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Regulation of gene expression at the transcriptional level is
achieved by complex interactions of transcription factors operating
at their target genes. Dissecting the specific combination of factors
that bind each target is a significant challenge. Here, we describe in
detail the Allele Binding Cooperativity test, which uses variation in
transcription factor binding among individuals to discover combi-
nations of factors and their targets. We developed the ALPHABIT (a
large-scale process to hunt for allele binding interacting transcrip-
tion factors) pipeline, which includes statistical analysis of binding
sites followed by experimental validation, and demonstrate that
this method predicts transcription factors that associate with NFκB.
Our method successfully identifies factors that have been known to
work with NFκB (E2A, STAT1, IRF2), but whose global coassociation
and sites of cooperative action were not known. In addition, we
identify a unique coassociation (EBF1) that had not been reported
previously. We present a general approach for discovering combi-
natorialmodels of regulation and advance our understandingof the
genetic basis of variation in transcription factor binding.

functional genomics | systems biology

Over the last several decades, it has become increasingly clear
that the control of gene expression is due to the complex

interactions of different transcription factors (TFs) working to-
gether to regulate RNA polymerase activity at promoters (1, 2).
Although one factor may be a global regulator of a single process,
it may function with other TFs to achieve precise regulation at
different loci. Identifying the factors that work together to regu-
late each gene is a fundamental problem in biology.
A variety of approaches have been used to measure TF coas-

sociation. In vitro and in vivo biochemical assays have been used to
detect protein–protein interactions, but these are plagued by
trade-offs between sensitivity and specificity (3, 4). Moreover,
in vitro assays do not always reflect the events that occur in vivo.
Computational approaches have been successful in predicting
binding sites by analyzing motifs in promoter regions in the context
of expression data, but these are noisy and do not consider con-
dition-specific binding events (5). Coassociation of TF binding sites
can also be used to predict factors that work together (6, 7), but
such approaches lack functional information about specific inter-
actions and typically require large numbers of coassociated sites.
We have recently suggested a unique approach, the Allele

Binding Cooperativity (ABC) test, which uses binding variation
among individuals to identify TF coassociation (8, 9). We hy-
pothesized that variation in TF binding can occur because of
sequence variation in associated TF binding sites and motifs. By
searching for motifs in the binding regions for a factor of in-
terest, the covariance of the associated motif can be correlated
with binding of the factor across individuals. We demonstrated
this phenomenon in a preliminary proof-of-concept, but did not
rigorously examine many important parameters of the ABC test,
nor did we verify that the associated motifs were bound by the
predicted factor.
Here, we demonstrate that the ABC test can be used to sys-

tematically identify coassociated TFs and the targets they regu-
late.We examine the parameters for optimizing this approach and

describe the ALPHABIT (A Large scale Process to Hunt for
Allele Binding Interacting Transcription factors) computational
and experimental pipeline to identify targets from variation data.
We apply this method to the identification of novel binding
partners of NFκB (p65), whose binding sites were mapped in 10
individuals using ChIP-Seq. (8). NFκB is a key regulator of many
cellular processes including inflammation, immune response, and
cellular proliferation; ∼7.5% of NFκB binding sites were found to
be variable between any two individuals, but only 0.7% of these
variable sites contained SNPs within the canonical NFκB binding
motif (binding SNPs or B-SNPs). Another 31.5% of variable
binding sites contain a SNP within the NFκB peak, but not in the
NFκBmotif itself; it is plausible that many of these SNPs lie in the
binding sites of TFs that coassociate with NFκB at those targets.
We used the ABC test and ALPHABIT pipeline to identify TFs
(EBF, STAT1, E2A, and IRF2) that may bind cooperatively with
NFκB and identified loci where they coassociate.

Results
Overview of the ABC Approach and the ALPHABIT Pipeline. NFκB
binding varies at many sites in cell lines from different individ-
uals, but few of these lines exhibit variability in the NFκB motif
at the variable regions. We therefore reasoned that SNPs in the
motifs of cooperatively binding factors may affect binding of
NFκB (Fig. 1A) and established the ALPHABIT pipeline to
investigate binding partners of NFκB (Fig. 1B). In this approach,
we first search for binding motifs of all 146 TFs from the JAS-
PAR database (10) in variable NFκB binding regions (8). At
each of these regions, we find the difference of a motif of interest
between each pair of individuals [weighted using a position
weight matrix (PWM) metric; see Methods], as well as their fold-
difference of NFκB binding. We then aggregate these data across
binding sites and correlate the motif differences with binding
differences. The interacting factors with the most significant
correlations are candidates to be NFκB partners and are then
tested for coassociation by ChIP-Seq (see below).

Identification of Motifs Whose Variance Correlates with NFκB Binding.
We used the ALPHABIT pipeline to analyze variable NFκB
binding regions for motifs of possible coassociated TFs. Using
the JASPAR database, we searched for motifs that contained
SNPs whose match to the PWM correlated with NFκB bind-
ing. We term such SNPs “cB-SNPs,” for cooperative B-SNPs

Author contributions: K.J.K., R.B.A., and M.S. designed research; K.J.K., S.G.L., X.Y., and
T.S. performed research; K.J.K., N.P.T., and M.S. contributed new reagents/analytic tools;
K.J.K. and N.P.T. analyzed data; and K.J.K., N.P.T., and M.S. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

Data deposition: The sequence reported in this paper has been deposited in the ENCODE
consortium.
1To whom correspondence should be addressed. E-mail: mpsnyder@stanford.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1103105108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1103105108 PNAS | August 9, 2011 | vol. 108 | no. 32 | 13353–13358

SY
ST

EM
S
BI
O
LO

G
Y

mailto:mpsnyder@stanford.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1103105108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1103105108/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1103105108


(Fig. 2A). Using a pairwise correlation method, we found 78
motifs where at least 25 comparisons could be made (SI Ap-
pendix, Fig. S1), where each comparison consists of a motif that is
polymorphic between two individuals in a variable NFκB binding
region. In this way, we found that five motifs (those for E2A,
STAT1, IRF2, EBF1, and Myf), as well as the positive control,
NFκB showed significant correlations with NFκB binding after
Bonferroni multiple hypothesis correction (P < 6.4E-4) (Table 1
and SI Appendix, Table S1 and Figs. S1 and S2). The correlation

for one such motif (EBF1) is shown in Fig. 2B. Of the five motifs,
three (E2A, STAT1, and IRF2) had been suggested to work with
NFκB previously at one or a few loci, and the other two (EBF
and Myf) have not. For each of these five motifs, a stronger
match to the consensus positively correlates with an increase in
NFκB binding, suggesting a cooperative rather than antagonistic
mechanism of binding. Other factors exhibited negative corre-
lations, but these were below our significance threshold (SI Ap-
pendix, Table S1).

Fig. 1. Overview of the ALPHABIT pipeline. (A) In a model of cooperativity, the binding of one factor depends on the binding of another. For example, when
a STAT1 motif is present, both STAT1 and NFκB are bound. Loss of the STAT1 motif decreases binding of NFκB, despite the presence of an NFκB motif. (B)
Associated factor discovery process. Variable motifs are searched for in variable NFκB binding peaks and the difference in “motif score” (i.e., match to
consensus) is correlated with difference in NFκB binding. Significant predictions are validated by ChIP-Seq and subject to subsequent analysis.
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Fig. 2. Output of ALPHABIT analysis. The ALPHABIT pipeline identifies variable motifs that are predictive of NFκB binding. (A) Covariance of SNPs in an EBF
motif with binding of NFκB at a single locus. Colors correspond to populations (red: YRI; blue: CHB/JPT; purple: CEU), as in ref. 8. Binding of EBF in this region is
also validated in GM12878 by ChIP-Seq (orange). The EBF motif is shown belowwith variable residues highlighted (first genotype in dashed lines, second in solid
lines). (B) Analysis across all binding sites shows correlation between differences in EBF motifs (quantified as “motif scores”) and differences in NFκB binding
signal.
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To rule out any biases in the ALPHABIT pipeline toward
particular TFs, we performed permutation tests between the
motifs and peaks. We found that the pairwise analysis was not
particularly biased, as the top results were significant after per-
mutation testing (SI Appendix, Table S1). Additionally, these
correlations were not an artifact of the particular stringency used
in the motif search: we investigated a range of motif cut-off scores
and found no dependence of these correlations on the cut-off
chosen (SI Appendix, Fig. S3).

ChIP-Seq Reveals That the Covariant Motifs Are Bona Fide TF Binding
Sites. We then tested whether factors predicted to interact with
NFκB with the highest confidence also bound near the NFκB sites
using ChIP-Seq, to rule out false-positives resulting from noise in
motif discovery. We examined four of the five highest confidence
factors (EBF1, E2A, STAT1, IRF2), which are expressed in the
GM12878 lymphoblastoid cell line in which NFκB was mapped.

Additionally, because we did not find a significant correlation
between the motifs of ZNF143 or CTCF and NFκB binding
according to the ABC test (Table 1 and SI Appendix, Fig. S2), we
examined the binding profiles of these factors as negative controls.
In two independent biological replicate experiments, we per-
formed ChIP-Seq for each factor using the same conditions used
to map NFκB [TNFα-treated GM12878 cells (8)], along with im-
munoprecipitation by nonspecific IgG as the control. We then
scored the peaks using the PeakSeq algorithm (11) and compared
themwith the NFκB binding profile.We found that for each factor
there was extensive coassociation of binding across all NFκB sites
(Table 1). Importantly, the binding of each factor in the NFκB
variable regions strongly correlated with the presence of the var-
iable motif; that is, NFκB regions with variable (non-NFκB)motifs
were also bound by that motif’s factor (Fig. 2A). For example, 43 of
44 NFκB binding regions with a variable EBF1 motif were bound
by EBF1 inGM12878 cells (Fig. 2B). Similarly, 11 of 16, 8 of 9, and

Table 1. List of coassociated factors

De novo pipeline
ChIP-seq
validation Validated loci

Motif Loci (comparisons) Correlation P value Overall overlap Loci (comparisons) Correlation P value

NFκB 90 (370) 0.7544 2.93E-69 N/A N/A N/A N/A
EBF1 44 (108) 0.4756 1.98E-07 55.01% 43 (106) 0.5539 1.29E-09
E2A 9 (29) 0.6426 1.71E-04 30.95% 8 (28) 0.6382 2.58E-04
Myf 62 (170) 0.2779 3.15E-04 ND ND ND ND
STAT1 16 (72) 0.4109 3.36E-04 27.98% 11 (55) 0.3542 7.97E-03
IRF2 58 (111) 0.3507 3.72E-04 28.87% 22 (52) 0.3700 3.92E-03

. . . . . .

ZNF143 38 (101) 0.2172 0.0291 41.24% 32 (78) 0.1413 0.2173
CTCF 63 (154) 0.0778 0.3370 25.8% 55 (130) −0.0329 0.7105

Factors whose motifs are correlated with NFκB binding, along with the two negative controls, ZNF143 and CTCF. On the left, the
significant factors from the discovery stage, along with the negative controls, are shown. A full list can be found in SI Appendix, Table
S1. Binding was measured for six factors to determine overlap with NFκB binding sites. The correlations are recalculated, restricting the
analysis to only validated binding sites (shown on right). N/A, overlap of the same factor is not applicable; ND, no data.
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Fig. 3. Distance dependence of cooperative interactions: The correlation between motif PWMmatch and NFκB binding strength drops when analyzing larger
windows around the NFκB binding peak for motifs in validated binding sites. The number of sites was too low for distance dependence analysis of E2A motifs.
As expected, proximal motifs are more predictive of NFκB binding than distal motifs.
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57 of 58 sites with variable motifs were bound by STAT1, E2A, and
IRF2, respectively. For each of these factors, a significant corre-
lation is maintained between motifs and binding, when restricting
the analysis to only validated binding sites (Table 1). Neither
ZNF143 nor CTCF motifs were found to exhibit coassociation
with NFκB binding at the validated binding sites of the respective
factors (Table 1), and ChIP-Seq of these factors revealed only
modest overlap with NFκB binding sites. Thus, the ABC test has
high specificity in identifying factors that associate with NFκB.

One concern is that the presence of more than one variable
motif in a single binding peak may confound the identification of
coassociated factors. For example, because of partial motif simi-
larity, some predicted EBF1 motifs might overlap predicted
NFκB motifs; if this occurs, variations that we predict affect the
EBF1motif may actually be affecting an overlapping NFκBmotif.
Individual inspection of each of the variable motif sites that we
identified revealed that no overlap of motifs with either NFκB or
one another occurred (SI Appendix, Table S2). Thus, we conclude
that the associations that we identified using the ABC test do
occur with these specific factors in the condition tested.

Covarying Motifs of Interacting Factors Lie Relatively Close to NFκB
Binding Peak. We also examined the distance in which functional
coassociation between factors can be detected using the ABC
test. We determined the motif-NFκB binding correlations, in-
cluding motifs in various sized windows (in base pairs) around
the binding region. For each of NFκB, EBF, and STAT1, we
found significant correlations up to 1 to 2 kb, with a significant
reduction in correlation past this distance (Fig. 3). For E2A, the
number of variable sites was too low for reliable analysis. These
results indicate that most coassociated factors can be detected
relatively proximal to NFκB sites using the ABC test.

Increased Binding Variance Can Be Explained by Coassociated Factors.
Previously, only 0.7% of the variation in NFκB binding could
be explained by a SNP in the NFκB motif, with another 3%
accounted for by structural variants. Examination of the cB-SNPs
in themotifs of the four factors identified in this study (EBF, E2A,
STAT1, and IRF2) can account for an additional 0.8% of the
variation (127 variable loci) in NFκB binding. Thus, we doubled
the number of sites that can be genetically attributable to differ-
ences in NFκB binding.

Combinations of TF Binding at NFκB Targets.WeusedChIP-Seq data
and multivariate linear models to examine which of the factors are
preferentially associated with NFκB and whether different combi-
nations of factors are coassociated. In total, 39,818, 22,404, 20,257,
and 20,898 of EBF1, E2A, STAT1, and IRF2 sites (both variable
and nonvariable) overlap with 72,379 NFκB binding sites. Sites that
were not identified as functioning with NFκB using the ABC test—
29,853 ZNF143 sites and 18,679 CTCF sites—also overlap with
NFκB, perhaps because certain chromosomal regions are more
accessible to binding and are bound nonspecifically by TFs.
The associations of the factors predicted by the ALPHABIT

pipeline exhibit a higher correlation with NFκB binding strength
than that of the negative controls. Considering only the strongest
NFκB binding regions (15,931 regions of q-value < 1e-12), NFκB
binding strength is more effectively predicted by a multivariate
model including STAT1, EBF, E2A, and IRF2 (the “full” model;
r= 0.70) compared with a model of the control factors, the “null”
model, (ZNF143 and CTCF) alone (r=0.44) (Fig. 4), determined
by ANOVA (P = 1.7e-121, F4,1223 = 180.36). In the full model,
each of STAT1, EBF, E2A, and IRF2 significantly contribute to
the fit of the model (P = 1.85e-37, 5.27e-23, 1.31e-06, and 2.92e-
11, respectively), whereas neither ZNF143 nor CTCF significantly
contribute (P = 0.315 and 0.548, respectively). ANOVA results
for each model are provided in SI Appendix, Table S3. Increased
binding of NFκB is predicted by increased binding of these fac-
tors, suggesting a cooperative binding mechanism.
We also examined the relationship between NFκB and the

predicted factors using 9,395 gene-expression experiments from
the Gene Expression Omnibus (GEO). Over all experiments, we
observed a significantly higher correlation between NFκB ex-
pression and expression of IRF2, STAT1, and EBF1 (0.34–0.39),
compared with ZNF143 and CTCF (0.10 and 0.13) (Fig. 5 and SI
Appendix, Table S4). These results demonstrate that the factors dis-
covered by the ALPHABIT pipeline are significantly coregulated.
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Fig. 4. Correlation of coassociated factors with NFκB binding. NFκB binding
ratios (signal to background) can be predicted by fitting linear models of
combinations of the control factors (A) and the “full” model (the control
factors combined with four coassociated factors, EBF, STAT1, E2A, IRF2) (B).
Although all signals are expected to be correlated because of open chro-
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one fit using the negative controls (ZNF143 and CTCF; r = 0.444) (A).
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Different Combination of Factors Regulate Different Processes. Fi-
nally, we examined the functions of the genes regulated by NFκB
and each cooperative factor. Using the GREAT algorithm (12),
we found functional enrichments of the NFκB coassociated
regions with specific gene functions, compared with the back-
ground of all NFκB binding sites. We find significant enrichments
for various GO terms for each set of overlapping sites of the co-
operative factors, but not those of the control factors (Table 2).
Interestingly, these functional annotations are different between
the cooperative factors, suggesting a distinct functional role for
each combination of factors. For example, genes where NFκB and
E2A overlap are enriched for genes regulating B-cell homeostasis,
but genes targeted by NFκB and EBF1 are enriched for genes
involved in melatonin biosynthesis. Interestingly, STAT1 and
IRF2, which share an enrichment for “translational elongation,”
are known themselves to interact, as determined by STRING (13).
Thus, we further investigated the combinatorial interaction be-
tween these factors: although the subdivisions of biological pro-
cesses specific to STAT1 and IRF2 varied, none were below the
significance threshold (SI Appendix, Table S5). Overall, these
results indicate a distinct functional role for each combination of
factors, as suggested previously with other ChIP data (14, 15).

Discussion
Identification of TF coassociation at specific targets is a significant
challenge. Here we present the ALPHABIT pipeline to detect TF
associations using ChIP-Seq data obtained from multiple indi-

viduals. We apply this method to binding variation data and
identify TFs that are coassociated with NFκB. One important
feature of the ABC test and ALPHABIT pipeline is that it not
only identifies factors that work together, but also identifies the
chromosomal sites at which they operate. Importantly, it also
provides functional information for their coassociation, as vari-
ance of the motif of one factor is correlated with binding of the
other (NFκB). In addition, the binding of the putative coasso-
ciated factors is significantly predictive of NFκB binding, sug-
gesting a cooperative mechanism. In this respect, the ABC test/
ALPHABIT pipeline is different from other methods that only
measure coassociation between factors (6) or protein–protein
interactions, but do not ascribe a functional relationship.
Indeed, some of the factors predicted by the ALPHABIT

pipeline, including STAT1, E2A, IRF2, are known to interact with
NFκB, as determined by STRING (13). Additionally, the top
factors we identify exhibit positive correlations between their
motifs and NFκB binding: other factors in our analysis are nega-
tively correlated, suggesting a potential antagonistic interaction.
Further validation of these results would provide insight into
mechanisms of inhibitory combinations of TFs.
Another important advantage of the ABC test/ALPHABIT

pipeline is that association can be detected at a limited number of
loci because identification occurs by comparing results among
different individuals rather than from multiple loci. This finding is
important because many factors can facilitate binding, but often at
only a limited number of chromosomal sites (9). For E2A we
observed a signal from only nine loci, many of which were vali-
dated by ChIP-Seq. This low number of coassociated sites could
explain its lack of correlation with NFκB expression: E2A may
contribute to NFκB binding at a small subset of sites, suggesting
localized cooperativity rather than a global coassociation. One
current limitation of the ABC test/ALPHABIT pipeline is that
data from multiple individuals needs to be present. However, as
the cost of DNA sequencing is rapidly decreasing, such data will be
easily attainable, and this method can be further applied to dis-
cover new TF interactions.
Our results further revealed that significant coassociations are

evident within 1 to 2 kb of the binding site of a factor of interest.
Although coassociations at more distal sites are likely to be
present, they will also be more difficult to detect because of the
presence of many other nonfunctional but related motifs that lie
in these regions, or alternatively, the effect of more distal sites on
binding may be weaker than the proximal sites.
Presently, our analyses have been based on simple linear cor-

relations. However, most biological processes are more complex,
and thus a thermodynamicmodelmay be better suited than a linear
model to characterize the mechanism of TF binding (16). Such
nonlinear complex interactions could include either direct coop-
erative interactions between TFs, as well as nucleosome-mediated

Table 2. Functional categorization of combinations of TFs

Factor Term Raw P value False-discovery rate q-value Fold enrichment

STAT1 Translational elongation 9.62E-13 6.90E-09 2.508004
IRF2 Translational elongation 3.33E-08 5.96E-05 2.088436
IRF2 rRNA processing 0.000020028 0.013047312 2.047355
EBF Melatonin biosynthetic process 6.66E-05 0.005970106 2.658929
EBF Indolalkylamine biosynthetic process 0.000296952 0.017023681 2.454396
E2A Inactivation of MAPK activity 8.73E-06 0.003293225 2.308324
E2A Response to iron ion 2.32E-05 0.006912745 2.545806
E2A Mammary gland epithelial cell proliferation 2.86E-05 0.007316079 2.454884
E2A B-cell homeostasis 8.52E-05 0.014885823 2.137337

Overlapping binding sites of NFκB with each factor shows enrichment of different functional annotations. No significant annotations
were found for NFκB with either ZNF143 or CTCF. The overlapping binding sites were compared with all NFκB binding sites as
a background.

Fig. 5. Coexpression of predicted coassociated factors. Expression of three of
the predicted coassociated TFs (IRF2, STAT1, and EBF) exhibit correlation
(0.398, 0.379, 0.341, respectively) withNFκB expression in a large, independent
dataset (9,395 gene-expression experiments from theGEO). ZNF143, CTCF, and
E2A exhibit a much lower correlation (0.102, 0.128, and 0.137, respectively).
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effects (17). The ABC test indicates that factors are coassociated
but does not provide insight into the mechanisms by which the
associated factors function. Themechanisms could either be direct,
such as cooperative binding through protein–protein interactions,
or indirect, such as might occur for a factor that alters chromatin
state and thereby directly facilitates NFκB binding.
Single nucleotide variants in NFκB binding motifs and struc-

tural variants in the motif regions were previously found to ac-
count for 0.7% and 3% of the sites with variable binding, re-
spectively (8). By incorporating cB-SNPs, we can account for an
additional 0.8% of variable binding sites, which still leaves the
majority of the variance unexplained. For the binding sites that
contain SNPs, further analysis of other cooperating factors may
serve to explain the role of these SNPs in regulatory variation. For
the remainder of sites, the variability may be explained by long-
range interactions, epigenetic modifications, or noise in ChIP-Seq
experiments. Thus, the incorporation of other analyses will be
important for a full understanding of differences in TF binding
among individuals, which will allow for advances in systems bi-
ology, as well as comprehensive annotations of genomic variants.
Finally, our analysis demonstrates the different functions per-

formed by combinations of TFs. For example, NFκB may work
with E2A in regulating B-cell homeostasis, but its role with
STAT1 may be related to regulating proteins involved in trans-
lational elongation. Thus, we elucidate the functional role of
various combinations of TFs, further demonstrating the context-
specific combinatorial manner in which TFs regulate their targets.

Methods
ABC Test and the ALPHABIT Pipeline. The ABC test was performed using NFκB
ChIP-Seq data for 10 individuals, 8 of which have full genome sequences
available from the 1,000Genomes Project Pilot 1 (04/09 release). In this test, we
obtained a known motif in the PWM format from the JASPAR database (10)
and searched for this motif in every variable NFκB binding peak (restricting to
peakswithmotif e-values≤ 1,000). A “motif score”was determined for each k-
mer motif for each individual, which we define as the sum over each position
of the log-odds score as determined by the PWM. If multiple motifs are found
in a binding site, the sumof all of themotif scores is used instead. For a variable
motif in a pair of individuals, we compare deviations in this motif score to the
fold-difference in NFκB binding. The data for all NFκB binding regions from all
pairs of individuals were then combined to generate an overall correlation.

In the ALPHABIT pipeline, the correlations between motif scores and NFκB
binding were calculated using the ABC test for each of the 146 motifs in the
JASPAR database. Seventy-eight motifs were found to be variable in NFκB
regions, where at least 25 comparisons were made: each comparison required
both a change themotif score by at least 1, as well as a significant difference in
NFκB binding (as determined previously in ref. 8). We determined Pearson
correlations between the “motif score” and NFκB binding for each of these

motifs independently and applied a Bonferroni correction (n = 78) for multi-
ple hypotheses.

To investigate any bias introduced by this pairwise comparison method, we
first randomized the motif-peak association by sampling motifs with re-
placement for each individual. For each iteration, we randomly selected which
individual would be compared first (i.e., which individual is used as the nu-
merator forthecomparison),andrepeatedthisprocess100timestogeneratean
average correlation. We repeated this process 100 times to generate a back-
ground distribution of permuted correlations and estimated the P value by
comparing the observed correlation to this normally distributed background.

ChIP-Seq. ChIP-Seq was performed using the procedures of ref. 18, using
antibodies for EBF1 (Santa Cruz Biotechnology; sc-137065), E2A (Santa Cruz
Biotechnology; sc-349), STAT1 (Santa Cruz Biotechnology; sc-345), IRF2
(Santa Cruz Biotechnology; sc-13042), ZNF143 (Proteintech; 16618–1-AP),
and CTCF (Millipore; mp07729). ChIP-Seq for NFκB (Santa Cruz Bio-
technology; sc-372) was also repeated to ensure corresponding conditions.
Cells were treated with 25 ng/mL TNF-α (eBioscience; #14–8329) for 6 h, as
described in refs. 8 and 18. Peaks were scored using the PeakSeq algorithm
(11) using a q-value threshold of 0.01. Data are available from the University
of California at Santa Cruz.

Statistical Analysis. High-confidence NFκB binding regions determined by an
independent ChIP-Seq experiment (15,931 regions of q-value < 1e-12) were
intersected with binding sites of each of the other factors, requiring a single
base-pair overlap for corresponding binding peaks. Multivariate linear re-
gression was performed on NFκB binding ratios (signal to background) gen-
erated by PeakSeq. Significance was assessed by ANOVA of nested models.

For expression correlation analysis, Pearson correlation between NFκB and
each of the other factors was determined for a set of 9,395 gene-expression
experiments, described in ref. 19. Significance was assessed through boot-
strapping. From 20,099 genes, we sampled with replacement 100 times and
calculated Pearson correlations. The empirical P value was the proportion of
randomly sampled correlations that exhibited higher correlations than the
observed correlations. We used R statistical software (version 2.12.1) for all
statistical analyses.

We used the GREAT algorithm (version 1.8) (12) to identify functional
enrichments of overlapping binding sites. We used the same set of high-confi-
dence NFκB binding regions and considered overlap with only the highest con-
fidence peaks of each of the other factors (q-value< 1e-15 for all factors except
EBF, for which more data were available, where we required q-value < 1e-40).
For the detailed analysis of STAT1 and IRF2, we considered NFκB peaks where
IRF2wasbound, but STAT1wasnot, by the samecriteria asabove, andvice versa.
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