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Abstract

Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial
communities of production wells are affected by microorganisms introduced with injected water has previously not been
adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library
analysis, the comparison of microbial communities is carried out between one injection water and two production waters
collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE
fingerprints showed that the similarities of the bacterial communities between the injection water and production waters
were lower than between the two production waters. It was also observed that the archaeal composition among these
three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant
groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the
dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial
operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production
waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the
production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively,
suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same
injection water.
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Introduction

There is growing interest in the study of petroleum reservoir

microbiota due to the prevalence of microbial enhanced oil

recovery (MEOR) stimulated by increased global energy demand

and depletion of oil reserves [1]. Many reports on microbial

studies of petroleum reservoirs using culture-dependent and -

independent methods have been published since Bastin et al.

isolated sulfate-reducing bacteria (SRB) from production water in

1926 [2]. The typical groups, such as SRB, fermentative bacteria,

iron-reducing bacteria and methanogenic bacteria, have been

frequently reported in the microbial communities of oil reservoirs

[3]. However, the continuous discovery of novel bacterial and

archaeal phylotypes in oil reservoirs indicates the potential

existence of undetected microbial assemblages in petroleum

reservoirs [4–6].

To enhance oil recovery, a high proportion of petroleum

reservoirs in the world have been extensively water flooded [7].

The injection water produced from oil-water separation of

production waters is recycled into injection well through a semi-

open system. The previous investigations of water flooded

petroleum reservoirs suggest that they are complex ecosystems

comprising a number of microorganisms [8–11]. The bacterial

diversity of Huabei oil field, a continental high-temperature and

water-flooded petroleum reservoir, was analyzed using clone

library approach, and found 74 phylotypes with representative

classes Gammaproteobacteria, Thermotogae, Epsilonproteobac-

teria, etc. [12]. At the same time, the archaeal community of the

oil field was also characterized using clone library approach, and

found 28 phylotypes composed of four orders of methanogens

[13]. On the other hand, microorganisms in the water recycling

system are injected back into the reservoirs during the flooding

process [8], which possibly caused the change of the microbial

community structure of petroleum reservoir. For this reason,

investigating the microbial composition of injection water is

important for understanding its effects on the ecosystem of

petroleum reservoirs. Using DNA fingerprinting methods, such as

denaturing gradient gel electrophoresis (DGGE) and terminal
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restriction fragment length polymorphism (T-RFLP) [14,15],

several studies have compared the microbial communities of

injection water and production waters. These studies revealed that

community structures of injection and production waters are

different. However, due to the disadvantages of the fingerprinting

approaches, it is difficult to compare the microbial communities of

different samples in detail. How the structure of subsurface

microbial community is affected by injected microorganisms in

water-flooded oil reservoirs has rarely been studied thus far.

In this study, microbial communities of one injection water and

two neighboring production waters from a hyperthermal, long-

term water-flooded oil field were investigated using both

polymerase chain reaction (PCR) fingerprinting and 16S rRNA

gene clone library analysis. The results showed that most

microorganisms in the injection water could not be detected in

the production water, and each production well was composed of

a unique microbial community.

Results

Physicochemical characteristics of the Gudao petroleum
reservoir

The Gudao petroleum reservoir is located at Dongying in the

Yellow River Delta of China, near the Bohai Sea. This oil field has

been water flooded for over 30 years. The water content of

production water in this reservoir is over 95%. The depths of the

sampled petroleum horizons ranged from 1,173 m to 1,230 m,

with a temperature of 69.5uC and a pressure of 12 MPa. The

porosity of the reservoir was 33%, and air permeability was

between 1.5–2.5 m2. The viscosity of the crude oil was 400–

2,000 mPas. Three samples were used in this study: one injection

water (W), one production water (C) abstracted from oil-bearing

stratum Ng44, and one production water (L) abstracted from oil-

bearing strata Ng34 and Ng35. Physicochemical characteristics of

the injection water and production waters are presented in Table 1.

PCR-DGGE analysis of the injection water and production
water samples

DGGE analysis of a PCR-amplified V3 region of bacterial 16S

rRNA genes showed that three dominant bands (a, b and c) were

found in all three samples, and two dominant bands (d and e) were

observed in C and L only. Several bands (f, g, h, etc.) were found

in W but absent in C and L (Figure 1A). Statistic analysis

(unweighted pair group method using arithmetic averages,

UPGMA) revealed that the patterns of C and L shared 62.9%

similarity. The W shared 29.1% similarity with L and 43.0%

similarity with C (Figure 1C). The archaeal DGGE profiles

showed that dominant bands (i, j and k) were observed in all three

samples, while a few weak bands (l, m and n) were found only in L

(Figure 1B). UPGMA analysis revealed that the patterns of these

three samples shared at least 74% similarity (Figure 1D).

Statistical analysis of the bacterial and archaeal 16S rRNA
gene clone libraries

Three bacterial clone libraries (BW, BC and BL) were

constructed using total genomic DNA. From these libraries, 360

bacterial clones were randomly selected and sequenced (Table 2).

After discarding 34 chimeras, 326 sequences were divided into 66

bacterial OTUs. The coverage of the three clone libraries ranged

from 86.5% to 96.9%. This result indicates that the 16S rRNA

gene sequences represent the majority of the bacterial community

of the samples in this study. The Shannon-Weaver and Simpson

indexes showed that the diversity of bacteria in BW was higher

than that in BC and BL. The low P values (,0.03) for UniFrac

significance test between each pair of samples indicated that

bacterial structures of these three samples had a marginally

significant difference.

Using the same analytical methods, three archaeal clone

libraries (AW, AC and AL) were constructed, from which 166

clones were randomly selected and sequenced (Table 2). After

discarding 1 chimera, 165 sequences were divided into 26 archaeal

OTUs. The coverage of AL (82.9%) was lower than that of AC

(90.6%) and AW (91.9%). The Shannon-Weaver and Simpson

indexes showed that the diversity of archaea in AL was higher than

that in AC and AW. Unifrac analysis showed marginally

significantly different archaeal structures between three samples

(P#0.03).

Phylogenetic analysis of microbial communities in
samples

The compositional differences in bacterial communities were

analyzed based on bacterial 16S rRNA gene sequences obtained

from the three bacterial clone libraries (BW, BC and BL). In BW,

0.5% sequences were considered phylogenetically undefined

bacteria, which shared less than 75% identity with reference

sequences in the database. The remaining sequences were

clustered within five phyla: Proteobacteria (91.2%), Deferribac-

teres (3.5%), Bacteroidetes (2.2%), Thermotogae (1.6%) and

Firmicutes (1.0%) (Figure 2). At the family level, 13% of the total

sequences could not be assigned to known families. The dominant

families in BW were Rhodocyclaceae (36.5%), Pseudomonadaceae

(28.1%) Alteromonadaceae (8.3%) and Alcaligenaceae (3.1%)

(Figure 3). At the genus level, only 45.1% of all sequences were

affiliated with specific genera. Of these genera, Pseudomonas

Table 1. Physicochemical characters of the injection water
and two production waters of the Gudao petroleum reservoir.

Parameters

Injection water
samples Production water samples

W (G1–6) L (6–13) C (3C15)

Temperature (uC) 40–50 69 69

pH 7.4–7.8 7.2–7.5 7.2–7.5

Depth (m) / 1173–1230 1173–1230

Chemical characteristics (mg/l)

Cl2 4045 3697 3183

CO3
22 33 / /

HCO3
2 854 1013 1113

Mg2+ 41 / 41

K+ + Na+ 2795 2661 2338

SO4
22 16 / /

Ca2+ 92 104 56

gas composition (%)

CH4 Nd* 79.87 96.90

C2H6 Nd 6.95 0.99

C3H8 Nd 7.54 0.93

i-C4H10 Nd 1.40 0.15

N-C4H10 Nd 2.46 0.26

CO2 Nd 0.47 0.01

*not detected.
doi:10.1371/journal.pone.0023258.t001

Comparison of Samples in Petroleum Reservoir
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(24.3%), Thauera (5.2%), Marinobacterium (6.7%) and Pusillimonas

(3.1%) had its abundance higher than 3.0%. Unlike BW, except

for one OTU (B-OTU65), the remaining bacterial sequences in

BC and BL belonged to Gammaproteobacteria (Figure 2). In BC,

all the sequences were affiliated with two families, Pseudomona-

daceae (67.7%) and Moraxellaceae (32.3%). Among these families,

98.5% of sequences were affiliated with Pseudomonas (67.7%),

Psychrobacter (29.3%) and Acinetobacter (1.5%). In BL, all of the

sequences were assigned to three families, Moraxellaceae (97.1%),

Pseudomonadaceae (1.5%) and Comamonadaceae (1.4%)

(Figure 3). Among them, 94.1% of sequences were affiliated with

four genera, Psychrobacter (73.9%), Pseudomonas (1.4%), Acinetobacter

(17.4%) and Acidovorax (1.4%), respectively.

There were 66 bacterial OTUs (labeled as B-OTU) in these three

samples (Figure 2 and Figure 4A). B-OTU16, related to Pseudomonas

stutzeri (AF094748) (.98%), had an abundance of 1.6% in BW and

66.7% in BC but was not detected in BL. In previous literature, P.

stutzeri has been shown to enhance crude oil biodegradation and

increase rhamnolipid production [16]. B-OTU28, related to

Pseudomonas xanthomarina (AB176954) (.98%), had an abundance

of 2.1% in BW and 1.4% in BL but was not detected in BC. P.

xanthomarina has been reported as a denitrifying bacterium isolated

from marine ascidians [17]. Except the above two OTUs, 96.3%

OTUs in BW were not detected in either of the two production

waters. Two OTUs (B-OTU2 and B-OTU18) co-existed in BC and

BL libraries, which were closely related to Psychrobacter namhaensis

(AY722805) (.99%) and Acinetobacter johnsonii (HQ650820) (.98%),

respectively. The proportion of B-OTU2 in BC and BL was 25.8%

and 62.3%, and the proportion of B-OTU18 in BC and BL was

1.5% and 17.4%, respectively. However, 40.0% and 72.7% unique

OTUs were found in BC and BL libraries, respectively. These

results indicated that each production well appears to have a unique

bacterial community despite water flooding with the same injection

water for over 30 years.

Sequences of three archaeal 16S rRNA gene clone libraries (AC,

AL and AW) were analyzed using the same methods used for

bacteria. All archaeal sequences belong to Euryarchaeota and were

clustered into 4 classes of Methanomicrobia, Methanobacteria,

Archaeoglobi and Thermoprotei (Figure 5). In AW, except 2.0% of

the sequences were recognized as unclassified families, the remaining

sequences were affiliated with Methanosarcinaceae (93.9%) and

Methanobacteriaceae (3.1%) (Figure 6). At the genus level, 3.1% of

analyzed sequences affiliated with unclassified genus, the remains

were affiliated with Methanomethylovorans (80.6%), Methanolobus (13.3%),

Methanothermobacter (2.0%) and Methanobacterium (1.0%). All of the

sequences in AC were affiliated with Methanobacteriaceae (93.8%)

and Methanosarcinaceae (6.2%) (Figure 6), of which 93.8% belong to

the genus Methanothermobacter and 6.2% Methanomethylovorans. Howev-

er, in AL, 28.6% of the sequences were considered unclassified

Figure 1. DGGE fingerprints of microbial communities of three samples. (A) Bacterial 16S rRNA gene V3 region PCR-DGGE profiles of
injection and production waters. (B) Archaeal 16S rRNA gene V3 region PCR-DGGE profiles of injection water and production waters. (C) Clustering
dendrogram of bacterial DGGE profiles. (D) Clustering dendrogram of archaeal DGGE profiles. 1, bacterial DGGE marker; 2 and 5, sample W; 3 and 7,
sample C; 4 and 6, sample L; 8, archaeal DGGE marker.
doi:10.1371/journal.pone.0023258.g001

Table 2. Statistical analysis of bacterial and archaeal 16S
rRNA gene clone libraries.

Library name Bacterial library Archaeal library

BC BL BW AC AL AW

Number of raw sequences 71 69 220 33 35 98

Number of Chimeras 6 0 28 1 0 0

Number of analyzed
sequences

65 69 192 32 35 98

Coverage (%) 96.9 91.3 86.5 90.6 82.9 91.9

OTU number 5 11 54 4 12 17

Shannon index (H) 0.92 1.34 3.14 0.41 2.07 1.77

Simpson (1-D) 0.49 0.58 0.90 0.18 0.83 0.65

doi:10.1371/journal.pone.0023258.t002

Comparison of Samples in Petroleum Reservoir
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families, while the remains were mainly affiliated with Methanobac-

teriaceae (37.1%) and Archaeoglobaceae (28.6%) (Figure 6). At the

genus level, 34.2% of the total sequences in AL could not be classified

to any genus, while the remaining sequences were mainly affiliated to

genera Geoglobus (28.6%) and Methanothermobacter (34.3%).

There were 26 archaeal OTUs total in these three samples

(Figure 5 and Figure 4B). Two OTUs (A-OTU3 and A-OTU26)

closely related (.98%) to Methanomethylovorans thermophila

(AY672821), were found in both AW and AC. A-OTU3 had an

abundance of 4.0% in AW and 3.1% in AC, and A-OTU26 had

an abundance of 57.6% in AW and 3.1% in AC. Other two OTUs

(A-OTU16 and A-OTU20), which were related to the classes

Methanomicrobia and Methanobacteria respectively, were found

in both AW and AL. A-OTU16 had an abundance of 1.0% in AW

and 14.3% in AL, and A-OTU20 had an abundance of 1.0% in

AW and 5.7% in AL. On the other hand, A-OTU1, related to

Methanobacteria, was found in all three samples and had an

abundance of 2.0%, 90.6% and 22.9% in AW, AC and AL,

respectively. Except for the OTUs described above, 70.6% of

OTUs in AW were not detected in either production water. The

comparison of archaeal communities showed that A-OTU1 and

A-OTU2 were shared by two production waters, of which A-

OTU2 presented in production waters only and their abundances

in AC and AL were 3.1% and 2.8%, respectively. Additionally,

50% and 83.3% of the total OTUs in AC and AL were unique to

themselves, indicating that each production well appears to have a

specific archaeal community.

Discussion

The water flooding method has been widely used to enhance oil

recovery, during which the reservoir may be influenced by the

microorganisms introduced with the large volumes of injection

water [12]. However, little attention has been paid to this issue in

water-flooded petroleum reservoirs. In this study, we investigate

the microbial communities of injection water and its adjacent

production waters in the Gudao petroleum reservoir which has

been water flooded for over 30 years.

Our results have indicated that there were a large number of

unexplored microorganisms in the subsurface of the Gudao oil

field. Clone library analysis showed that 44.9% bacterial sequences

and 20% archaeal sequences had less than 97% identity with

reference sequences in the database, which seems to be a common

phenomenon in petroleum reservoirs. For example, Bonch-

Osmolovskaya et al. analyzed 15 isolates from the Samotlor oil

field and found 4 of them belong to new species [18]. Using the

clone library method, Li et al. found that 16.7% of bacterial

phylotypes and 50% of archaeal phylotypes detected in a high-

temperature offshore oil field showed less than 97% sequence

similarity with known sequences [19]. These findings indicated the

complexity of microbial community of petroleum reservoir and

more extensive investigation are still required.

The microbial compositions of injection water and production

waters were different according to comparison of the community

structure of the three samples. Previously, using PCR-DGGE, She

et al. found that the similarity of the microbial structure between an

injection well and a production well was lower than that of

between two production wells [14]; using T-RFLP, Yuan et al.

indicated that injection water contained more diverse bacteria and

archaea compared with production water [15]. In this study,

bacterial DGGE fingerprints also showed that the microbial

structure of two production waters was more similar when

compared to the injection water. However, the detailed informa-

tion for evaluating the numbers of common microbiota existing in

the two types of samples is insufficient when only fingerprinting

technology is used. The clone library technology used in this study

Figure 3. The bacterial composition of injection water and production waters at the family level. BW, sample W; BC, sample C; BL,
sample L.
doi:10.1371/journal.pone.0023258.g003

Figure 2. Phylogenetic neighbor-joining trees of representative OTUs in the bacterial clone libraries. Following the name of each OTU,
the name of the sample and the percentage of this OTU was indicated in the parentheses. The numbers on the branches are bootstrap values
obtained from 1000 bootstrap replicates. BW, sample W; BC, sample C; BL, sample L.
doi:10.1371/journal.pone.0023258.g002
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effectively filled this gap and showed the comprehensive microbial

communities in the injection and production wells. The predom-

inant families were distinctly varied between the injection water

and the production waters. In more detail, only 7 out of 71 OTUs

in the injection water were detected in the production waters

indicating that most microorganisms injected into the reservoir

were not detected in the microbial communities of production

water. On the other hand, the majority of archaeal sequences in

the Gudao Oil field were methanogen-related, which is similar to

previously reports in other high-temperature petroleum reservoirs

[10,13]. Interestingly, we found that Methanosarcinales, many but

not all members of which can use methylamines, H2, and acetate,

was dominant in the injection water. Methanobacteriales, which

prefers H2 as substrates for methanogenesis, was predominant in

the production waters. These results indicate that both microbial

structure and metabolism are different between the injection and

production wells.

One reason for the different microbial structures of the injection

and production wells might be the distinct difference of

temperature, dissolved oxygen, and nutrient availability between

the ground water recirculation system and subsurface oil strata

[14,15,20]. Another reason might be the pore size of the rock

matrix. Tiny pore size is restrictive for the transfer of most

bacterial cells. Larger microbial cells are more difficultly

transported in the formation [21,22]. There is a sieve effect on

microbial cells when injected fluid passes through the subsurface

formation [23]. The latter reason is more reasonable for

explaining the higher number of injected microbial cells could

not be detected among the less dense cells in production water.

Our results also show that a high proportion of unique bacterial

and archaeal OTUs exist in the two production waters. The

specificities of the two production wells are probably due to their

physical and geological properties [12]. The two production wells

in the paper were connected to nearby but independent oil-

bearing formation layers. Different physiochemical conditions may

account for the discrepancy in microbial communities in these oil

layers.

Additionally, many sequences obtained from two production

wells in this study were affiliated with Pseudomonas. The existence of

Pseudomonas in the thermophilic temperature oil reservoirs were

also reported in several previous literatures, such as the Huabei Oil

field with in situ temperature 75uC [12], South Elwood field with

bottom hole temperature between 70 to 75uC [10], and an

offshore petroleum reservoir with temperature 85uC [24]. It is

unclear where the sources of these mesophilic microorganisms in

the samples are and more knowledge is needed to understand it.

Another interesting finding in this study is that the genus

Psychrobacter existed in the production wells of the Gudao

petroleum reservoir. Strains of Psychrobacter were previously known

to be either psychrophilic, inhabiting in cold environments, such as

the Antarctic or the Arctic [25,26], or mesophilic, isolated from

lamb or human lungs [27]. Microorganisms have been repeatedly

discovered in environments that do not support their metabolic

activity [28,29]. For example, typical thermophiles were detected

in cold environment [30]. However, the function and the existence

of the genus Psychrobacter in such a high-temperature oil reservoir

are still unclear and needs more investigation. The finding that

bacteria of this genus degrading long chain n-alkanes [31] raised

the possibility of Psychrobacter acting as active members in the high

temperature petroleum reservoir.

In conclusion, we demonstrated that the microbes in the

production water are not significantly related with injected

microorganisms and that microbial communities in adjacent

production wells were different. These results prompted us to

emphasize the importance of monitoring the microorganisms in

production water and to understand the effects of the recovery

process on the subsurface microbial ecosystem.

Materials and Methods

Sample collection and DNA extraction
We obtained permission from the Institute of Oil Recovery

Research (Shengli Oil Field Ltd.) for observation and field studies

in Gudao Oil Field which has been water flooded since 1974. The

re-injection water produced from oil-water separation of produc-

tion fluids, which collected from production wells in one working

block. One water station supplied all the water needed for

injection in the working block with several different pump stations

to maintain the injection pressure. One injection well (G1–6) and

two production wells (3C15 and 6–13) were used in this study. An

injection water sample (W) was obtained from the water supply

pipelines of G1–6, and production waters (C and L) were oil-water

mixtures collected directly from the wellheads of 3C15 and 6–13,

respectively. The distances between these three wells ranged from

Figure 4. Venn diagram showing the distribution of OTUs. (A) Bacterial OTUs. (B) Archaeal OTUs. BW and AW, sample W; BC and AC, sample C;
BL and AL, sample L. The number of OTUs in each sample is in parentheses. The number and name of OTUs shared by different samples are showed
in the shaded part of the circles.
doi:10.1371/journal.pone.0023258.g004
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0.3 to 0.6 km. Both injection water and production waters were

full filled in 5 liters sterilized plastic bottles to prevent the diffusion

of oxygen into the samples. The plastic bottles were transported to

the laboratory at ambient temperature and maintained at 4uC
until subsequent analysis.

Demulsification of production waters was completed by adding

1/4 volume of saturated NaCl solution and heating at 70uC for

2 min. The microbial biomass was collected from 250 ml of the

oil-water mixture using successive filtration with 8-mm and 0.22-

mm filters (Millipore, USA). Genomic DNA was extracted from the

filters using a proteinase K/sodium dodecyl sulfate (SDS)/bead

beater treatment [32] followed by standard phenol/chloroform

extractions [33]. Nucleic acids were purified using the AxyPrep

PCR cleanup kit (Axygen Biosciences, USA) and stored at 220uC
until 16S rRNA gene amplification.

Denaturing gradient gel electrophoresis (DGGE) analysis
The bacterial V3 region of the 16S rRNA gene was amplified

using the primers P2 and P3 described by Muyzer et al. [34]. The

25-ml reaction mixture contained 0.5 U Taq DNA polymerase

(Promega, USA), 2.5 ml of the corresponding 106buffer, 2 ml of a

2.5 mM dNTP mixture (TaKaRa Co., Shiga, Japan), 6.25 pmol

of each primer, and 10 ng of genomic DNA. For archaeal V3

region amplification, primers ARCH344f and UNIV522r were

used [35,36]. The 25-ml reaction mixture contained the same

components as bacterial PCR. PCR was performed using an initial

denaturation at 95uC for 3 min followed by 30 cycles consisting of

95uC for 45 s, 55uC for 30 s, and 72uC for 1 min and a final

extension at 72uC for 7 min. PCR amplifications were performed

using the Model 475 Gradient Delivery System (Bio-Rad, UK).

For both bacterial and archaeal V3 PCR products, ‘‘recondition-

Figure 5. Phylogenetic neighbor-joining trees of representative OTUs in the archaeal clone libraries. Following the name of each OTU,
the name of the sample and the percentage of this OTU was indicated in the parentheses. The numbers on the branches are bootstrap values
obtained from 1000 bootstrap replicates. AW, sample W; AC, sample C; AL, sample L.
doi:10.1371/journal.pone.0023258.g005

Comparison of Samples in Petroleum Reservoir
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ing PCR’’ was performed as described by Thompson [37]. The

concentrations of the PCR products were determined using a

DyNA Quant 200 fluorometer (Pharmacia, US) and evaluated

using 1.2% (wt/vol) agarose gel electrophoresis.

A 250-ng aliquot of each V3 PCR product was separated on 8%

(wt/vol) denatured polyacrylamide gels using a Dcode System

apparatus (Bio-Rad, Hercules, CA); the linear denaturant gradient

was 27%–55% for bacteria and 30%–70% for archaea (100%

denaturant corresponded to 7 M urea and 40% deionized

formamide). Electrophoresis was performed in 16 Tris-acetate-

EDTA (TAE) buffer at a constant voltage of 200 V and a

temperature of 60uC for 240 min. The DNA bands were stained

using SYBR green I (Amresco, Solon, Ohio) and photographed

using a UV gel documentation system (UVItec, Cambridge, UK).

The PCR-DGGE DNA profiles were digitized, and similarities

between samples were analyzed using Quantity One software.

Dendrograms were constructed using the unweighted pair group

method using arithmetic averages (UPGMA).

16S rRNA gene clone library construction
Bacterial and archaeal 16S rRNA gene clone libraries were

constructed to examine the microbial communities of injection

water and production waters. Universal primers 27F and 1492R

[38] were used to amplify bacterial 16S rRNA gene sequences,

while primers 46F and 1017R [39] were used to amplify archaeal

16S rRNA gene sequences. The 25-ml PCR reaction mixture

contained 0.5 U Taq DNA polymerase (Promega), 2.5 ml of the

corresponding 106 buffer, 2 ml of a 2.5 mM dNTP mixture,

1.6 ng/ml BSA, 6.25 pmol of each primer, and 10 ng genomic

DNA. All PCR amplifications were performed using the DNA

Engine Tetrad 2 Peltier Thermal Cycler (Bio-Rad), and PCR

products were evaluated using a 1.2% (wt./vol.) agarose gel. PCR

products used for clone library construction were purified using a

DNA gel extraction kit (Omega, USA).

The purified PCR products were ligated into a T-vector using

the pGEM-T easy vector system I according to the manufacturer’s

instructions (Promega). The ligation products were transformed

into competent Escherichia coli DH5a cells (Tiangen, China). Cells

were spread on Luria-Bertani agar plates containing 25 ml

ampicillin (50 mg/ml), 25 ml X-Gal (0.05 g/ml) and 100 ml IPTG

(0.1 M).

Sequencing analysis of the16S rRNA gene clone libraries
From two clone libraries, 360 bacterial and 166 archaeal white

clones were randomly selected for sequencing using an ABI 3730

DNA sequencer. Sequences were assembled after all clones were

sequenced in both direction using the primers 27F/1492R for

bacteria and 46F/1017R for archaea. Chimeras were detected

within the sequence data set using the Chimera Check program

(http://greengenes.lbl.gov/cgi-bin/nph-index.cgi). Operational

taxonomic units (OTUs) were defined based on 97% similarity

using the DOTUR program (http://www.plantpath.wisc.edu/

fac/joh/dotur/documentation.html). All sequences were submit-

ted to GenBank for analysis using the BLAST program [40].

Sequences were aligned using Clustal X, version 1.81 [41].

Unifrac was used to determine whether two communities differed

significantly using Monte Carlo simulations and measuring the

distance between communities [42]. Phylogenetic trees were

constructed using the neighbor-joining method [43] within the

program Mega 3.1 using 1,000 bootstrap replicates.

Good’s formula was used to evaluate whether the libraries

constructed were large enough to provide stable phenotype

richness as follows:

C~½1{(n=N)�|100

where n is the number of unique clones and N is the total number

of clones in each library [44].

To assess the diversity of bacteria and archaea in each sample,

two statistical indexes, the Shannon-Wiener index (H) and the

Simpson (1-D) index, were calculated using Past [45].

Nucleotide sequence accession numbers
The GenBank accession numbers for bacterial 16S rRNA gene

sequences are FJ900823-FJ901182 and HQ658567-HQ658470;

the archaeal 16S rRNA gene sequences are FJ900660-FJ900822

and HQ658471.
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Figure 6. The archaeal composition of injection water and production waters at the family level. AW, sample W; AC, sample C; AL,
sample L.
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