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Atherothrombosis remains one of the main causes of morbidity and mortality in the western countries. Human atherothrombotic disease
begins early in life in relation to circulating lipid retention in the inner vascular wall. Risk factors enhance the progression towards clinical
expression: dyslipidaemia, diabetes, smoking, hypertension, ageing, etc. The evolution from the initial lipid retention in the arterial wall to
clinical events is a continuum of increasingly complex biological processes. Current strategies to fight the consequences of atherothrombosis
are orientated either towards the promotion of a healthy life style1 and preventive treatment of risk factors, or towards late interventional
strategies.2 Despite this therapeutic arsenal, the incidence of clinical events remains dramatically high,3 dependent, at least in part, on the
increasing frequency of type 2 diabetes and ageing. But some medical treatments, focusing only on prevention of the metabolic risk, have
failed to reduce cardiovascular mortality, thus illustrating that our understanding of the pathophysiology of human atherothrombosis
leading to clinical events remain incomplete. New paradigms are now emerging which may give rise to novel experimental strategies to
improve therapeutic efficacy and prediction of disease progression. Recent studies strengthen the concept that the intraplaque neovascular-
ization and bleeding (Figure 1, upper panel) are events that could play a major role in plaque progression and leucocyte infiltration, and
may also serve as a measure of risk for the development of future events. The recent advances in our understanding of IntraPlaque
Hemorrhage as a critical event in triggering acute clinical events have important implications for clinical research and possibly future clinical
practice.
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Early observational studies
Vulnerable plaques are characterized by the retention of highly
modified, heterogeneous biomaterials within the core of the
lesion. This so-called ‘necrotic core’ is encapsulated between the
luminal fibrous cap and the outer intima and remaining media
(‘intramural atheromatous abscess’ described by T. Leary in
1934).4,5 The core includes components of different ages, choles-
terol crystals, frequent calcific nodules, and a more or less identifi-
able fibrin-rich haemorrhages, highlighting the discontinuous
evolution of the plaque from the initial esterified lipid retention
to the formation of a more complex necrotic core, potentially
responsible for plaque instability and complications.5

The complex nature of the necrotic core in plaques was first
suggested by Galien (131 to 201 CE) in his initial description of
human atheroma (auhrvma, atheroma ¼ gruel). The involvement
of the repeated accumulation of haemoglobin-rich intraplaque
thrombi in the evolution of the lesions toward complications
was proposed as early as 1936.6 In these initial observational
studies of human pathology, Paterson7 and Wartman8 described
intraplaque haemorrhages caused by neo-capillary rupture
(Figure 2, left panel) and claimed that fibrin-rich intraplaque haem-
orrhages are the common precipitating cause of arterial lumen
thrombosis. After this initial period, the clinical and biological
importance of intraplaque haemorrhages became rather neglected,
and the majority of biological studies focused on lipid metabolism
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and on the inflammatory response mainly represented by leuco-
cyte extravasation observed within the complicated plaque.9

Histopathological description
Histopathological studies are limited by the difficulties of precisely
dating fibrin-rich intraplaque haemorrhages by histological examin-
ation due to the detersion of haemorrhagic products by phagocytes
and progressive oxidative and proteolytic transformation. Virmani
and Roberts10 reported that the frequency of intraplaque, erythro-
cyte extravasation, and the presence of iron and fibrin were pro-
portional to the number of atherothrombotic plaques present.
Moreover, intraplaque iron and fibrin were mainly present in associ-
ation with extravasated erythrocytes, suggesting that all the blood
components of haemorrhages are present within the plaque, includ-
ing plasma and cellular components. Recently, intraplaque haemor-
rhages have been observed macroscopically by the presence of
red liquid in plaques (Figure 1, upper panel), identified microscopi-
cally by the presence of more or less intact erythrocytes (Figure 3)
in the core of the plaque, or indirectly characterized by the presence
of free haemoglobin, and iron staining with Prussian blue, observed as
haemosiderin present in phagocytic cells (Figure 2, right panel). In the
absence of intact erythrocytes, the presence of a large amount of
iron provides evidence of older haemorrhages. Erythrocyte
‘ghosts’ can also be identified by the presence of glycophorin, an
abundant antigenic protein of the erythrocyte membrane, detect-
able by immunohistochemistry11 (Figure 3D). A recent autopsy
study observed a higher density of neovessels in non-stenotic,

human coronary plaques, which correlated with the presence of
iron and glycophorin.12

Usually, intraplaque haemorrhages are associated with a high
density of phagocytic cells (CD 68+) involved in RBC and iron pha-
gocytosis (Figure 3C and Figure 4, left panel). The clotting process
takes place rapidly following intraplaque haemorrhage, involving
platelet and thrombin activation and fibrin formation (Figure 4,
right panel).

From intraplaque haemorrhages
to clinical expression
Numerous clinical histopathological studies have been published
since 1979, exploring the relationship between intraplaque haem-
orrhages in carotid endarteriectomy samples and clinical symp-
toms. In 1979, Imparato et al.13 established a relationship
between the presence of intraplaque haemorrhages in carotid
endarteriectomy samples and neurological symptoms in a series
of 50 patients. Following this initial study, there have been
reports of a strong or weak association between macroscopic or
microscopic intraplaque haemorrhages14 and clinical events,
which have been recently summarized.15 Other studies focused
on the relationship between intraplaque haemorrhages and neo-
vessel density,16,17 or on the prognostic value of carotid intrapla-
que haemorrhage as a predictor of global cardiovascular
morbidity and mortality.18 This prognostic value of

Figure 1 Macroscopic view and schematic representation of the detrimental consequences of intraplaque haemorrhages on plaque biology
and stability.
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neovascularization and intraplaque haemorrhages has been
recently emphasized through the Athero-Express biobank evalu-
ation showing that local plaque haemorrhages and increased intra-
plaque neovessel density were independently related to
cardiovascular outcome.19 This study is of specific interest since
it raised the concept that locally observed increased plaque neo-
vascularization or haemorrhages are associated with an increased
risk of secondary events in other vascular territories, suggesting
that the degree of plaque vascularization and bleeding in one site
may reflect the situation in other vascular sites.

From centripetal neo-angiogenesis
to intraplaque haemorrhages
The mechanisms of plaque enrichment by blood-borne com-
ponents has been a matter of debate between those favouring
repeated plaque fissuring and associated formation of a non-
occlusive luminal thrombus which is then incorporated into the
plaque20 and proponents of intraplaque haemorrhages being
related to leakage from intra-plaque neo-capillaries.21 The fact
that erythrocyte extravasation and intraplaque haemorrhages
could be observed in relation to a high density of neocapillaries
in the absence of plaque fissure provides evidence of the predomi-
nant role of the former. Nevertheless, incorporation of luminal
thrombi cannot be entirely excluded, particularly in large arteries.

For example, it has been reported that atheroma development in
pulmonary artery hypertension is directly linked to the migration,
adhesion, and subsequent incorporation of mobilized venous
thrombi within pulmonary artery wall.22 Similarly, some incorpor-
ated luminal thrombi, unrelated to intraplaque haemorrhages, but
resulting from plaque fissuring, can be observed in human aorta.

Intraplaque haemorrhages are mainly related to centripetal
angiogenesis from the adventitia towards the plaque.23 This
neo-angiogenesis takes place early in atheroma development and
is related to lipid overload. Heistad et al.24 described an increased
perfusion in the outer layer of the aorta of hypercholesterolaemic
monkeys. Hypercholesterolaemia promotes the development of
adventitial coronary vasa vasorum in a porcine model.25 In this
model, coronary neovascularization development preceded
hypercholesterolaemia-induced endothelial dysfunction,26 and
may promote plaque progression.27 Conversely, hypercholestero-
laemia is associated with an elevated plasma level of VEGF in
humans and statins reduced both hypercholesterolaemia and
plasma VEGF concentration.28 Centripetal neo-angiogenesis,
erythrocyte extravasation, and erythrophagocytosis are early
events in atheroma progression, usually not observed in associ-
ation with fatty streaks, but constantly associated with the
fibro-atheroma stage29 (Figure 4).

These neo-capillaries could allow diffusion of plasma-borne mol-
ecules30 and diapedesis of erythrocytes and leucocytes. Indeed, the

Figure 2 Histology of intraplaque haemorrhage (A: Masson’s trichrome, mosaic reconstituted section, ×2.5) showing the presence of intact
RBCs and free haemoglobin (inset, ×20). (B) Iron visualized by Prussian blue (Perl’s) stain with nuclear red counterstaining, showing the
haemoglobin-dependent presence of iron, mainly localized in the vicinity of neocapillaries and within phagocytic cells (insets, ×20 and ×40,
arrow).
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density of intimal neo-capillaries correlated with the extent of
necrotic core formation, intraplaque haemorrhage, haemosiderin
deposits, and inflammatory infiltrates,31 suggesting that centripetal
angiogenesis is a determinant of atherothrombotic evolution. Neo-
vascularization has been reported in human plaques, whatever
their localization: carotid arteries,17,32,33 coronary arteries,21 and
aorta,34 all correlating with plaque evolution. Therefore, adventitial
neo-angiogenesis appears to be linked to the evolution of athero-
sclerosis from the early stages towards complicated lesions. The
driving force of centripetal angiogenesis is the transmural convec-
tion, from inside to outside, due to orthogonal hydraulic conduc-
tance, of soluble mediators, such as VEGF, from the wall to the
adventitia.23

The immaturity of neo-vessels is the cause of intraplaque haem-
orrhages occurring in their vicinity.21 Indeed, neo-vessels in
plaques appear to be leaky.35,36 When localized in plaques, micro-
vessels are dysmorphic and lack surrounding a-actin-positive mural
cells.31,37 It was recently observed that endothelial cells lining
microvessels were abnormal, consisting of membrane blebs, vacu-
oles, open intercellular junctions, with a tendency to detachment.38

These studies suggest that neovessel immaturity is directly involved
in leucocyte and erythrocyte extravasation and therefore in

intraplaque haemorrhages. Since the angiopoietin system plays a
role in vessel maturation/destabilization, the balance between
angiopoietin-1 and angiopoietin-2 expression was explored in
human plaques.39 A negative correlation was observed between
angiopoietin-1 and microvascular density within the plaque,
whereas the ratio angiopoietin-2/angiopoietin-1 was positively cor-
related to microvascular density. This imbalance has been linked to
the proteolytic environment of the plaque, involved in the degra-
dation of angiopoietin-1 and in Tie-2 receptor shedding.40

Angiopoietin-1 promotes endothelial cell barrier integrity, and
imbalance between angiopoietin-1 and angiopoietin-2 is thought
to play a role in brain arteriovenous malformations,41 which lead
to recurrent cerebral haemorrhages. Also absence of pericyte
recruitment and impaired vessel maturation is reported in myocar-
dial ischaemia in diabetic mice with attenuation of Tie-2 and
increase in angiopoietin-2 expressions.42 Lastly, haem/iron,
released by free haemoglobin, is directly toxic for endothelial
cells.43 Therefore, immaturity and fragility of vessels arising by
intraplaque neo-angiogenesis may explain the commonly observed
presence of erythrocyte extravasation and haemorrhages of differ-
ent ages in one evolutive plaque14 and the recurrence of intrapla-
que haemorrhages after a first haemorrhagic event.44

Figure 3 Centripetal angiogenesis and erythrodiapedesis in early stages of human atheroma. (A) General view of an asymptomatic lesion in
human common carotid artery showing both cholesterol crystal clefts (arrow) and centripetal angiogenesis (square) (haematoxylin/eosin,
HE ×4); (B) enlarged view of the neovessel showing the presence of RBCs within the circulating lumen, and erythrodiapedesis outside the
vessel (arrow, HE ×40); (C ) erythrophagocytosis (entosis) evidenced by the presence of RBC skeletons within a phagocyte (arrow,
HE ×40); (D) enlargement of cholesterol crystal clefts surrounded by immuno-staining of glycophorin A (brown, ×40).
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Nevertheless, the further understandings the cellular and molecu-
lar events involved in centripetal angiogenesis and neovessel lea-
kages remain an important scientific and medical challenge.

Biological consequences of
intraplaque haemorrhages
Neoangiogenesis and its associated intraplaque haemorrhages
convey into the lesion all the blood components, including red
blood cells, leucocytes, platelets, and plasma proteins (Figure 1,
lower panel). These different blood-borne components are impli-
cated, to different degrees, in the biological processes involved in
atherothrombosis progression, influencing mainly three predomi-
nant pathological aspects: cholesterol crystal production and
retention, oxidant activities, and proteolytic activities within the
lesion core.

Cholesterol crystal formation
and retention
All stages of atherothrombosis are impacted by cholesterol, includ-
ing cholesterol esters in the form of droplets, mainly conveyed by
lipoproteins, and cholesterol crystals, composed of unesterified

cholesterol, which usually remain localized within vessel wall
(Figure 3). These crystals form the intracellular and extracellular
clefts observed in histological section of fixed, paraffin-embedded
tissues. The mobilization of cholesterol crystals from tissue into
circulation is an infrequent but highly pathogenic phenomenon.45

Free cholesterol retention in cells and tissues, leading to monohy-
drate crystal formation, can originate from endocytosed choles-
terol esters, hydrolyzed in phagolysosomes,46 or directly from
free cholesterol of cell membranes. Membranes of circulating
cells, including activated platelets,47,48 and probably dead leuco-
cytes, can release free cholesterol. But the cholesterol content
of erythrocyte membranes exceeds that of all other cells in the
body, with lipids constituting 40% of their weight.49 Acyl coenzyme
A:cholesterol acyltransferase inhibitors highly enhance cholesterol
crystal formation by blocking cholesterol esterification and
solubilization.50

The relationship between cholesterol crystals and erythrocyte
membranes was first suggested by Arbustini et al.22 who demon-
strated that atheroma observed in pulmonary hypertension is
only observed in thromboembolic pulmonary hypertension, and
that pultaceous cores with cholesterol clefts are co-localized
with glycophorin A immunostaining. This observation was rapidly
extended to coronary atherothrombotic plaques.51 The authors

Figure 4 (Left panel) Immunostaining of phagocytes (CD 68) in the border area of the necrotic core (mosaic reconstituted section, ×2.5)
showing CD 68+ smooth muscle-like cells (left inset, ×20) and phagocytosed RBCs (right inset, ×40). (Right panel) Immunostaining of platelets
(C41) showing an important enrichment of the core by the platelet membrane marker (mosaic reconstituted section, ×2.5), particularly in the
shoulder area, near the neovessels (×20). Thrombin immunostaining and phosphotungstic acid haematoxylin (PTAH) staining of fibrin are
diffuse showing the fibrin-rich nature of intraplaque haemorrhages (×20).
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observed that cholesterol crystal clefts co-localized with glyco-
phorin A surrounded by iron deposits in human coronary
plaques and were correlated with the complexity of the plaque.
They also demonstrated experimentally that injection of erythro-
cytes into the arterial wall of hypercholesterolaemic rabbits
induced cholesterol crystal formation and iron deposits. This
experimental model has now been reproduced for exploring the
relationship between erythrocyte accumulation and oxidative
stress.52,53 The pathogenicity of cholesterol crystals is linked to
their ability to rupture biological membranes,54 to erode the thin
cap,55 and to protrude within the lumen inducing luminal thrombo-
sis56 and possibly embolism. Lastly, cholesterol crystals within vas-
cular cells at the early stage of atheroma could trigger the
inflammatory response. Duewell et al.57 and Rajamaki et al.58

recently reported that intracellular cholesterol crystals, as other
forms of crystals (uric acid, silica crystals, etc.), are able to activate
NLRP3 inflammasomes through phagolysosome damage, cytosolic
cathepsin release, and to induce pro-IL-1b cleavage and active Il-1b
release into the extracellular space. Therefore, arterial wall choles-
terol content is associated with arterial thrombosis.59

Haemoglobin and oxidative enzymes
Erythrocytes of intraplaque haemorrhages convey and rapidly
release large amounts of haemoglobin (Figure 2, left panel). It has
been reported that hydroperoxydes,60 oxidized LDLs, and lipids
extracted from human atheromatous plaques61 are able to
provoke RBC lysis. Haemoglobin is composed of a globin
protein core and iron-containing haem (red pigment). Lipids
extracted from atheromatous plaques can also oxidize Fe++ hae-
moglobin to the more reactive Fe+++ haemoglobin.61 Fe+++

haem dissociates more easily from globin than Fe++, releasing
highly deleterious, hydrophobic-free haem/iron.62 Haem/iron can
mediate oxidative modification of lipids and cause endothelial cyto-
toxicity.43,63 Therefore, haem/iron considerably amplifies the oxi-
dative capacity of the biological systems, including the formation
of protein complexes of high molecular mass, participating in the
formation of the ‘gruel’ in the necrotic core. The haemorrhage-
dependent colocalization of CD163 (haemoglobin scavenger
receptor) and 4-hydroxy-2-nonenal, a marker of oxidation in
human unstable coronary plaques, has recently been reported.64

Histologically, Prussian blue (Perl’s) staining usually reveals the
presence of haemosiderin associated with phagocytes in the
close vicinity of neocapillaries (Figure 2, right panel).

In parallel, haemorrhages convey neutrophils and mononuclear
cells into the plaque, and leucocytes also extravasate from intrapla-
que neo-capillaries. Neutrophils are powerful pro-oxidative cells,
due to their oxidative enzymes, NADPH oxidases, and myeloper-
oxidase (MPO), a haem protein abundantly expressed in neutro-
phils.65 However, these enzymes are not totally specific:
macrophages66 also express MPO, but to a lesser extent than
neutrophils.67

Conversely, in response to this iron-dependent oxidative
environment, cells can counteract this oxidative injury through
different anti-oxidative mechanisms operating at different stages
of the process: RBC capture and entosis (cell dying as a result of
becoming engulfed by a neighbouring cell) through a mechanism
dependent on exposed phosphatidylserine,68 ligation of free

haemoglobin by haptoglobin and phagocytosis by CD163,69 free
haem and iron binding by haemopexin and endocytosis of the
complex, and iron transport by ferritin. All these molecules limit
the ability of free haemoglobin to generate oxidative stress. In par-
ticular, the haptoglobin genotype is a determinant of oxidative
activity of free haemoglobin,70 and of iron content71 in human
plaques.

Similarly, numerous cellular enzymatic or chelating molecules
are present in complicated plaques and are involved in limiting
the potential injury caused by the oxidative radicals generated.
For example, thioredoxin has been reported to be more highly
expressed in culprit coronary plaques than in stable plaques, in
relation to intraplaque haemorrhages and iron deposits.72 Their
deficits are involved in atherothrombosis acceleration.73

Blood-borne proteolytic activity
The role of the mural haemoglobin-rich thrombus as an important
source of proteolytic activity in atherothrombosis was first docu-
mented in human abdominal aortic aneurysm (AAA), an athero-
thrombotic pathology in which proteolysis plays a predominant
role.74 Similar blood-borne protease activities are generated
during the evolution of intraplaque haemorrhages and play an
important role in fibrous cap thinning and final rupture. Necro-
tic/haemorrhagic cores, associated with the risk of rupture, are
characterized by fibrin deposits.75 Neutrophil density is also a hall-
mark of plaque complexity, linked to both intraplaque haemor-
rhages and microvessel density76 (Figure 5).

All the fibrinolytic activities, including t-PA, u-PA, and plasmin,
are proportional to plaque complexity and are concentrated in
the core of the lesion.77 Similarly, neutrophil gelatinase and
serine protease activities are mainly conveyed by bleeding within
culprit plaques.78 Beside their ability to degrade the extracellular
matrix, these serine proteases can also degrade atheroprotective
proteins secreted by smooth muscle cells, such as HSP.79,80 There-
fore, proteases conveyed by intraplaque haemorrhages could par-
ticipate in the formation of the necrotic core gruel, and be a
determinant of fibrous plaque fissuring and rupture.

However, platelets and angiogenesis-driven macrophage extra-
vasation could also convey factors of resistance to proteolysis,
such as PAI-1 and protease nexin-1.81 Indeed, the role played by
extravasated macrophages from neo-microvessels at the end-stage
of plaque evolution is ambiguous, possibly involved more in deter-
sion and healing the process, through M2 differentiation,82,83 than
in plaque rupture.

Adventitial immune response
The role of inflammatory cells, including lymphocytes, and various
molecules involved in atherothrombosis have been recently
reviewed.84 The post-capillary venules are probably the predomi-
nant site of leucocyte diapedesis and subsequent movement
towards the plaque, as they are specifically equipped for leucocyte
rolling and transendothelial migration. Most of the intraplaque leu-
cocytes observed in association with haemorrhages are
macrophage-like phagocytic cells (Figure 4, left panel).

Intraplaque haemorrhages also impact the adventitial immune
response. As in aortitis85 and AAA,23 complicated vulnerable
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plaques are characterized by the presence of an adventitial immune
reaction, involving the formation of variable lymphoid nodules,
possibly evolving towards adventitial tertiary lymphoid organs
(ATLO). As early as 1985, Kohchi et al.86 observed in autopsies
that coronary lesions responsible for fatal unstable angina exhib-
ited more adventitial lymphoid infiltrate, often associated with
autonomic nerve fibres. Further details of this phenomenon have
been reported, including the presence of undefined adventitial
inflammation87 and mast cells,88 and the ratio between T and B
lymphocytes.89,90 These observations have been recently con-
firmed by reports of a spatial relationship between adventitial lym-
phoid infiltrate, plaque complexity, intraplaque haemorrhage, and
luminal thrombus, and their association with hypertension,91

suggesting a direct relationship between neo-mediators generated
within the plaque, their orthogonal convection towards the adven-
titia, and their involvement in the adventitial immune response.23

The formation of these lymphoid structures requires, and is associ-
ated with, an intense angiogenic process. Furthermore, the
relationship, if any, between immune cell effectors recruited in
ATLOs and those extravasating through intimal neocapillaries
remains to be studied.

Impact of risk factors on
intraplaque haemorrhages
Risk factors, downstream to their impact on metabolism, could
influence intraplaque haemorrhage and its consequences. As pre-
viously stated, cholesterol-rich diet-induced adventitial and

intramural neovascularization is attenuated by statin treatment,
suggesting that cholesterol overload and lowering may affect
vessel growth in atherosclerotic lesions. However, the influence
of cholesterol on intraplaque bleeding needs to be established.
Erythrocyte membranes are particularly rich in cholesterol, and
hypercholesterolemia modifies RBC membrane content,92 particu-
larly in diabetes.93 Therefore, membrane cholesterol levels of cir-
culating erythrocytes have been recently proposed as biomarkers
of atherothrombosis.94 Similar results were reported for choles-
terol density in neutrophil membranes and for neutrophil sensi-
tivity to angiotensin II-induced free radical release.95 In contrast,
circulating HDLs could have beneficial effects via their capacity
to convey a1-antitrypsin96 into the diseased tissue, whereas
tobacco consumption has an inverse impact.

When compared with data on intraplaque haemorrhages and
neovessels in atherothrombosis, reports concerning the direct
impact of diabetes and hyperglycaemia on this pathological
process remain scarce. Drielsma et al.97 reported that carotid
plaques in diabetic patients are more highly vascularized than in
non-diabetic patients and that control of hyperglycaemia reduced
intraplaque neovascularization.98 In apoE-deficient mice, induction
of type 1 diabetes promotes more inflammatory and haemorrhagic
plaques99 but not neovascularization. Therefore, diabetes pro-
motes microangiopathic neovessels in the plaque as it does in
the retina,100 whereas it impairs macroarteriogenesis in peripheral
arterial disease.101 Hyperglycaemia induces abnormal angiogenesis
and micro-angiopathy in the retina via a VEGF-dependent mechan-
ism.102 Similar mechanisms could take place in the vascular wall at
initial stages of atheroma, causing enhanced angiogenesis,

Figure 5 (Left panel) Immunostaining of endothelium (CD 31, ×20) showing the abundance of neovessels, and the presence of rolling poly-
morphonuclear cells within these neo-venules (inset, ×40, arrows). (Right panel) Diffuse immunostaining of neutrophil membranes (CD 66b,
mosaic reconstituted section, ×2.5) and presence of a rolling CD 66+ polymorphonuclear cell and a mononucleate cell (arrow head) in a neo-
vessel (inset, ×100).
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extravasation, and capillary fragility. At the stage of intraplaque
haemorrhages, the impact of diabetes is mostly dependent on
free haemoglobin-induced oxidative stress.

In remarkable studies, Levy et al.69 demonstrated that the Hp1-1
genotype/phenotype of haptoglobin protects diabetic patients
from cardiovascular complications. This beneficial effect is due to
the greater ability of Hp1-1 haptoglobin to clear free haemoglobin
via CD163. In contrast, the homozygous Hp2-2 genotype/
phenotype does not facilitate haemoglobin clearance, and there-
fore the oxidative potential of free haemoglobin is reinforced in
such patients.

Application to diagnostic imaging
Imaging atherothrombotic plaques is a large field of experimental and
clinical investigation, widely reviewed in the international literature.
The use of magnetic resonance imaging (MRI) for intraplaque haem-
orrhage has been recently reviewed.103 In particular, MRI studies
have documented that intraplaque haemorrhages are associated
with plaque enlargement within 18 months, whereas without haem-
orrhage, atheromatous plaques did not progress.44,104

It may become also possible to visualize the vasa vasorum in
atherosclerotic plaques and to follow their progression105 using
contrast-enhanced intra-vascular ultrasound imaging.106 This
could become of interest since vaso vasorum may be altered in
response to plaque stabilizing compounds107 and also neovascular-
ization density of plaques has been correlated with adverse cardi-
ovascular outcome in a longitudinal study.19

Circulating biomarkers that may
reflect the risk of intraplaque
bleeding
Today, there are more indirect than direct biomarkers of intraplaque
microbleedings. The cholesterol concentration in erythrocyte mem-
branes probably reflects the lipid profile over a long period of time.
Tziakas et al.94 reported that the non-esterified cholesterol content
of circulating RBC membranes was strongly associated with clinical
instability in patients with coronary artery disease.108,109 This
increase in cholesterol content was associated with a parallel increase
in IL-8 RBC membrane (Duffy Antigen/Receptor for Chemokines,
DARC) retention in patients with acute coronary syndrome.109

Conversely, plasma levels of anti-oxidant proteins could be used
as biomarkers of RBC and free haemoglobin-dependent oxidative
stress.110

Haptoglobin genotype/phenotype are also considered identifi-
able genetic risk factors of acute atherothrombotic clinical events
in diabetic patients.111 The homozygous Hp1-1 haplotype is pro-
tective, whereas the homozygous Hp2-2 or heterozygous Hp1-2
haplotypes are permissive.69 Nevertheless, this powerful effect is
restricted to diabetic patients.

In the same way, CD163, the Hb/Hp complex receptor, which is
a transmembrane protein highly sensitive to proteolytic shedding
and release, has been reported to be increased in the plasma of
patients with peripheral artery disease.112 A decrease in plasma
levels of proteins secreted by smooth muscle cells113 but degraded

by blood-borne intra-tissue proteolytic enzymes,80 or an increase
in proteolytically generated peptides, could also be of interest as
haemorrhage-dependent biomarkers. Nevertheless, the sensitivity
and the specificity of these circulating markers with respect of
intraplaque haemorrhages remain to be defined.

Therapeutic consequences
There is experimental evidence that statins preserve the adventitial
vasa vasorum architecture and prevent neovascularization devel-
opment in hypercholesterolaemic pigs, independently of choles-
terol lowering.114 Statins could also influence the consequences
of microbleeding due to their ability to limit the cholesterol
content of RBC membranes.115 In particular, statins change the
profile of cellular phospholipids by reducing the sphingomyelin
content of cell membranes.116 In parallel, statins are also able to
limit neutrophil transendothelial migration.117 In contrast,
coumarin-type anticoagulation is associated with a higher occur-
rence of intraplaque haemorrhages.118

The interest in intraplaque angiogenesis has been spurred by the
potential to target plaque neovascularization with angiogenesis
inhibitors, including gene therapy and theranostic methods,
approaches that have been associated with reductions in plaque
progression in animal models. For example, angiostatin has been
shown to limit plaque progression in mice.119 More recently, it
was shown experimentally that thalidomide, which impacts neo-
microvessel formation, could prevent plaque progression in
pigs.107 Therefore, antiangiogenic therapy has been proposed in
atherosclerosis.120 Nevertheless, as described above, intraplaque
angiogenesis has a dual role: neo-angiogenesis is responsible for
the intrapalque haemorrhage itself, but also conveys leucocytes
capable of detersion of haemorrhagic products, a necessary step
towards healing. Indeed, there are now some recent clinical
reports showing that antiangiogenic therapy for cancer121 or
age-related macular degeneration122 could increase the risk of car-
diovascular diseases. Conversely, rosiglitazone, a PPAR agonist,
despite its beneficial effects on glucose metabolism, significantly
increases the risk of atherothrombotic events.123 It has been
reported that PPAR agonists increase the expression of VEGF in
vascular smooth muscle cells124 and macrophages.125 These data
suggest that the pro-angiogenic effects of PPAR-g agonists could
be one of the limitations to their clinical use. Therefore, the
impact of new compounds developed for atherothrombosis
therapy or as antiangiogenic therapy in other diseases should be
tested on IPH risk before clinical use.

Due to the prominent role of oxidative stress in the intraplaque
haemorrhage-dependent clinical expression of atherothrombosis
in diabetic patients, vitamin E supplementation has been proposed
in Hp2-2 diabetic patients for the prevention of atherothrombotic
complications.126 In the same way, anti-oxidant interventions have
demonstrated their ability to prevent neovascularization in
hypercholesterolaemic pigs.127

Conclusion
The newly established impact of intraplaque haemorrhages on the
evolution of atherothrombotic plaques towards clinical expression
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provides an innovative conceptual framework for future research
and development in human atherothrombotic diseases. New bio-
logical challenges are to increase the understanding of how
neo-angiogenesis is initiated in the early stages of human atheroma,
why neo-vessels do not mature in the plaques, how intraplaque
haemorrhages lead to plaque rupture and clinical expression,
how cholesterol crystals impact plaque progression towards
rupture, and how diabetes and other risk factors directly influence
these phenomena These new concepts also reinforce the interest
of exploiting human tissue and cell biobanks for research in cardi-
ovascular diseases in general and in atherothrombosis in particular.
They also underline the importance in tissue collection and diver-
sification of sample preparation; i.e. chemical fixation for histology,
direct freezing, preparation of conditioned media, smooth muscle
and endothelial cell primary culture, leucocyte extraction, etc.
These new paradigms will also impact translational research by
promoting innovation in diagnostic tools (biomarkers, molecular
imaging) and therapeutics in human atherothrombotic disease.
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