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A new scheme, sketch-map, for obtaining a low-dimensional repre-
sentation of the region of phase space explored during an en-
hanced dynamics simulation is proposed. We show evidence,
from an examination of the distribution of pairwise distances
between frames, that some features of the free-energy surface are
inherently high-dimensional. This makes dimensionality reduction
problematic because the data does not satisfy the assumptions
made in conventional manifold learning algorithms We therefore
propose that when dimensionality reduction is performed on tra-
jectory data one should think of the resultant embedding as a
quickly sketched set of directions rather than a road map. In other
words, the embedding tells one about the connectivity between
states but does not provide the vectors that correspond to the slow
degrees of freedom. This realization informs the development of
sketch-map, which endeavors to reproduce the proximity informa-
tion from the high-dimensionality description in a space of lower
dimensionality even when a faithful embedding is not possible.

nonlinear dimensionality reduction | proteins | molecular dynamics

he dynamics of many of the molecules that appear in biology,

materials science, and chemistry are highly complex. These
molecules can undergo transitions involving large numbers of
atoms between an enormous number of different configurations
(1), which makes it difficult to comprehend these motions using
only chemical intuition. Nevertheless, within this data there is a
lot of correlation, and there is a strong body of evidence that the
energetically accessible regions of phase space lie on a structure
that has a low dimensionality (2-6). Therefore, low-dimensional-
ity representations of the free-energy surface can give meaningful
insight into phenomena and can provide collective variables
(CVs) that can be used to accelerate the dynamics and to recon-
struct the free-energy landscape. Methods exist for extracting this
low-dimensionality structure by postprocessing the results of long
unbiased molecular dynamics trajectories in which the entirety of
the landscape is explored (3, 6-8). Unfortunately however, for
many systems—in particular for atomistic simulations—obtaining
information on interesting, long-time-scale motions using un-
biased simulations requires heroic amounts of computational
time (9). Therefore, for these types of problems one would ideally
like to use dimensionality reduction in tandem with accelerated
sampling. This has to work both ways—the method must be able
to analyze data from accelerated sampling simulations on very
rough free-energy surfaces. Furthermore, it should produce a
mapping of phase space that can serve as an optimized, bespoke
set of CVs for calculations that extract quantitative free energies.

Experiments have shown that the low-free-energy part of
phase space has a complex structure with a nonuniform dimen-
sionality (8), that it is nonlinear (2, 4), that it is nonuniformly
sampled (8, 10), and that it is possibly fractal (4, 11). It therefore
seems likely that three, four, or even more vectors would be
required to faithfully describe these complex topologies using
the currently available dimensionality-reduction technologies.
In fact, even for relatively simple systems, which can be sampled
using unbiased dynamics, a very careful analysis is required to
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obtain a satisfactory three-dimensional description (7). This is
problematic when it comes to using these methods to educate ac-
celerated sampling algorithms because these methods work best
with very low numbers of CVs—ideally one or two (12). Further-
more, it is of paramount importance that these CVs map all the
basins in the free-energy surface to different parts of the xy plane
as barriers to motion in transverse degrees of freedom can
hinder the convergence of the free energy. Hence, in this paper
we introduce an algorithm, sketch-map, that endeavors to recon-
cile these two conflicting aims. In doing this we first present an
analysis of an enhanced-sampling trajectory, which explores the
energetically accessible configurations for a simple polypeptide.
This analysis demonstrates that there is a characteristic length
scale at which the most valuable topological information about the
free-energy landscape is encoded. Therefore, the design of sketch-
map is predicated on the assumption that it is not necessary to pro-
duce an isometric embedding of the high-dimensionality manifold.
Rather, one must preserve the proximity information and ensure
that points closer than this characteristic distance are mapped
close together, while simultaneously ensuring that the farther apart
points are well separated in the projection.

Background

The only dimensionality-reduction algorithm that has been
widely adopted within the simulation community is principal
component analysis (PCA) (2-5). In this method one runs a
simulation trajectory and calculates the means and variances
for a large number of collective coordinates. By diagonalizing the
resulting covariance matrix one can obtain the directions in which
there are the largest structural fluctuations—the directions that
are assumed to span the essential substance of the dynamics.
However, the assumption that low-energy regions lie in a linear
subspace of the full dimensionality space renders PCA appropri-
ate in local regions but results in a poor characterization of the
global, nonlinear features (6).

These deficiencies of PCA have led researchers to investigate
other, nonlinear manifold learning algorithms and in particular
locally linear embedding (LLE) (13), Isomap (6, 14, 15), and dif-
fusion maps (7, 8, 10, 16). The first of these, LLE, is a nonlinear
approach, which seeks to combine a set of locally linear descrip-
tions in the vicinity of each trajectory frame into a single, unified
embedding (13). It is common knowledge that algorithms like this
one are very sensitive to noise (17). This forces one to question
how effective this algorithm can be for molecular trajectories,
which are typically very noisy (8). The alternative then are global
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approaches, which seek to reproduce all the pairwise distances
between the D-dimensional frames by distributing their embed-
dings in a lower, d-dimensional space. The grandfather of these
methods is multidimensional scaling (MDS) (18), which can be
solved as an eigenvector problem or by minimization of a stress
function. When Euclidean distances are used the eigenvector
solution is equivalent to PCA, so approaches involving stress
function minimization are often preferred because they are more
flexible. By using a different metric to calculate distances, one can
use MDS to fit nonlinear manifolds (19, 20). For instance, assum-
ing the manifold is isometric with a linear space, one can use the
geodesic distance (the distance along the manifold). This idea is
the basis of the Isomap algorithm in which geodesic distances are
obtained by calculating the length of the shortest path through a
fully connected graph that is created by joining the points that are
closest together (19). Calculating geodesics in this way assumes
that the high-dimensionality points lie in a convex subset of RP—
i.e., it assumes that the low-dimensional manifold is uniformly
sampled and there are no “holes.” Donoho and Grimes (21, 22),
in the context of image articulation, have demonstrated that for
relatively simple cases this approximation is not valid and that in
these cases Isomap fails to find the correct parameter space up to
a linear mapping.

Currently the most promising approach for trajectory dimen-
sionality reduction is diffusion maps (23-25), which can be
formulated in a way that makes it resilient to noisy and nonuni-
formly distributed data (8). In this approach one defines a
weighted graph on the simulation data and then uses the first few
eigenvalues of the Laplacian of the manifold as the embedding
coordinates. This approach is exciting because for the systems ex-
amined the vectors spanning the low-dimensionality manifold
are those in which large barriers to motion make diffusion slow
(8, 16). That said, the method has thus far only been applied to
relatively simple systems and not to systems that require one to
use accelerated sampling to explore phase space.

To demonstrate our method we use in this paper the folding of
polyalanine-12, modeled with a distance-dependent dielectric
(e =r; in Angstroms) that mimics some of the solvent effects.
This system has been extensively studied (26) and has been shown
to have a complex, funnel-shaped energy landscape with an
alpha-helical global minimum that does not form during long MD
simulations started from a random configuration (27). To accel-
erate the dynamics we therefore use the recently developed re-
connaissance metadynamics method (see Materials and Methods)
because with this method one can use a large number of CVs
to characterize configurations and still obtain a qualitatively cor-
rect mapping of the free-energy surface (27). Furthermore, unlike
in other papers on dimensionality reduction, we take advantage
of the fact that changes in bond lengths, bond angles, and rigid
peptide bond dihedrals along with the rotations of methyl groups
are uninteresting. We therefore use only the 24 backbone dihe-
dral angles (Fig. 14) to characterize the various configurations
visited during the trajectories.

The Free-Energy Landscape of a Polypeptide

Before introducing our dimensionality-reduction algorithm it is
perhaps useful to step back for a moment and to examine some
qualitative features of the protein’s free-energy landscapes in
detail. Therefore in Fig. 1B we project the set of configurations
obtained from our reconnaissance metadynamics simulations onto
two dihedrals. We find that, even for a trajectory in which relatively
high energy states are sampled and regardless of the pair of dihe-
drals selected, the resulting distribution of angles is very similar to
the Ramachandran plot. Hence, angles are not uniformly distrib-
uted across the available space and there are instead regions of
high and low probability. This behavior was also seen by Sims
et al. (28) when they examined the distribution of torsional angles
for short peptide chains in higher dimensional spaces.

13024 | www.pnas.org/cgi/doi/10.1073/pnas.1108486108
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Fig. 1. Information on the distribution of torsional angles found in our
reconnaissance metadynamics simulations. A shows the ala12 system exam-
ined and the backbone dihedral angles that were used as CVs. B shows a 2D
projection of the distribution of angles found during reconnaissance. Here
we show the distribution as a function of y in the third residue and of ¢
in the sixth residue, although the distribution of any pair of angles shows
the same qualitative features. C shows (in red) a histogram for the distribu-
tion of distances between pairs of frames. Also shown in this figure is the
distribution expected for a 24-dimensional, isotropic Gaussian with a stan-
dard deviation equal to 0.5 (black) and the distribution of distances expected
for a set of points distributed uniformly across the 24-dimensional space
(gray).

High-dimensionality spaces can often display very nonintuitive
properties, which challenge our understanding of distance and
proximity (29). We therefore cannot possibly expect to under-
stand what structures are present simply by visualizing 2D projec-
tions. One quantity that can give us some feel as to whether or not
it is feasible to represent the data in the lower dimensionality
state is the histogram of pairwise distances, which is shown in
Fig. 1C. Remarkably, the long range part of this distribution
resembles that obtained from a uniform distribution of points
in the full, 24-dimensional space.* In fact, only when r is less than
eight is there a marked deviation from the uniform distribution—
a slower decay toward zero. For values of r of about one this decay
resembles that of a Gaussian distribution in the full, 24-dimen-
sional space in agreement with what one would expect for the
fluctuations within a harmonic basin. We therefore postulate that
the most interesting distances are those between about two and
eight because only here does the histogram resemble neither the
Gaussian or uniform distribution.

Fig. 1C suggests that fitting protein free energy surfaces using
dimensionality-reduction methods based on pure distance match-
ing is impossible. The plain fact is that certain features of the
distribution of distances are characteristic of points distributed
in the full dimensionality space. This histogram can thus not
be reproduced by projecting points in a space of lower dimension-
ality. In addition, it would appear that the free-energy surface has

*The distribution of distances between uniformly distributed points in a periodic space
is related to the surface area of a diced hypersphere (30). In contrast to the distribution
in a nonperiodic space there is a maximum in this function after which the function
decays to zero at r = zv/D.
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a complex topology. This appears in our analysis because we use
torsional angles that are inherently non-Euclidean to characterize
configurations. However, there is evidence from the literature
that protein potential energy surfaces have fractal dimensional-
ities (4, 11) or an otherwise intrinsically non-Euclidean topology.

The theory of energy landscapes suggests that energetically ac-
cessible configurations take up only a tiny fraction of phase space
because these configurations are clustered together in basins, in
which fluctuations take place in a high-dimensionality space, that
are themselves connected by a spider’s web of transition pathways
(1). This picture is far more consistent with the information com-
ing from our analysis of Fig. 1C and the structure of the Rama-
chandran plot than any picture in which all the low-energy regions
of phase space lie on a low-dimensional, Euclidean manifold.
Therefore, to test whether this is a realistic model for the energy
landscape of alal2 we generated a set of points from a model
potential that exhibits these features by importance sampling
at a sufficiently large temperature for both basins and low-lying
transition states to be sampled. The resulting collection of points
thus resembles what could have been obtained from enhanced-
sampling calculations and can be compared with the histogram
of distances obtained for alal2 (Fig. 2). Similarly to what was
observed for the protein (Fig. 1C) the distribution of pairwise
distances only deviates from the histogram for a uniform distri-
bution in the full-dimensionality, periodic space at short r, and at
the shortest r the decay resembles that observed for the distribu-
tion of distances in a multivariate Gaussian in the full-dimension-
ality space. In fact the main qualitative difference for the two
systems is that the deviation here is less pronounced, which is sim-
ply a consequence of the lower dimensionality of this potential.
The similarities thus give us confidence in our conceptual picture
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Fig. 2. Information on a model potential (V(6,¢,) = exp[3(3 —sin*(6)—
sin(¢) — sin*(y))] — 1), which exhibits many of the features that we believe
characterize complex free-energy landscapes. In A the isosurfaces that en-
close 50, 80 and 90% of the probability density for a particle diffusing about
this potential at a temperature of kg7 = €3 — 1 are shown. In B the distribu-
tion of points extracted from this potential through importance sampling are
shown and the 500 landmark points selected using a farthest point sampling
strategy are highlighted. In this panel the size of the landmarks is related to
their weights and their colors depict the value of one of the angles. A key for
the coloring is shown in C, and for the remainder of this paper, wherever
points are colored according to the value of an angle, we ask the reader
to refer to this scale. Finally, in D we show a histogram of the distances be-
tween pairs of generated points (red). This is again compared with the dis-
tribution expected for a 3D, isotropic Gaussian (black) and the distribution
for a set of points distributed uniformly across the 3D space (gray).
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for the shape of the protein free energy landscape in the high-
dimensionality space.

Dimensionality Reduction Algorithm

One simple way to introduce nonlinearity in manifold learning
algorithms is to perform distance matching but with the distances
transformed (31) or weighted (32) so as to enhance the impor-
tance of certain connections—often the short distances (33). The
analysis of the previous sections suggests that, if we could make
the algorithm focus on reproducing distances from the interesting
part of the histogram (the part where the distribution does not
correspond to a high-dimensionality uniform or Gaussian distri-
bution), this would be a useful approach for trajectory data.
Furthermore, we can justify this approach based on our picture
for the structure of the free-energy landscape by noting that by
doing this we are focusing on reproducing the relations and con-
nections between nearby basins and are discarding all the high-
dimensionality, unfittable data on the internal structure of basins
and the relative positions of distant basins. Our method, sketch-
map, then is essentially multidimensional scaling, in which the
distances in both the high- and low-dimensional spaces are trans-
formed by a sigmoid function, which maps monotonically R* to
[0,1). Hence, one produces the mapping by minimizing (for de-
tails see Materials and Methods) the following stress function:

7= (zwiwf)_l D wiw [F(Ry) = f(ry)]? (1]

J# J#

where w; is the weight of point i and R; = |X; — Xj|p) and ry =
l; — ;|4 are the distances between points i andj in the high- and
low-dimensionality spaces, respectively.” F and f are then both
general sigmoid functions of the form:

Soap(r) = 1= (14 (2 = 1)(r/)) 0 2]

where s, ,,(6) = 1/2 and the exponents a and b determine the
rate at which the function approaches 0 and 1, respectively. The
same value of ¢ is used in both F and f as using different values
simply corresponds to a scaling of coordinates. However, we dis-
tinguish between the values of @ and b in the two functions by
using ap and by for F and a,; and b, for f.

When selecting parameters for the high-dimensionality space
sigmoid function F, one is essentially selecting the length scales
over which the connectivity data in the high-dimensionality space
is interesting. The analysis presented in the previous section
would therefore suggest that we should tune o, ap, and by, so that
for small values of Ry, where the histogram resembles that of a
full-dimensional multivariate Gaussian, F(R;)~ 0.0, while for
large values of R;, where the histogram of distances resembles
that of a set of points uniformly distributed in the full-dimen-
sional space, F(R;)~ 1.0. This ensures that, once minimized,
points that are close together in the D-dimensional space are
mapped close together in the d-dimensional space and vice versa.
Furthermore, because the error in the reproduction the distance
R;; contributes an amount to y? that is proportional to F'(R), a
function that is peaked in the vicinity of o, only a cursory attempt
is made to reproduce the precise distribution of near and far
neighbors around any given point. Meanwhile, the major focus
during optimization is the reproduction of distances close to
the value of the method’s critical parameter, o, which selects the
interesting length scale for the problem. The values of ap, and bp,
are far less important and, much like when similar functions are
used to calculate continuous versions of coordination numbers,

’| - | does not have to be a Euclidean distance—here, for instance, we apply the minimum
image convention to take account of the periodicity of the space.
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the performance of the method only depends weakly on their
values.

When the same parameters are used in the two sigmoid func-
tions of Eq. 1 sketch-map, like MDS, will reproduce all pairwise
distances if the configurations lie in a linear subspace of dimen-
sion d. However, given that we know the points are not distrib-
uted in this way, this choice is not appropriate and is in fact
detrimental because, as shown in Fig. 1C, at short-range uninter-
esting fluctuations occur in the full D-dimensional space. Hence,
distance matching involves the impossible task of mapping a
manifold, which has parts where the radial density grows as
rP-1 into a space where radial density can grow only as 74!, In
sketch-map we therefore use different a and b parameters for the
two sigmoid functions to bypass this intractable problem. We note
that for any distribution where the radial density around points
grows as r”~! the corresponding histogram of distances, trans-
formed by s, (r), is approximately equal to s?/~! for small s.
Therefore, for small s, the histograms of (differently) transformed
distances for two distributions with radial densities that grow as
rP=1 and 4! will be similar if a;/d ~ ap /D.

The minimization of Eq. 1 scales quadratically with the num-
ber of data points so when fitting a trajectory using sketch-map
the first step is to select a small number of landmark frames (34),
which, as detailed elsewhere, can be done either by selecting
points at random or by using a farthest point sampling strategy
(FPS) (35, 36). One can then assign weights to the landmarks
based either on an estimate of the free energy, if available, or by
computing the number of trajectory frames within each land-
mark’s Voronoi polyhedron to ensure that reproduction of the
structure in the low-energy parts of the landscape is weighted
more in the fitting. Finally, once the minimization is completed,
one can calculate the projection, x, of any high-dimensionality
point X by minimizing:

N

-1 N
20 = (Zm) " DX -Xlo) e -nla)? 1)
i=1

i=1

where X; is one of the landmark points and x; is its low-dimen-
sional projection. A global minimum for this quantity can be ob-
tained by calculating the value of y?(x) on a grid and then using
the lowest-lying point as a start point for a conjugate gradient
minimization. The code for performing sketch-map is available
online at sketchmap.berlios.de.

Results

Dimensionality Reduction Example. Before fitting the reconnais-
sance metadynamics data we first fit the data from the model
potential shown in Fig. 2. Five hundred landmarks points were
selected using a FPS strategy from the 5,000 frames generated by
importance sampling. Their weights were then set equal to the
number of frames within each landmark’s Voronoi polyhedron.
In the sketch-map result shown in Fig. 3 all eight basins are well
separated and the majority of the connections are reproduced.
This is an impressive result as this distribution is periodic in three
dimensions and is thus not isometric with a linear, two-dimen-
sional space. Nevertheless, unlike the other manifold learning
algorithms we tested (see SI 7ext), sketch-map is able to circum-
vent this issue by breaking four of the connections between
basins. The resulting embedding thus unrolls the box and gives
the net shown in Fig. 3 rather than simply squashing the box onto
the plane. This clear picture for the shape of phase space that
emerges from our sketch-map projection is very appealing from
the point of view of our eventual aim of using this method in
tandem with biased MD.

Polyalanine-12. For the considerably more complex alal2 land-
scape we selected 1,000 landmark points from our reconnaissance

13026 | www.pnas.org/cgi/doi/10.1073/pnas.1108486108
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Fig. 3. A 2D, sketch-map projection of the landmark points selected from
the dataset depicted in Fig. 2. This model has eight minima in the free-energy
surface, which appear at (+z/2, +x/2, +x/2). Projections of these points are
indicated on this figure using labeled circles, while the various transition
pathways are shown as dashed lines. Parameters for the sigmoid functions
were chosen based on the histogram of distances (Fig. 2D) as ¢ =2,
ap =3, bp =9, ag =2, and by = 2. Projected points are colored, using the
key shown in Fig. 2C, in accordance with the value of one of the three under-
lying variables.

metadynamics trajectories and again set their weights equal to the
number of the remaining frames within each landmark’s Voronoi
polyhedron. Sketch-map parameters (given in Fig. 4) were then
selected based on the shape of the histogram shown in Fig. 1C.
After fitting we projected the nonlandmarks points, using (Eq. 3).
The final result is shown in Fig. 4, where points are colored in
accordance with the number of residues that were identified as
being part of an alpha helix or beta sheet by the STRIDE algo-
rithm (37). Fig. 4 shows that embedded points are clustered in
basins much like what is observed in full-dimensional description.
Furthermore, there is a clear-cut separation between the regions
of the plane that correspond to helix-like and sheet-like second-
ary structures. In the areas around each of these quintessential
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Fig. 4. Results for a projection of the frames obtained from the reconnais-
sance metadynamics simulations of ala12. The parameters of the sigmoid
functions were chosen to be ¢ = 6, ap = bp = 12, ag = 1, and by = 2. Points
not included in the landmark set were embedded with the out-of-sample ex-
tension described in the text. The 2D projection is shown, with the embedded
points colored in accordance with the number of residues that, according to
STRIDE, are part of an alpha helix or beta sheet. A key for the color scheme is
also shown, together with snapshots of a few selected configurations.

0123456789101
a helix (n. res.)

Ceriotti et al.


sketchmap.berlios.de
sketchmap.berlios.de
sketchmap.berlios.de
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1108486108/-/DCSupplemental/pnas.1108486108_SI.pdf?targetid=STXT

SIS

yd

Fig.5. A and B show diagnostic information on the embedding of the ala12 trajectory frames obtained by pure distance matching, while C and D refer to the
results of sketch-map. Similar figures for other dimensionality reduction algorithms are provided in S/ Text. In A an C the low-dimensional embedding of the
frames is shown, colored according to two of the backbone dihedrals. B and D depict the joint probability distribution of the distances between two frames in

high dimension (R;;) and the distance between the corresponding low-dimensional projections, (r;).

protein configurations STRIDE identifies the structures as being
mostly composed of coils and turns.

Fig. 5 gives more detailed diagnostic information and also
compares the results of sketch-map with those from pure distance
matching.* The panels that show the embedded points colored
in accordance with one of the backbone dihedrals demonstrate
that sketch-map is better at clustering together points with similar
values for a particular dihedral. More revealing, though, is the
analysis of the joint probability distribution of low and high-
dimensional pairwise distances between frames. Obviously, if the
embedding is exact all density should be concentrated along
the diagonal. However, as discussed above, this goal cannot be
achieved, because of the intrinsically high-dimensional nature of
the distribution of configurations at both short and large dis-
tances. Fig. 5 shows that, for distance matching, there is a sizable
density in the region of the histogram corresponding to projection
of points close together when they are in actuality fact far apart.
This is disastrous in terms of using these coordinates to provide a
coarse-grained description of configuration space as it means
that structures that are very different from each other cannot
be distinguished. In contrast, the histogram for the sketch-map
result (Fig. 5D) result demonstrates that this algorithm only pro-
jects points that lie closer than ¢ in the high-dimensionality space
close together.

Conclusions

For proteins and other chemical systems the manifold on which
the energetically accessible region of phase space lies has a small
volume but a very complex structure. It consists of small, high-
dimensionality basins that are connected by a spider’s web of
transition pathways and its structure can be thought of in terms
of a hierarchy of different length scales. On the smallest of these
scales harmonic fluctuations in the full-dimensionality space take
place. Changes in secondary and tertiary structure, meanwhile,
take place over longer scales. Evidence presented here and else-
where has demonstrated that one can recognize these different
length scales by examining the distribution of distances between
trajectory frames and that estimates of the dimensionality of
the manifold depend on the length scale at which one examines
the problem. Therefore, we contend that, when creating a low-
dimensionality projection of a trajectory, one should first exam-
ine the distribution of distances and thereby identify the interest-
ing length scale. Then, when projecting the data, an algorithm

*Distance matching was performed by linear multidimensional scaling followed by
iterative minimization of 4> with both of the sigmoid functions set to be the identity.
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like sketch-map can be used so that the fitting effort is directed
toward reproducing distances in the range that has been identi-
fied as interesting. Using these ideas we were able to produce a
2D mapping from a description of a set of protein configurations
based on backbone dihedral angles. This mapping is able to re-
produce the qualitative features of the free-energy landscape and
clearly separates configurations with different protein secondary
structures. Furthermore, in SI Text we show that sketch-map pro-
duces a qualitatively similar mapping when the set of distances
between the C, atoms is used to describe configurations. It may
well be that for larger systems analysis of the distribution of
distances will provide evidence of multiple interesting length
scales in the problem. For these cases a hierarchical version of
the sketch-map approach, which makes use of multiple sigmoid
function with different ¢ parameters could be very useful.

The most successful approaches for performing dimensionality
reduction on trajectory data do not assume that the low-dimen-
sionality manifold, which contains the low-energy configurations,
is isometric with a low-dimensional linear space. Instead these
methods distort the distances between the high-dimensionality
data points so that the essential features in the data can be re-
presented in a low-dimensionality space. Sketch-map works in
a similar manner and has this observation at its core. In addition,
sketch-map produces an embedding from a very small number of
landmark frames and is able to embed further configurations
after the projection of this initial training set. This means that
one can feasibly imagine combining sketch-map projections with
enhanced sampling techniques to calculate the free-energy land-
scapes for systems in which the interesting events are not obser-
vable on the simulation time scale. Consequentially, we are
currently working on ensuring this mapping is continuous so that
the embedding can be used as CVs for biased MD.

In all of this work we focus on the data output by simulation
trajectories, which presents a particular set of problems to mani-
fold learning algorithms. However, the ubiquity of high-dimen-
sionality data in disciplines of science, from chemistry and
physics to social sciences and psychology, suggests that there is
an abundance of potential applications of sketch-map.

Materials and Methods

Reconnaissance Metadynamics Simulations. All simulations of polyalanine
were run using gromacs-4.5.1 (38), the amber96 forcefield (39) and a distance
dependent dielectric. A time step of 2 fs was used, all bonds were kept rigid
using the LINCS algorithm, and the van der Waals and electrostatic interac-
tions were calculated without any cutoff. The global thermostat of Bussi et al.
(40) was used to maintain the system at a temperature of 300 K. Recently we
introduced an accelerated sampling method, reconnaissance metadynamics
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(27), which can be used with large numbers of collective variables. This meth-
od uses a self-learning algorithm to examine the trajectory and to construct
an adaptive simulation bias that accelerates the exploration of phase space.
We chose to use this method to perform the enhanced sampling calculations
in this work and in particular the implementation of it in PLUMED (41). In
previous work (27) we have shown that a 50-ns reconnaissance metadynamics
simulation started from a random configuration can be used to find the
alpha-helical, folded state of polyalanine-12. However, in this work, so as
to have an extensive exploration of the region of phase space about the
folded state, we took our trajectory data from four reconnaissance metady-
namics simulations started from the folded state. In these simulations CVs
were stored every 250 steps, whereas cluster analysis was done every
5x 10° steps. The expansion parameter was set equal to 0.05, only basins
with a weight greater than 0.2 were considered, and attempts were made
every 1,000 steps to add to these basins hills of height 1.0 kJ mol~! and width
1.5. During all calculations we stored frames every 8 ps for later analysis
but discarded the first nanosecond of all simulations so as to ensure that
our trajectories were independent. Hence, in this work all analysis is based
on a set of 46,182 trajectory frames.

Optimization strategy. Eq. 1 is a nonconvex function and is thus very difficult
to optimize. Moreover, the problem becomes stiffer as the sigmoid function
becomes steeper at the inflection point. Hence, we have found that a
combination of strategies is required to minimize y? effectively. During
the early stages of the minimization we introduce the better-behaved,
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