 protein complex also contained Npl4 protein.
Since Npl4 is required for Cdc48/p97 mediated retrotranslocation of ubiquitinated proteins
from membranes, including those following the endoplasmic reticulum associated
degradation (ERAD) pathway [58], it appears that OMMAD shares a number of critical
components with other Ub/proteasome dependent protein degradation pathways.

Mitochondria-associated deubiquitinases
Proteasomal degradation of polyubiquitinated proteins, as well as activities of mono- or
Lys-63-chain poly- ubiquitinated proteins can be affected by activities of deubiquitinating
proteases (DUBs) (for review see [59]). Until now, two mitochondria-associated DUBs have
been identified [*19,60]. As discussed above Usp9x mediates deubiquitination, and
regulates stability of Mcl1 [*19]. Usp9x partially localizes to the mitochondria where it
binds Mcl1 and removes the proteasome targeting Lys 48-linked polyubiquitin chains [*19].
Notably, increased Usp9x expression correlates with increased Mcl1 protein in human
follicular lymphomas and diffuse large B-cell lymphomas [*19]. Unlike Usp9x, Usp30,
another mitochondria associated DUB [60] is specifically associated with the OMM. The
mitochondrial substrates of Usp30 are currently unknown. Yet, since RNAi downregulation
of Usp30 induces abnormal elongation and interconnection of mitochondria [60], it is likely
that Usp30 mediates deubiquitination of certain proteins implicated in the regulation of
mitochondrial membrane dynamics.

4. Future perspectives
As in the case of any developing research field, the studies summarized here are raising a
number of questions regarding the scope and mechanism of Ub/proteasome system in
mitochondrial homeostasis. For example, some published reports indicate a role for the Ub/
proteasome in regulation of mitochondrial proteins localized in the inner mitochondrial
compartments (e.g. IMM). However, the OMM is the barrier separating mitochondria from
the cytosol, and the cytosol localized components of Ub/proteasome system. Thus, the
mechanism of ubiquitination and subsequent movement of Ub-conjugated proteins from the
IMM to the cytosol are currently unknown. Undoubtedly, further studies addressing this
exciting research topic are needed. Furthermore, it is currently unknown whether misfolded
proteins of the OMM, are processed by OMMAD in the same manner as misfolded ER
proteins are targeted for proteasomal degradation by ERAD pathway. For example, the
mechanisms by which mitochondrial proteins are recognized by Ub/proteasome system, as
well as factors mediating this recognition and other steps of OMMAD need to be identified.
Revealing additional molecular components as well as more detailed understanding of
protein targets, mechanisms and roles of known mitochondrial components of the OMMAD
pathway will likely help to address these issues.

Finally, the overall physiological significance of the OMMAD system should also be
established. How the Ub/proteasome facilitates mitophagy, for example, remains enigmatic
and important. Considering that mitochondrial dysfunctions are hallmarks of aging and
various aging-linked diseases, one may assume that Up/proteasome system might be also
important for elimination of misfolded mitochondrial proteins expected to accumulate in
aging cells. The degrees to which aging-associated decline in Ub/proteasome activities
contribute to mitochondrial dysfunctions need to be investigated.
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Answering these, and many other emerging questions will likely shed more light on the
significance of Ub/proteasome system in the regulation of mitochondrial function. Given the
important role of mitochondria for cellular homeostasis, these should also improve general
knowledge of mitochondrial biology, and reveal how mitochondrial dysfunctions contribute
to disease.
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Highlights

1. E3 ligases that can localize to mitochondria such as Parkin ubiquitinate outer
mitochondrial membrane proteins.

2. Membrane spanning proteins localized to the outer mitochondrial membrane can
be degraded by the ubiquitin proteosomal system.

3. p97, an AAA ATPase involved in membrane protein retrotranslocation mediates
outer mitochondrial membrane protein degradation.
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Figure.
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Table 1

Proteins implicated in the OMMAD pathway

Protein Biological function Role in OMMAD/Targets References

Parkin IBR-domain E3 Ub ligase ubiquitination of Mfn1, Mfn2 and VDAC1; induces
mitochondria-specific auophagy

[13,41–43]

PINK1 mitochondrial kinase recruits Parkin to the mitochondria [61,62]

MARCH5/MARCH-V/Mitol mitochondrial RING-domain E3 Ub
ligase

Binds and ubiquitinate Drp1 (mitochondrial fission
factor) and Mitofusins (mitochondrial fusion
factors); mitochondrial dynamics regulation

[45–47]

MULAN/MAPL mitochondrial RING-domain E3 Ub
ligase

mitochondrial dynamics regulation; reported also as
E3 SUMO ligase targeting Drp1

[63,64]

IBRDC2 IBR-domain E3 Ub ligase apoptosis regulation; targets Bax, a proapoptotic
protein in Bcl2 family

[21]

Mule/ARF-BP1 HECT domain E3 Ub ligase ubiquitinates and regulates turnover of Mcl1, an
antiapoptotic protein in Bcl2 family

[18]

USP9x deubiquitinase deubiquitinates and regulates turnover of Mcl1 [19]

USP30 mitochondrial deubiquitinase regulates mitochondrial dynamics; substrates
unknown

[60]

p97/CDC48 AAA-ATPase; protein dislocase regulates OMM protein turnover and mitochondria-
specific autophagy in yeast and mammals

[13,37,54]

Vms1p adaptor protein cofactor of CDC48; regulates OMM protein and
mitochondrial degradation in yeast

[54]

Npl4 adaptor protein cofactor of CDC48; regulates OMM protein and
mitochondrial degradation in yeast

[54]

Proteasome protein degradation complex translocates to the mitochondria upon activation of
Parkin-dependent, mitochondrial stress-induced
mitophagy

[38]
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