Skip to main content
. Author manuscript; available in PMC: 2011 Aug 14.
Published in final edited form as: Stat Sci. 2010 Aug 1;25(3):311–324. doi: 10.1214/10-STS336

Algorithm 2.

(PET Image Recovering) Given the coefficient matrix ER+d×p, coincident counts y=(y1,,yd)Z+d, and roughness parameter μ > 0, find the intensity vector λ=(λ1,,λp)R+p that maximizes the objective function (3.6).

Scale E to have unit l1 column norms.
Compute | Inline graphic| = Σk:{j,k}∈ Inline graphic 1 and aj − 2μ| Inline graphic| for all 1 ≤ jp.
Initialize: λ0j ← 1, j = 1, …, p.
repeat
znij ← (yieijλnj)/(Σkeikλnk) for all 1 ≤ id, 1 ≤ jp
for j = 1 to p do
  bnjμ(| Inline graphic| λnj + ΣkInline graphic λnk) − 1
  cnj ← Σi znij
   λn+1,j(bnjbnj24ajcnj)/(2aj)
end for
until convergence occurs