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The social network (of protein conformations)
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roteins possess thousands of
degrees of freedom, and yet, they
can rapidly and reliably find their
way into well-defined folded con-
figurations (1). In the cell, these folded
proteins carry out highly specific motions
critical to cargo transport and force trans-
duction, energy generation, and catalysis.
However, how is this possible given their
incongruously large conformation spaces?
Is their behavior intrinsically complex,
where the nuanced details of all of the in-
teratomic interactions are critical to their
behavior, or can this motion be understood
in terms of simpler collective behavior? In
PNAS, Ceriotti et al. (2) examine this
question by formulating an algorithm that
attempts to uncover simple collective be-
havior in the conformation spaces of bio-
molecules in an automated fashion.

Opver the last few decades, a number
of sophisticated computer simulation
techniques have been developed that allow
these conformation spaces to be explored,
generating compendia of thousands or
millions of conformational snapshots in
a typical computer experiment. However,
as computer hardware and clever software
have advanced, making sense of these
datasets has become harder and not eas-
ier. When it might have sufficed for a
skilled structural biologist with a graphics
terminal to extract insight into molecular
mechanism from picoseconds to nano-
seconds of molecular dynamics, it is no
longer possible when these trajectories
are microseconds to milliseconds in length
or if the sampled ensembles represent
a substantial fraction of the thermody-
namically accessible conformation space.
To make sense of these large datasets and
learn something useful about the molecu-
lar motions that they represent, some
form of data reduction is necessary.

In one form or another, dimensionality
reduction methods have been a workhorse
of data visualization and analysis for cen-
turies. By transforming a high-dimensional
representation into a representation in
only a few dimensions—generally two or
three to facilitate human comprehension—
these approaches can often provide useful
insight about how the data are organized
and structured, or useful guidance for fur-
ther exploration. The challenge here is
that, because any such projection from high
to low dimension must result in a loss of
information, a decision must be made
about what information is to be retained
and what information is irrelevant.

A familiar example is the Mercator
projection of the globe, in which the di-
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mensionality of a dataset (the location

of large land masses on the Earth) is re-
duced from three (their location in 3D
space) to two (coordinates on a flat, rec-
tangular sheet of paper). In constructing
his projection in 1569, Gerardus Mercator
made particular choices of what infor-
mation was most critical to preserve:

In this mapping of the world we have [desired]
to spread out the surface of the globe into
a plane that the places shall everywhere be
properly located, not only with respect to
their true direction and distance, one from
another, but also in accordance with their
due longitude and latitude; and further, that
the shape of the lands, as they appear on the
globe, shall be preserved as far as possible (3).

In more modern terms, Mercator chose
to make his mapping conformal—pre-
serving the equality of stretching North—
South and East-West directions at every
point—and ensure that all lines of con-
stant bearing become straight lines, fea-
tures that made his map particularly suited
to maritime navigation (4). Although the
choices of properties to be preserved in
mapping conformation spaces of proteins
will differ from Mercator’s choices, the
fundamental challenges remain the same.

The simplest dimensionality reduction
methods applied to biomolecular simu-
lations are linear transformations that
project the data onto a few orthogonal
principal axes aligned with the directions
of largest variation in molecular geometry.
Although still a common technique, these
methods often reveal little about complex
large-scale motions, failing to provide
more insight because of the highly non-
linear structure of the populated regions
of protein conformation spaces (5). Other
methods, such as multidimensional scaling
(6), attempt to preserve the distances be-
tween pairs of conformations when em-
bedded in a low-dimensional space.
Unfortunately, these methods are chal-
lenged when the low-dimensional object
of interest is embedded in the high-
dimensional space in a complex way, such
as the classic example of a jelly roll—

a 2D dataset rolled into a 3D structure,
much like the popular snack cake.

More recently, dimensional reduction
techniques such as locally linear embedding
(7) were developed to overcome these lim-
itations, preserving local spatial relation-
ships to nearest neighbors in constructing
the embedding, and allowing the scheme to
unroll the jelly roll. Unfortunately, the
structure of biomolecular spaces is such that
these methods seem to be of limited use for
biomolecules (2, 8). Das et al. (9) instead
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Fig. 1. (A) Map of Germany sketched from memory
(image courtesy of Nomsa Buchholz) preserves con-
nections between important neighbors while dis-
torting global layout, much like the (B) sketch map
scheme of Ceriotti et al. (2) in mapping the confor-
mation space of peptides (reprinted from ref. 2).

explored schemes that combine the best
ideas from these earlier methods by trying
to preserve distances between confor-
mations but measuring distances along
either geodesics (shortest distances within
the low-dimensional manifold of populated
conformational space) or typical diffusion
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times between conformations (10). These
methods show great promise but can be
time-consuming to construct.

Ceriotti et al. (2), in their article in
PNAS, take a different approach to em-
bedding biomolecular conformations in
low-dimensional spaces. They suggest that,
although it may not be possible to build
the analog of a Mercator projection map
of conformations, it might, instead, be
possible to build a Facebook (2). They
examine the distribution of distances
between thermally accessible con-
formations, finding that most of the in-
formation about the local connectivity of
basins—much like directly connected
friends on the popular Web site—can be
found in an intermediate range of con-
formational distances (2). By using a mul-
tidimensional scaling-like embedding that
focuses on these intermediate distances
between friends, they show that a pro-
jection that preserves the local connectiv-
ity relationship between conformational
basins can be constructed (2). The result-
ing projection constitutes a rough map of
conformational space that is locally accu-
rate but globally distorted. Applied to
a small alanine repeat peptide, they show
that this scheme—which they call a sketch
map because of its similarity to roughly
sketching a map from memory in a way
that preserves local relationships—produces
more informative projections than pre-
vious attempts at dimensional reduction,
neatly segregating helical and p-turn con-
formational states (Fig. 1).

The sheer difficulty of identifying a set
of nonlinear low-dimensional reaction
coordinates to project onto has led some
researchers to take a different direction
altogether, focusing instead on summariz-
ing the kinetic connectivity of closely re-
lated basins in a graph theoretic manner
rather than trying to project them into
a continuous space of low dimension.
These approaches include disconnectivity
graphs, which arrange minima into trees
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based on the transition state barrier heights
connecting them (11), conformation space
networks, which assume that conforma-
tional similarity is identical to kinetic con-
nectivity (12), and Markov state models,
which cluster conformations using both
kinetic and conformational similarity from
simulations of dynamics (13, 14). In addi-
tion to providing more direct means to
connecting with biophysical spectroscopic
experiments, these approaches offer alter-
native ways to extract insight from the
resulting models (15, 16).

With this growing fracturing of
approaches (continuous projections vs.
network models), it is timely to review
the benefits and limitations of each ap-
proach. Projection to a few degrees of
freedom is a natural extension of the
analysis of simple chemical reactions,
where free energy landscapes in the
appropriate reaction coordinates can pro-
vide human visual understanding along
with quantitative predictive power. How-
ever, this scheme relies on the ease of
selecting appropriate reaction coordinates
as collective variables—degrees of free-
dom that are kinetically relevant to the
motions of interest, like folding or force
generation. Although on the surface, this
approach may seem straightforward,
much work has pointed to numerous
challenges in discovering these coor-
dinates, even when the endpoints are
known (17, 18). Moreover, overestimating
the kinetic relevance of a given degree
of freedom could lead to qualitative and
quantitative misinterpretation.

A network approach seeks to resolve
this problem by never requiring a reaction
coordinate. Instead, one deals with a po-
tentially high-dimensional representation
directly. This method does not completely
remove the challenge of requiring that
the kinetically relevant coordinates be
identified, but in a sense, it deals with it
constructively, rather than with a priori
assumptions, by using algorithmic schemes
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for producing kinetically relevant state
decompositions (13, 14). However, the
challenge of ensuring that these decom-
positions are kinetically relevant and can
be systematically constructed for a wide
variety of systems without extensive hu-
man intervention remains, although these
challenges are universal.

Still, a continuous representation of
conformation space offers potential
advantages over network-centric pictures.
One way in which this advantage could
be realized is to use the low-dimensional
representation to bias simulations to en-
sure coverage of important, but poorly
sampled, regions of conformation space.
Recent adaptive biasing techniques such
as metadynamics (19)—essentially, a con-
tinuous version of the Wang-Landau al-
gorithm (20) that has been wildly success-
ful in statistical physics—or equation-free
approaches (21) could well prove a pow-
erful combination combined with ap-
proaches like sketch map to identify
appropriate collective variables, especially
if the maps could be built up on the fly.
Adaptive sampling schemes also show
the potential for large efficiency gains in
constructing network-based representa-
tions of conformation space (22).

Exciting combinations of the two per-
spectives—continuous embeddings and
network representations—could offer
more advantages than either perspective
alone, but this territory remains largely
uncharted. Because biological simulation
tackles larger and more complex systems—
a feat relatively recently possible because
of the availability of structural data for
large-scale biomolecular assemblies such as
the ribosome and nuclear pore complex—
additional development of automated ap-
proaches to driving simulations and ex-
tracting useful insight will only become
more important.
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