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Abstract
This paper discusses the potential of graphics processing units (GPUs) in high-dimensional
optimization problems. A single GPU card with hundreds of arithmetic cores can be inserted in a
personal computer and dramatically accelerates many statistical algorithms. To exploit these
devices fully, optimization algorithms should reduce to multiple parallel tasks, each accessing a
limited amount of data. These criteria favor EM and MM algorithms that separate parameters and
data. To a lesser extent block relaxation and coordinate descent and ascent also qualify. We
demonstrate the utility of GPUs in nonnegative matrix factorization, PET image reconstruction,
and multidimensional scaling. Speedups of 100 fold can easily be attained. Over the next decade,
GPUs will fundamentally alter the landscape of computational statistics. It is time for more
statisticians to get on-board.
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1. INTRODUCTION
Statisticians, like all scientists, are acutely aware that the clock speeds on their desktops and
laptops have stalled. Does this mean that statistical computing has hit a wall? The answer
fortunately is no, but the hardware advances that we routinely expect have taken an
interesting detour. Most computers now sold have two to eight processing cores. Think of
these as separate CPUs on the same chip. Naive programmers rely on sequential algorithms
and often fail to take advantage of more than a single core. Sophisticated programmers
eagerly exploit parallel programming. However, multicore CPUs do not represent the only
road to the success of statistical computing.

Graphics processing units (GPUs) have caught the scientific community by surprise. These
devices are designed for graphics rendering in computer animation and games. Propelled by
these nonscientific markets, the old technology of numerical (array) coprocessors has
advanced rapidly. Highly parallel GPUs are now making computational inroads against
traditional CPUs in image processing, protein folding, stock options pricing, robotics, oil
exploration, data mining, and many other areas (28). We are starting to see orders of
magnitude improvement on some hard computational problems. Three companies, Intel,
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NVIDIA, and AMD/ATI, dominate the market. Intel is struggling to keep up with its more
nimble competitors.

Modern GPUs support more vector and matrix operations, stream data faster, and possess
more local memory per core than their predecessors. They are also readily available as
commodity items that can be inserted as video cards on modern PCs. GPUs have been
criticized for their hostile programming environment and lack of double precision arithmetic
and error correction, but these faults are being rectified. The CUDA programming
environment (27) for NVIDIA chips is now easing some of the programming chores. We
could say more about near-term improvements, but most pronouncements would be obsolete
within months.

Oddly, statisticians have been slow to embrace the new technology. Silberstein et al (31)
first demonstrated the potential for GPUs in fitting simple Bayesian networks. Recently
Suchard and Rambaut (33) have seen greater than 100-fold speed-ups in MCMC simulations
in molecular phylogeny. Lee et al (18) and Tib-bits, et al (36) are following suit with
Bayesian model fitting via particle filtering and slice sampling. Finally, work is under-way
to port common data mining techniques such as hierarchical clustering and multi-factor
dimensionality reduction onto GPUs (32). These efforts constitute the first wave of an
eventual flood of statistical and data mining applications. The porting of GPU tools into the
R environment will undoubtedly accelerate the trend (3).

Not all problems in computational statistics can benefit from GPUs. Sequential algorithms
are resistant unless they can be broken into parallel pieces. For example, least squares and
singular value decomposition–two tasks frequently performed in statistics–cannot benefit
from GPUs unless they are extremely large scale or many such small problems need to be
solved simultaneously. Even parallel algorithms can be problematic if the entire range of
data must be accessed by each GPU. A case in point is the alternating least squares strategy
for the nonnegative matrix factorization problem featured in Section 3.1. Because they have
limited memory, GPUs are designed to operate on short streams of data. The greatest
speedups occur when all of the GPUs on a card perform the same arithmetic operation
simultaneously. Effective applications of GPUs in optimization involves both separation of
data and separation of parameters.

In the current paper, we illustrate how GPUs can work hand in glove with the MM
algorithm, a generalization of the EM algorithm. In many optimization problems, the MM
algorithm explicitly separates parameters by replacing the objective function by a sum of
surrogate functions, each of which involves a single parameter. Optimization of the one-
dimensional surrogates can be accomplished by assigning each subproblem to a different
core. Provided the different cores each access just a slice of the data, the parallel
subproblems execute quickly. By construction the new point in parameter space improves
the value of the objective function. In other words, MM algorithms are iterative ascent or
descent algorithms. If they are well designed, then they separate parameters in high-
dimensional problems. This is where GPUs enter. They offer most of the benefits of
distributed computer clusters at a fraction of the cost. For this reason alone, computational
statisticians need to pay attention to GPUs.

Before formally defining the MM algorithm, it may help the reader to walk through a simple
numerical example stripped of statistical content. Consider the Rosenbrock test function
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(1.1)

familiar from the minimization literature. As we iterate toward the minimum at x = 1 = (1,
1), we construct a surrogate function that separates parameters. This is done by exploiting
the obvious majorization

where equality holds when x and the current iterate xn coincide. It follows that f(x) itself is
majorized by the sum of the two surrogates

The left panel of Figure 1 depicts the Rosenbrock function and its majorization g1(x1 | xn) +
g2(x2 | xn) at the point −1.

According to the MM recipe, at each iteration one must minimize the quartic polynomial
g1(x1 | xn) and the quadratic polynomial g2(x2 | xn). The quartic possesses either a single
global minimum or two local minima separated by a local maximum These minima are the

roots of the cubic function  and can be explicitly computed. We update x1 by the
root corresponding to the global minimum and x2 via . The right panel of
Figure 1 displays the iterates starting from x0 = −1. These immediately jump into the
Rosenbrock valley and then slowly descend to 1.

Separation of parameters in this example makes it easy to decrease the objective function.
This almost trivial advantage is amplified when we optimize functions depending on tens of
thousands to millions of parameters. In these settings, Newton’s method and variants such as
Fisher’s scoring are fatally handicapped by the need to store, compute, and invert huge
Hessian or information matrices. On the negative side of the balance sheet, MM algorithms
are often slow to converge. This disadvantage is usually outweighed by the speed of their
updates even in sequential mode. If one can harness the power of parallel processing GPUs,
then MM algorithms become the method of choice for many high-dimensional problems.

We conclude this introduction by sketching a roadmap to the rest of the paper. Section 2
reviews the MM algorithm. Section 3 discusses three high-dimensional MM examples.
Although the algorithm in each case is known, we present brief derivations to illustrate how
simple inequalities drive separation of parameters. We then implement each algorithm on a
realistic problem and compare running times in sequential and parallel modes. We
purposefully omit programming syntax since many tutorials already exist for this purpose,
and material of this sort is bound to be ephemeral. The two tutorials (34; 35) are a good
place to start for statisticians. Section 4 concludes with a brief discussion of other statistical
applications of GPUs and other methods of accelerating optimization algorithms.
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2. MM ALGORITHMS
The MM algorithm like the EM algorithm is a principle for creating optimization
algorithms. In minimization the acronym MM stands for majorization-minimization; in
maximization it stands for minorization-maximization. Both versions are convenient in
statistics. For the moment we will concentrate on maximization.

Let f(θ) be the objective function whose maximum we seek. Its argument θ can be high-
dimensional and vary over a constrained subset Θ of Euclidean space. An MM algorithm
involves minorizing f(θ) by a surrogate function g(θ | θn) anchored at the current iterate θn
of the search. The subscript n indicates iteration number throughout this article. If θn+1
denotes the maximum of g(θ | θn) with respect to its left argument, then the MM principle
declares that θn+1 increases f(θ) as well. Thus, MM algorithms revolve around a basic ascent
property.

Minorization is defined by the two properties

(2.1)

(2.2)

In other words, the surface θ ↦ g(θ | θn) lies below the surface θ ↦ f (θ) and is tangent to it
at the point θ = θn. Construction of the minorizing function g(θ | θn) constitutes the first M
of the MM algorithm. In our examples g(θ | θn) is chosen to separate parameters.

In the second M of the MM algorithm, one maximizes the surrogate g(θ | θn) rather than f(θ)
directly. It is straightforward to show that the maximum point θn+1 satisfies the ascent
property f (θn+1) ≥ f (θn). The proof

reflects definitions (2.1) and (2.2) and the choice of θn+1. The ascent property is the source
of the MM algorithm’s numerical stability and remains valid if we merely increase g(θ | θn)
rather than maximize it. In many problems MM updates are delightfully simple to code,
intuitively compelling, and automatically consistent with parameter constraints. In
minimization we seek a majorizing function g(θ | θn) lying above the surface θ ↦ f (θ) and
tangent to it at the point θ = θn. Minimizing g(θ | θn) drives f(θ) downhill.

The celebrated Expectation-Maximization (EM) algorithm (8; 22) is a special case of the
MM algorithm. The Q-function produced in the E step of the EM algorithm constitutes a
minorizing function of the loglikelihood. Thus, both EM and MM share the same
advantages: simplicity, stability, graceful adaptation to constraints, and the tendency to
avoid large matrix inversion. The more general MM perspective frees algorithm derivation
from the missing data straitjacket and invites wider applications. For example, our multi-
dimensional scaling (MDS) and non-negative matrix factorization (NNFM) examples
involve no likelihood functions. Wu and Lange (40) briefly summarize the history of the
MM algorithm and its relationship to the EM algorithm.
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The convergence properties of MM algorithms are well-known (16). In particular, five
properties of the objective function f(θ) and the MM algorithm map θ ↦ M(θ) guarantee
convergence to a stationary point of f(θ): (a) f(θ) is coercive on its open domain; (b) f(θ) has
only isolated stationary points; (c) M(θ) is continuous; (d) θ* is a fixed point of M(θ) if and
only if θ* is a stationary point of f(θ); and (e) f[M(θ*)] ≥ f(θ*), with equality if and only if θ*

is a fixed point of M(θ). These conditions are easy to verify in many applications. The local
rate of convergence of an MM algorithm is intimately tied to how well the surrogate
function g(θ | θ*) approximates the objective function f(θ) near the optimal point θ*.

3. NUMERICAL EXAMPLES
In this section, we compare the performances of the CPU and GPU implementations of three
classical MM algorithms coded in C++: (a) non-negative matrix factorization (NNMF), (b)
positron emission tomography (PET), and (c) multidimensional scaling (MDS). In each case
we briefly derive the algorithm from the MM perspective. For the CPU version, we iterate
until the relative change

of the objective function f(θ) between successive iterations falls below a pre-set threshold ε
or the number of iterations reaches a pre-set number nmax, whichever comes first. In these
examples, we take ε = 10−9 and nmax = 100, 000. For ease of comparison, we iterate the
GPU version for the same number of steps as the CPU version. Overall, we see anywhere
from a 22-fold to 112-fold decrease in total run time. The source code is freely available
from the first author.

Table 1 shows how our desktop system is configured. Although the CPU is a high-end
processor with four cores, we use just one of these for ease of comparison. In practice, it
takes considerable effort to load balance the various algorithms across multiple CPU cores.
With 240 GPU cores, the GTX 280 GPU card delivers a peak performance of about 933
GFlops in single precision. This card is already obsolete. Newer cards possess twice as
many cores, and up to four cards can fit inside a single desktop computer. It is relatively
straightforward to program multiple GPUs. Because previous generation GPU hardware is
largely limited to single precision, this is a worry in scientific computing. To assess the
extent of roundoff error, we display the converged values of the objective functions to ten
significant digits. Only rarely is the GPU value far off the CPU mark. The extra effort in
programming the GPU version is relatively light. Exploiting the standard CUDA library
(27), it takes 77, 176, and 163 extra lines of GPU code to implement the NNMF, PET, and
MDS examples, respectively. Finally, for the PET and MDS examples, we also list run times
of a CPU implementation with quasi-Newton acceleration method (42). This generic
acceleration significantly reduces the number of MM iterations until convergence.

3.1 Non-Negative Matrix Factorizations
Non-negative matrix factorization (NNMF) is an alternative to principle component analysis
useful in modeling, compressing, and interpreting nonnegative data such as observational
counts and images. The articles (19; 20; 2) discuss in detail algorithm development and
statistical applications of NNMF. The basic problem is to approximate a data matrix X with
nonnegative entries xij by a product VW of two low rank matrices V and W with
nonnegative entries vik and wkj. Here X, V, and W are p × q, p × r, and r ×q, respectively,
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with r much smaller than min{p, q}. One version of NNMF minimizes the objective
function

(3.1)

where || · ||F denotes the Frobenius-norm. To get an idea of the scale of NNFM imaging
problems, p (number of images) can range 101–104, q (number of pixels per image) can
surpass 102–104, and one seeks a rank r approximation of about 50. Notably, part of the
winning solution of the Netflix challenge relies on variations of NNMF (13). For the Netflix
data matrix, p = 480, 000 (raters), q = 18, 000 (movies), and r ranged from 20 to 100.

Exploiting the convexity of the function x ↦ (xij − x)2, one can derive the inequality

where anikj = vnikwnkj and bnij = Σk anikj. This leads to the surrogate function

(3.2)

majorizing the objective function . Although the majorization (3.2)
does not achieve a complete separation of parameters, it does if we fix V and update W or
vice versa. This strategy is called block relaxation (7).

If we elect to minimize g(V, W | Vn, Wn) holding W fixed at Wn, then the stationarity
condition for V reads

Its solution furnishes the simple multiplicative update

(3.3)

Likewise the stationary condition
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gives the multiplicative update

(3.4)

where cnij = Σk vn+1,ikwnkj. Close inspection of the multiplicative updates (3.3) and (3.4)
shows that their numerators depend on the matrix products  and  and their
denominators depend on the matrix products  and . Large matrix
multiplications are very fast on GPUs because CUDA implements in parallel the BLAS
(basic linear algebra subprograms) library widely applied in numerical analysis (26). Once
the relevant matrix products are available, each elementwise update of vik or wkj involves
just a single multiplication and division. These scalar operations are performed in parallel
through hand-written GPU code. Algorithm 1 summarizes the steps in performing NNMF.

We now compare CPU and GPU versions of the multiplicative NNMF algorithm on a
training set of face images. Database #1 from the MIT Center for Biological and
Computational Learning (CBCL) (25) reduces to a matrix X containing p = 2, 429 gray scale
face images with q = 19 × 19 = 361 pixels per face. Each image (row) is scaled to have
mean and standard deviation 0.25. Figure 2 shows the recovery of the first face in the
database using a rank r = 49 decomposition. The 49 basis images (rows of W) represent
different aspects of a face. The rows of V contain the coefficients of these parts estimated
for the various faces. Some of these facial features are immediately obvious in the
reconstruction. Table 2 compares the run times of Algorithm 1 implemented on our CPU
and GPU respectively. We observe a 22 to 112-fold speed-up in the GPU implementation.
Run times for the GPU version depend primarily on the number of iterations to convergence
and very little on the rank r of the approximation. Run times of the CPU version scale
linearly in both the number of iterations and r.

It is worth stressing a few points. First, the objective function (3.1) is convex in V for W
fixed, and vice versa but not jointly convex. Thus, even though the MM algorithm enjoys
the descent property, it is not guaranteed to find the global minimum (2). There are two
good alternatives to the multiplicative algorithm. First, pure block relaxation can be
conducted by alternating least squares (ALS). In updating V with W fixed, ALS omits
majorization and solves the p separated nonnegative least square problems

where V(i, :) and X(i, :) denote the i-th row of the corresponding matrices. Similarly, in
updating W with V fixed, ALS solves q separated nonnegative least square problems.
Separation naturally suggests parallel implementations; but parallelization by GPUs hits a
snag because each nonnegative least square subproblem needs to operate on the whole W
matrix. Another possibility is to change the objective function to
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according to a Poisson model for the counts xij (19). This works even when some entries xij
fail to be integers, but the Poisson loglikelihood interpretation is lost. A pure MM algorithm
for maximizing L(V, W) is

Derivation of these variants of Lee and Seung’s (19) Poisson updates is left to the reader.

3.2 Positron Emission Tomography
The field of computed tomography has exploited EM algorithms for many years. In positron
emission tomography (PET), the reconstruction problem consists of estimating the Poisson
emission intensities λ = (λ1, …, λp) of p pixels arranged in a 2-dimensional grid surrounded
by an array of photon detectors. The observed data are coincidence counts (y1, … yd) along
d lines of flight connecting pairs of photon detectors. The loglikelihood under the PET
model is

where the eij are constants derived from the geometry of the grid and the detectors. Without
loss of generality, one can assume Σi eij = 1 for each j. It is straightforward to derive the
traditional EM algorithm (14; 39) from the MM perspective using the concavity of the
function ln s. Indeed, application of Jensen’s inequality produces the minorization

where wnij = eijλnj/(Σk eikλnk). This maneuver again separates parameters. The stationarity
conditions for the surrogate Q(λ | λ n) supply the parallel updates

(3.5)

The convergence of the PET algorithm (3.5) is frustratingly slow, even under systematic
acceleration (30; 42). Furthermore, the reconstructed images are of poor quality with a
grainy appearance. The early remedy of premature halting of the algorithm cuts
computational cost but is entirely ad hoc, and the final image depends on initial conditions.
A better option is add a roughness penalty to the loglikelihood. This device not only
produces better images but also accelerates convergence. Thus, we maximize the penalized
loglikelihood
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(3.6)

where μ is the roughness penalty constant, and  is the neighborhood system that pairs
spatially adjacent pixels. An absolute value penalty is less likely to deter the formation of
edges than a square penalty, but it is easier to deal with a square penalty analytically, and we
adopt it for the sake of simplicity. In practice, visual inspection of the recovered images
guides the selection of the roughness penalty constant μ.

To maximize f(λ) by an MM algorithm, we must minorize the penalty in a manner consistent
with the separation of parameters. In view of the evenness and convexity of the function s2,
we have

Equality holds if λj + λk = λnj + λnk, which is true when λ = λn. Combining our two
minorizations furnishes the surrogate function

To maximize g(λ | λn), we define  = {k : {j, k} ∈ } and set the partial derivative

(3.7)

equal to 0 and solve for λn+1,j. Multiplying equation (3.7) by λj produces a quadratic with
roots of opposite signs. We take the positive root

where

Algorithm 2 summarizes the complete MM scheme. Obviously, complete parameter
separation is crucial. The quantities aj can be computed once and stored. The quantities bnj
and cnj are computed for each j in parallel. To improve GPU performance in computing the
sums over i, we exploit the widely available parallel sum-reduction techniques (31). Given
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these results, a specialized but simple GPU code computes the updates λn+1,j for each j in
parallel.

Table 3 compares the run times of the CPU and GPU implementations for a simulated PET
image (30). The image as depicted in the top of Figure 3 has p = 64 × 64 = 4, 096 pixels and
is interrogated by d = 2, 016 detectors. Overall we see a 43- to 53-fold reduction in run times
with the GPU implementation. Figure 3 displays the true image and the estimated images
under penalties of μ = 0, 10−5, 10−6, and 10−7. Without penalty (μ = 0), the algorithm fails
to converge in 100,000 iterations.

3.3 Multidimensional Scaling
Multidimensional scaling (MDS) was the first statistical application of the MM principle (6;
5). MDS represents q objects as faithfully as possible in p-dimensional space given a
nonnegative weight wij and a nonnegative dissimilarity measure yij for each pair of objects i
and j. If θi ∈ ℝp is the position of object i, then the p × q parameter matrix θ = (θ1, …, θq) is
estimated by minimizing the stress function

(3.8)

where ||θi − θj|| is the Euclidean distance between θi and θj. The stress function (3.8) is
invariant under translations, rotations, and reflections of ℝp. To avoid translational and
rotational ambiguities, we take θ1 to be the origin and the first p − 1 coordinates of θ2 to be

0. Switching the sign of  leaves the stress function invariant. Hence, convergence to one
member of a pair of reflected minima immediately determines the other member.

Given these preliminaries, we now review the derivation of the MM algorithm presented in
(17). Because we want to minimize the stress, we majorize it. The middle term in the stress
(3.8) is majorized by the Cauchy-Schwartz inequality

To separate the parameters in the summands of the third term of the stress, we invoke the
convexity of the Euclidean norm || · || and the square function s2. These maneuvers yield

Assuming that wij = wji and yij = yji, the surrogate function therefore becomes
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up to an irrelevant constant. Setting the gradient of the surrogate equal to the 0 vector
produces the parallel updates

for all movable parameters .

Algorithm 3 summarizes the parallel organization of the steps. Again the matrix
multiplications  and Θn(W − Zn) can be taken care of by the CUBLAS library (26).
The remaining steps of the algorithm are conducted by easily written parallel code.

Table 4 compares the run times in seconds for MDS on the 2005 United States House of
Representatives roll call votes. The original data consist of the 671 roll calls made by 401
representatives. We refer readers to the reference (9) for a careful description of the data and
how the MDS input 401×401 distance matrix is derived. The weights wij are taken to be 1.
In our notation, the number of objects (House Representatives) is q = 401. Even for this
relatively small dataset, we see a 27–48 fold reduction in total run times, depending on the
projection dimension p. Figure 4 displays the results in p = 3 dimensional space. The
Democratic and Republican members are clearly separated. For p = 30, the algorithm fails to
converge within 100,000 iterations.

Although the projection of points into p > 3 dimensional spaces may sound artificial, there
are situations where this is standard practice. First, MDS is foremost a dimension reduction
tool, and it is desirable to keep p > 3 to maximize explanatory power. Second, the stress
function tends to have multiple local minima in low dimensions (10). A standard
optimization algorithm like MM is only guaranteed to converge to a local minima of the
stress function. As the number of dimensions increases, most of the inferior modes
disappear. One can formally demonstrate that the stress has a unique minimum when p = q −
1 (4; 10). In practice, uniqueness can set in well before p reaches q − 1. In the recent work
(41), we propose a “dimension crunching” technique that increases the chance of the MM
algorithm converging to the global minimum of the stress function. In dimension crunching,
we start optimizing the stress in a Euclidean space ℝm with m > p. The last m − p
components of each column θi are gradually subjected to stiffer and stiffer penalties. In the
limit as the penalty tuning parameter tends to ∞, we recover the global minimum of the
stress in ℝp. This strategy inevitably incurs a computational burden when m is large, but the
MM+GPU combination comes to the rescue.

4. DISCUSSION
The rapid and sustained increases in computing power over the last half century have
transformed statistics. Every advance has encouraged statisticians to attack harder and more
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sophisticated problems. We tend to take the steady march of computational efficiency for
granted, but there are limits to a chip’s clock speed, power consumption, and logical
complexity. Parallel processing via GPUs is the technological innovation that will power
ambitious statistical computing in the coming decade. Once the limits of parallel processing
are reached, we may see quantum computers take off. In the meantime statisticians should
learn how to harness GPUs productively.

We have argued by example that high-dimensional optimization is driven by parameter and
data separation. It takes both to exploit the parallel capabilities of GPUs. Block relaxation
and the MM algorithm often generate ideal parallel algorithms. In our opinion the MM
algorithm is the more versatile of the two generic strategies. Unfortunately, block relaxation
does not accommodate constraints well and may generate sequential rather than parallel
updates. Even when its updates are parallel, they may not be data separated. The EM
algorithm is one of the most versatile tools in the statistician’s toolbox. The MM principle
generalizes the EM algorithm and shares its positive features. Scoring and Newton’s
methods become impractical in high dimensions. Despite these arguments in favor of MM
algorithms, one should always keep in mind hybrid algorithms such as the one we
implemented for NNMF.

Although none of our data sets is really large by today’s standards, they do demonstrate that
a good GPU implementation can easily achieve one to two orders of magnitude
improvement over a single CPU core. Admittedly, modern CPUs come with 2 to 8 cores,
and distributed computing over CPU-based clusters remains an option. But this alternative
also carries a hefty price tag. The NVIDIA GTX280 GPU on which our examples were run
drives 240 cores at a cost of several hundred dollars. High-end computers with 8 or more
CPU nodes cost thousands of dollars. It would take 30 CPUs with 8 cores each to equal a
single GPU at the same clock rate. Hence, GPU cards strike an effective and cost efficient
balance.

In the three test examples, we implemented and reported performance results on the GTX
280 card in single precision because this particular card is not optimized for double
precision computation. As the numerical results show, speedups are gained at loss of
accuracy after a certain number of significant digits and in rare cases the single precision
calculation on GPU may lead to an inferior mode (e.g., the μ = 10−7 case in Table 3). In
some preliminary experimentation on the same PET imaging algorithm, we found that the
performance of a double precision implementation on GTX 280 is about one third of the
single precision implementation. In other words, it takes three times longer to perform the
same number of iterations. However this lack of double precision support is soon lessened
by the rapid advancement in GPU technology. The newer GTX 480 video card has twice as
many cores as the GTX 280 and much improved double precision support. On the same
desktop system as in Table 1, GTX 480 now delivers 89 fold speedup in single precision and
43 fold speedup in double precision over the CPU code which is in double precision. Not to
mention the Tesla C2050 video card, which is already available on market and possesses a
peak double precision floating point performance (515 Gflops) that is three times that of
GTX 480 (168 Gflops). The challenge for the statistics community is to tackle more and
more complicated statistical models on bigger and bigger datasets. Computational
statisticians should decide for themselves the speed vs precision trade-off for their problem
at hand.

The simplicity of MM algorithms often comes at a price of slow (at best linear)
convergence. Our MDS, NNMF, and PET (without penalty) examples are cases in point.
Slow convergence is a concern as statisticians head into an era dominated by large data sets
and high-dimensional models. Think about the scale of the Netflix data matrix. The speed of

Zhou et al. Page 12

Stat Sci. Author manuscript; available in PMC 2011 August 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



any iterative algorithm is determined by both the computational cost per iteration and the
number of iterations until convergence. GPU implementation reduces the first cost.
Computational statisticians also have a bag of software tricks to decrease the number of
iterations (23; 11; 21; 15; 12; 24; 38). For instance, the recent paper (42) proposes a quasi-
Newton acceleration scheme particularly suitable for high-dimensional problems. The
scheme is off-the-shelf and broadly applies to any search algorithm defined by a smooth
algorithm map. The acceleration requires only modest increments in storage and
computation per iteration. Tables 3 and 4 also list the results of this quasi-Newton
acceleration of the CPU implementation for the MDS and PET examples. As the tables
make evident, quasi-Newton acceleration significantly reduces the number of iterations until
convergence. The accelerated algorithm always locates a better mode while cutting run
times compared to the unaccelerated algorithm. We have tried the quasi-Newton
acceleration on our GPU hardware with mixed results. We suspect that the lack of full
double precision on the GPU is the culprit. When full double precision becomes widely
available, the combination of GPU hardware acceleration and algorithmic software
acceleration will be extremely potent.

Successful acceleration methods will also facilitate attacking another nagging problem in
computational statistics, namely multimodality. No one knows how often statistical
inference is fatally flawed because a standard optimization algorithm converges to an
inferior mode. The current remedy of choice is to start a search algorithm from multiple
random points. Algorithm acceleration is welcome because the number of starting points can
be enlarged without an increase in computing time. As an alternative to multiple starting
points, our recent paper (41) suggests modifications of several standard MM algorithms that
increase the chance of locating better modes. These simple modifications all involve
variations on deterministic annealing (37).

Our treatment of simple classical examples should not hide the wide applicability of the
powerful MM+GPU combination. A few other candidate applications include penalized
estimation of haplotype frequencies in genetics (1), construction of biological and social
networks under a random multigraph model (29), and data mining with a variety of models
related to the multinomial distribution (43). Many mixture models will benefit as well from
parallelization, particularly in assigning group memberships. Finally, parallelization is
hardly limited to optimization. We can expect to see many more GPU applications in
MCMC sampling. Given the computationally intensive nature of MCMC, the ultimate
payoff may even be higher in the Bayesian setting than in the frequentist setting. For
example, in a recent study (35), GPU implementations deliver up to a 140 fold speedup in
Bayesian fitting of massive mixture models. Of course realistically, these future triumphs
will require a great deal of thought, effort, and education. There is usually a desert to wander
and a river to cross before one reaches the promised land.
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Fig 1.
Left: The Rosenbrock (banana) function (the lower surface) and a majorization function at
point (−1, −1) (the upper surface). Right: MM iterates.
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Fig 2.
Approximation of a face image by rank-49 NNMF: coefficients × basis images =
approximate image.
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Fig 3.
The true PET image (top) and the recovered images with penalties μ = 0, 10−7, 10−6, and
10−5.
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Fig 4.
Display of the MDS results with p = 3 coordinates on the 2005 House of Representatives
roll call data.
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Table 1

Configuration of the desktop system

CPU GPU

Model Intel Core 2 NVIDIA GeForce

Extreme X9440 GTX 280

# Cores 4 240

Clock 3.2G 1.3G

Memory 16G 1G
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Algorithm 1

(NNMF) Given , find  and  minimizing .

Initialize: Draw v0ik and w0kj uniform on (0,1) for all 1 ≤ i ≤ p, 1 ≤ k ≤ r, 1 ≤ j ≤ q

repeat

 Compute  and 

   for all 1 ≤ i ≤ p, 1 ≤ k ≤ r

 Compute  and 

   for all 1 ≤ k ≤ r, 1 ≤ j ≤ q

until convergence occurs
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Algorithm 2

(PET Image Recovering) Given the coefficient matrix , coincident counts , and
roughness parameter μ > 0, find the intensity vector  that maximizes the objective function
(3.6).

Scale E to have unit l1 column norms.

Compute | | = Σk:{j,k}∈  1 and aj − 2μ| | for all 1 ≤ j ≤ p.

Initialize: λ0j ← 1, j = 1, …, p.

repeat

 znij ← (yieijλnj)/(Σkeikλnk) for all 1 ≤ i ≤ d, 1 ≤ j ≤ p

 for j = 1 to p do

  bnj ← μ(| | λnj + Σk∈  λnk) − 1

  cnj ← Σi znij

   

 end for

until convergence occurs
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Algorithm 3

(MDS) Given weights W and distances Y ∈ ℝq×q, find the matrix Θ = [θ1, …, θq] ∈ ℝp×q which minimizes
the stress (3.8).

Precompute: xij ← wij yij for all 1 ≤ i, j ≤ q

Precompute: wi· ← Σj wij for all 1 ≤ i ≤ q

Initialize: Draw  uniformly on [−1,1] for all 1 ≤ i ≤ q, 1 ≤ k ≤ p

repeat

 Compute 

   for all 1 ≤ i, j ≤ q

 znij ← xij/dnij for all 1 ≤ i ≠ j ≤ q

 zni· ← Σj znij for all 1 ≤ i ≤ q

 Compute Θ;n(W − Zn)

   for all 1 ≤ i ≤ p, 1 ≤ k ≤ q

until convergence occurs
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