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Abstract In many studied plants, typical responses to cold
treatment include up-regulating the hydrophilic COR/LEA
genes and down-regulating photosynthesis-related genes,
carbohydrate metabolism, GDSL-motif lipase, hormone
metabolism and oxidative regulation genes. However, next
to nothing is known about gene expression in arctic plants,
which are actually adapted to a harsh, cold environment.
The molecular mechanisms behind the many specific
adaptations of arctic plants, such as slow growth, well-
developed root systems and short stature, are not well
understood. In this study, we examine whole plantlet
transcriptome differences between two arctic and two
temperate Oxytropis (Fabaceae) species, grown under their
respective controlled environmental conditions. Gene ex-
pression differences are analyzed using cDNA library
subtraction followed by expressed sequence tags sequenc-
ing and annotation. Sequences from a total of nearly 2,000
clones cluster into 121 and 368 unique genes from the
arctic and from the temperate plants, respectively. The
predominant biological process for genes from the arctic-
enriched library is “response to stimulus”. A concurrent
overexpression of pathogenesis-related class 10 proteins
(PR-10), plant defensin and cold dehydrin genes is a novel
feature for species adapted to stressful growth environment.
The temperate-enriched genes are involved in photosynthe-

sis, translation and nucleosome assembly. Interestingly,
both arctic and temperate-enriched libraries also contain
genes involved in ribosome biogenesis and assembly,
however of different types. Real-time reverse transcription
PCR of cold dehydrin and two PR-10 genes, as well as the
light harvesting complex b1 genes demonstrates that the
gene expression is dependent on species and growth
conditions.
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Abbreviations
ADR6 Auxin down-regulated 6
BLAST Basic local alignment search tool
cDNA Complimentary DNA
ESTs Expressed Sequence Tags
ELIP Early Light Induced proteins
LEA Late Embryogenesis Abundant proteins
mRNA Messenger RNA
PCR Polymerase Chain Reaction
PDF1 Plant Defensin 1
PR-10 Pathogenesis-Related class 10 proteins
RT-PCR Reverse Transcription PCR
SSH Suppressive subtraction hybridization
STP Specific tissue protein

Introduction

The challenges to arctic plant life go beyond the severe
winter cold temperatures—very short growing season,
common summer frosts, strong winds and low light quality
are limiting conditions to plant growth. These tough little
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plants present a suite of morphological and physiological
specializations compared to their temperate relatives. They
have long life cycles (Grulke and Bliss 1988), leaves or
flower primordium development extend on for many
growth seasons (Sørensen 1941) and they sport well-
developed root systems (Bliss and Gold 1999). Further-
more, their photosynthetic and respiratory apparatus is
more efficient at 10°C than at higher temperatures (Xiong
et al. 1999; Semikhatova et al. 2007; Pyankov 1991), and
they can tolerate freezing temperatures while still actively
growing (Junttila and Robberecht 1993). However, the
understanding of the molecular mechanisms behind these
adaptations is at best fragmentary.

Because of the potential adaptive value of variation in
gene expression (Swindell et al. 2007; Whitehead and
Crawford 2006a, b), we explored differentially expressed
genes between arctic and temperate plants. We chose the
Oxytropis (Fabaceae) genus as our model system. Oxytropis
is predominantly distributed in the temperate and boreal
regions of North America and Northern Asia, and also
includes 44 arctic species (Elven 2007). Although only
eight species occur in the Canadian Arctic, this is the
legume genus with highest species diversity in that area
(Aiken et al. 2007). We used the suppression subtractive
hybridization (SSH) technique to discover differences in the
transcriptomes of two arctic Oxytropis species and two
temperate Oxytropis species. Because it is an untargeted
approach that enables novel gene discovery, the subtraction
technique is especially appropriate for characterizing
molecular features underlying the suite of arctic plant
specializations. Expression of selected genes was validated
by real-time reverse transcription polymerase chain reaction
(PCR). The study is the first of its kind and we present
several important differences in gene expression between
the species.

Materials and methods

Plant material and RNA extractions

Seeds of the arctic species Oxytropis maydelliana and
Oxytropis arctobia and the temperate species Oxytropis
splendens and Oxytropis campestris subsp. johannensis
were scarified, sterilized and stratified at 4°C on 1/2 MS
Basal Medium (Sigma, Oakville, Ontario) agar plates. The
seed sources are listed in Supplementary Table S1. Germi-
nating seeds were placed in growth chambers mimicking
the summer–fall conditions in temperate climates (16 h of
light of 225 μmol/m2/s at 22°C and 8 h of darkness at 18°C)
or in the low arctic (20 h of light of 150 μmol/m2/s at 10°C
and 4 h of darkness at 10°C). RNA was extracted (Qiagen)
from plantlets at the two leaves stage.

Suppressive subtraction cDNA library construction

Extracted RNA from two plantlets of a species were pooled
prior to complimentary DNA (cDNA) synthesis, and 1 mg
of this pool was used as template for cDNA synthesis using
the SuperSmart PCR cDNA Synthesis kit (Clontech,
Mountain View, CA). Genes specifically expressed in either
the arctic or in the temperate species were isolated by
applying the suppression subtractive hybridization strategy
(Diatchenko et al. 1996) using the PCR-select cDNA
subtraction kit (Clontech, Mountain View, CA). The
subtraction compared a pool of plantlet cDNA from the
two arctic species (O. arctobia and O. maydelliana) grown
in simulated arctic environment, and a pool of plantlet
cDNA from the two temperate species (O. campestris
subsp. johannensis and O. splendens) grown in simulated
temperate environment. The subtraction was performed in
both directions resulting in two subtracted libraries: one
“arctic-enriched” library and one “temperate-enriched”
library. PCR products of arctic- and temperate-subtracted
libraries were cloned non-directionally using a TOPO TA
kit and transformed into ElectroMAX DH10B electro
competent cells (Invitrogen, Carlsbad, California). White
colonies were grown in a total of thirty 96-well plates
containing SOC-ampicillin liquid medium, and subsequently
screened by PCR using vector primers.

Sequence analysis and annotation of subtracted library clones

Clones with confirmed single inserts were sequenced
single-pass (McGill University and Génome Québec Inno-
vation Center). Sequences were base called using phred
(Green 2002) and trimmed using SeqTrim (Falgueras et al.
2007). The sequences appear in public sequence databases
under the GenBank accession numbers GW696871 to
GW698115. The 1,108 arctic and 609 temperate processed
expressed sequence tags (ESTs) sequences were assembled
into contigs using Phrap (Green 2002) as described
(Stromvik et al. 2006; Vodkin et al. 2004). Eight ESTs that
appeared to be chimaeras were excluded from further
analysis. Blast2GO (Conesa et al. 2005; Gotz et al. 2008)
was used to annotate and to assign Gene Ontology terms
(Ashburner et al. 2000) to contigs and singlets representing
unique genes. Presence of potential false positives (reported
in Table 1) in each subtracted library was assessed by
building two local basic local alignment search tool
(BLAST) target databases, and evaluating sequence simi-
larities between the two libraries using BLASTN and
TBLASTX (Altschul et al. 1997). False positives are
cDNAs retrieved from a subtracted library but that are not
differentially expressed. Oxytropis unique gene sequences
were manually classified into general categories considering
the assigned Gene Ontology terms for biological process, the
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MIPS functional categories (Ruepp et al. 2004), and the
similarity (by BLASTX) to the complete Arabidopsis
peptide sequence collection (TAIR8_pep_20080412). Anno-
tations were manually verified and curated, based on
information in the Kyoto Encyclopedia of Genes and
Genomes (Kanehisa and Goto 2000), the Arabidopsis
Information Resource (Swarbreck et al. 2008), the Plant
Metabolic Network database (Zhang et al. 2005) or the
NCBI Entrez Gene (Maglott et al. 2005).

Real-time reverse transcription PCR

Expression differences were confirmed for four genes with
real-time reverse transcription PCR (RT-PCR) from cDNA.
Specific primers (Supplementary Table S2) were designed
in Geneious (Drummond et al. 2008) and manually adjusted
to ensure that a primer anneals to a region that is conserved
among the four species but that varies among the copies of
a gene family. The different single PCR products from the
four different Oxytropis genomes were sequenced and
compared to other sequences of its gene family to confirm
that primers pairs amplify a single gene. Plantlets from all
four species (arctic and temperate) were grown from seeds
in temperate and in arctic conditions (described above),
RNA was extracted and 2 mg of RNA from single plantlets
were reverse transcribed into cDNA using the QuantiTect
kit (Qiagen, Mississauga).

Real-time RT-PCR reactions were performed using
Brilliant SYBR Green dye (Supplementary Table S2) with
two technical replicates per samples for each of three
biological replicates, and data were analyzed with
MxP3000 4.01 software (Stratagene). Normalization was
carried out relative to actin gene expression (Simon 2003).
An analysis of variance (ANOVA) using the general linear
model (GLM) was performed on normalized relative
expression ratio followed by Student–Newman–Keuls tests
(SAS Institute 2004) between species in each growth
conditions, separately.

Results

EST sequencing from subtracted libraries reveals different
biological processes in arctic and temperate plants

In order to characterize potential adaptive differences in
gene expression, we investigated transcriptome differences
between arctic and temperate Oxytropis species. One arctic-
enriched and one temperate-enriched subtracted library (by
SSH) were constructed from Oxytropis plantlet mRNA.
From the arctic-enriched library, 1,108 trimmed ESTs were
assembled into 117 arctic unique genes; while from the
temperate-enriched library 609 trimmed ESTs were assem-

bled into 364 temperate unique genes. The compositions of
the contigs are listed in Supplementary Table S3 (arctic)
and S4 (temperate). The unique gene sequences were first
given a putative annotation by searching similarities against
public protein sequences database (Conesa et al. 2005; Gotz
et al. 2008). This annotation was then manually verified,
curated and assigned to general categories using several
bioinformatics databases. The breakdown of the genes in
functional categories is presented in Table 1, while the full
list of annotated sequences are listed in Supplementary
Table S3 (arctic) and S4 (temperate). Most Oxytropis
unique genes received an annotation, except for 25.6% of
the arctic-enriched and 7.6% of the temperate-enriched
unique genes that have no similarity to any sequences in the
public database. The temperate-enriched library comprises
genes from a wide variety of processes and is especially
rich in energy and photosynthesis related genes and in
nucleosome assembly genes whereas the arctic-enriched
library shows an important enrichment in “response to
stimulus” and in novel genes (Table 1). Ribosomal genes of
different types are present in both subtracted libraries. The
results of similarity searches performed between the two
libraries indicate that 21 of the 364 temperate unique genes
and 19 of the 117 arctic unique genes are potential false
positives.

The two subtracted libraries comprise numerous unique
genes from several multigene families. Gene families
retrieved from the arctic-enriched library include the
pathogenesis-related class 10 proteins PR-10 (ten unique
genes), defensins PDF1 (plant defensin 1; eight unique
genes) and cold dehydrins (11 unique genes). Gene families
retrieved from the temperate-enriched library belong to
chlorophyll a/b binding proteins (12 unique genes), lipid
transfer protein LTP (five unique genes), aluminium
induced response ADR6 (three unique genes), ripening
related protein (seven unique genes), specific tissue protein
STP (four unique genes), vegetative storage protein-like
(three unique genes) and metallothionein Type 1 (three
unique genes).

Real-time RT-PCR of selected genes confirms differential
gene expression and identifies a potential adaption
to the arctic conditions

Expression of four genes was further investigated using
real-time RT-PCR for all four species (O. arctobia, O.
campestris subsp. johannensis, O. maydelliana and O.
splendens) each grown in arctic and in temperate simulated
conditions (GenBank accession numbers HM107135 to
HM107155; Fig. 1).

The cold dehydrin gene corresponding to arctic.contig47
(from the arctic-enriched library) is expressed in both arctic
species in both the arctic and the temperate growth
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conditions (Fig. 1a). In the temperate species, the gene is
expressed twice as much in the arctic than in the temperate
conditions. This cold dehydrin may therefore be constitu-
tive in arctic species, but cold induced in temperate species.

Arctic.contig61 and arctic.contig13/36 are two paralogs
of the PR-10 family (pathogen-related proteins, class 10).
Both are present in the genomes of all four Oxytropis
species but they have different expression patterns. O.
arctobia expresses the arctic.contig61 gene at a very high
level under arctic conditions and at a reduced level under
temperate conditions (Fig. 1b). In the other arctic species
(O. maydelliana), the gene is almost not expressed in either
growth condition. The two temperate species express the
arctic.contig61 gene under arctic conditions but not under
temperate conditions. The arctic.contig13/36 gene is
expressed in the O. maydelliana arctic species and the
two temperate species at a low level in arctic but not in
temperate conditions, but is not expressed at all in O.
arctobia (Fig. 1c).

The temperate.contig119 is a light harvesting complex
from photosystem I type b and was retrieved from the
temperate-enriched library. It is expressed in both con-
ditions for all species, and slightly more in the temperate
conditions (Fig. 1d). Expression is significantly higher in

the temperate than in the arctic conditions only in O.
splendens. The quantitative real-time RT-PCR data for these
four genes provide validation of results found with the
PCR-select method.

Discussion

Arctic Oxytropis plantlets exhibit a lower expression
for photosynthesis related genes, typical of cold acclimation

In order to shed light on potential molecular adaptations
that arctic plants have developed, we have sequenced and
compared the subtracted plantlet transcriptomes of arctic
and temperate Oxytropis legume species. These plants
express distinct transcriptome signatures in their natural
environment that shows both typical and novel features
compared to latitudinal or altitudinal gradients in tran-
scriptome variation in other plant lineages (Holliday et al.
2008; Swindell et al. 2007; Voelckel et al. 2008), or to plant
species adapted to other abiotic stresses (van de Mortel et
al. 2006; Lai et al. 2006; Knight et al. 2006; Hammond et
al. 2006; Filatov et al. 2006; Brosche et al. 2005; Taji et al.
2004). Given that important constraints to plant growth in

Table 1 Proportion of expressed sequence tags (ESTs) retrieved from arctic-enriched and temperate-enriched Oxytropis subtractive cDNA
libraries according to general categories

Gene category EST ratio in arctic-enriched librarya

(potential false positive)b
EST ratio in temperate-enriched librarya

(potential false positive)b

No similarity 5.85×10−1 (5.91×10−3) 5.84×10−2 (0)

Unclassified 3.55×10−3 (0) 2.12×10−1 (1.82×10−3)

ROS related 5.91×10−3 (3.54×10−3) 2.74×10−2 (5.47×10−3)

Histones 1.18×10−3 (1.18×10−3) 2.92×10−2 (1.82×10−3)

DNA-proteins 0 2.00×10−2 (0)

RNA-proteins (ribosomes) 2.01×10−2 (9.46×10−3) 7.66×10−2 (3.65×10−3)

Response to stimulus 2.31×10−1 (1.19×10−1) 1.08×10−1 (1.28×10−2)

Secondary metabolism 0 1.46×10−2 (0)

Hormones 4.73×10−3 (4.73×10−3) 3.83×10−2 (7.30×10−3)

Transport 2.36×10−4 (1.18×10−3) 4.01×10−2 (7.3×10−3)

Nucleotides 0 1.82×10−3 (0)

Signaling 1.18×10−3 (1.18×10−3) 1.82×10−2 (1.82×10−3)

Protein modifications 1.18×10−3 (0) 2.00×10−2 (0)

Nitrogen 1.18×10−3 (1.18×10−3) 2.00×10−2 (5.47×10−3)

Lipid 7.57×10−2 (7.47×10−2) 1.46×10−2 (3.65×10−3)

Carbohydrates 1.18×10−3 (0) 3.65×10−2 (0)

Energy 3.55×10−2 (1.18×10−4) 2.65×10−1 (1.82×10−3)

ROS reactive oxygen species
a The ratio of ESTs in a category is expressed relative to the total number of ESTs in the subtracted library of origin, as EST ratio=number of EST
sequences in library in this category/total number of EST sequences in library
b Values in parenthesis report the potential false positive, identified using similarity of unique genes from one subtracted library to the unique genes of the
other subtracted library
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the arctic are low summer temperature and frequent
summer frosts (Savile 1972), arctic species are expected
to show adequate expression of cold treatment genes. Gene
expression reorganization following cold stress is now well
characterized in model (Hannah et al. 2005) and agronomical
(Cheng et al. 2007) plant species, and many of the
differentially expressed genes between arctic and temperate
Oxytropis species conform to this pattern. In Arabidopis,
genes up-regulated after long-term cold exposure are mainly
of the stress response category, especially the hydrophilic
COR/LEA proteins (Hannah et al. 2005), and some are
found in the Oxytropis arctic-enriched library.

Several genes down-regulated after long-term cold
exposure in Arabidopis, such as photosynthesis-related
genes, carbohydrate metabolism, GDSL-motif lipase, hor-
mone metabolism and oxidative regulation genes (Hannah
et al. 2005) are found in the Oxytropis temperate-enriched
library. Expression levels of the light harvesting gene lhcbI
calculated by real-time RT-PCR are higher in temperate
conditions for all four Oxytropis species, suggesting that
expression is dependent on growth conditions. This finding
is consistent with the deterioration of photosynthetic
capacity following cold exposure in most plants (Savitch
et al. 2001; Stitt and Hurry 2002; Walters 2005) and with a

plastic response of arctic plants that modify their optimum
temperature for photosynthesis and carbon integration
within a few days after being placed in warmer growth
conditions (Pyankov and Vaskovskii 1994).

Defence response is a prominent characteristic of the arctic
plantlet transcriptome

The constraints on plant growth imposed by the arctic
environment extend beyond cold temperatures, and also
include very short growing season, strong winds, low light
intensity but long days. It is therefore expected to see a set
of expressed genes in the arctic Oxytropis plantlets unique
and different from a cold-treated temperate model plant.
The most striking feature of the Oxytropis arctic-enriched
library is its enrichment in genes of the “response to
stimulus” category, indicating that under arctic simulated
growth conditions, arctic Oxytropis express more of
defensin (PDF1), pathogenesis-related proteins (PR-10),
cold dehydrins, early light inducible (ELIP). These four
genes are not as a group typical of those up-regulated
during cold acclimation in temperate plants.

In other species, stress response genes show a substantial
among taxa variation in gene expression (e.g. Chen et al. 2005),
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Fig. 1 Expression of selected genes compared in transcriptomes of
two arctic Oxytropis species (O. arctobia and O. maydelliana) and two
temperate species (O. campestris subsp. johannensis and O. splen-
dens) under two climatic conditions. Real-time RT-PCR was used to
measure gene expression in cDNA. Values on the Y-axis are the mean
ratio of the selected gene relative to actin expression. Actin was used
as a normalizing gene ±1 standard deviation of three biological
replicates and two technical replicates. a Expression of arctic.contig47

(cold dehydrin); b arctic.contig61 (PR-10); c arctic.contig13/36 (PR-
10); d temperate.contig98 (light harvesting protein I, lhcbI). Abbre-
viations: oa, O. arctobia; om, O. maydelliana; ocj, O. campestris
subsp. johannensis; os O. splendens. The white bars represent
expression of plantlets from the arctic conditions, and the dark grey
bars from the temperate conditions. Small letters a or b above bars
denote values that are significantly different at the 0.05 level (one-way
ANOVA-GLM with SNK)
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even under optimal conditions. Genes of this category also
exhibit, in favourable conditions, an elevated expression for
populations or species adapted to adverse environmental
conditions (Beritognolo et al. 2008; Taji et al. 2004), whether
for drought (Knight et al. 2006; Brosche et al. 2005), metal
(van de Mortel et al. 2006), saline (Taji et al. 2004) or sub-
arctic growth condition (Holliday et al. 2008).

We show that the PR-10 gene family is one of the
largest overrepresented in arctic Oxytropis; that different
Oxytropis species express different paralogs of the PR-10
family, and that expression is greatly enhanced by cold.
These results suggest that members of the PR-10 gene
family may be involved in long-term adaptation to arctic
adverse conditions. The O. arctobia plantlet expresses a
different paralog of PR-10 than the other three species,
which could indicate that subfunctionalization has been
effective during the course of Oxytropis genome evolution,
as described for groups of species comprising polyploids
(Adams 2007). The original biological roles attributed to
PR-10 proteins were in plant defence with antibacterial,
antimicrobial (Pinto et al. 2005; Pinto and Ricardo 1995;
Broderick et al. 1997) and ribonucleolytic functions
(Bantignies et al. 2000), but recent evidence suggest
additional functions in cold response (Goulas et al.
2007), development (Sikorski et al. 1999; Bantignies et
al. 2000; Pinto et al. 2005; Iturriaga et al. 1994), hormone
binding (Fernandes et al. 2008) and secondary metabolism
(Liu and Ekramoddoullah 2006). Among all these func-
tions, the ones related to pathogen response are less likely
to have played a role in adaptation to the Arctic given that
potential pathogens (Strathdee and Bale 1998) and fungal
symbionts (Kytoviita 2005) have low diversity and
abundance in that area.

Plant defensins are other “response to stimulus” genes
overrepresented in the arctic Oxytropis plantlets transcrip-
tome. Similarly to the PR-10, plant defensins (reviewed in
Thomma et al. 2002) were first described as antifungal
proteins (Terras 1995) but were also shown to be develop-
mentally regulated in healthy legumes (Ishibashi et al. 1990;
Hanks et al. 2005). They show a differential expression in
many pairs of closely related species (Hanks et al. 2005; van
de Mortel et al. 2006; Holliday et al. 2008; Hammond et al.
2006), to the favour of an increased expression in the stress-
adapted species or population. Defensins are abundant at
seed germination and could protect from soil-borne patho-
gens (Carvalho and Gomes 2009; Hanks et al. 2005), which
is compatible with the expression detected in very young
Oxytropis plantlets. However, as for the PR-10, other
biological roles, such as zinc tolerance (van de Mortel et
al. 2006), regulation of the ascorbic acid redox state and
even self-incompatibility (reviewed in Carvalho and Gomes
2009), may also explain the differential expression between
Oxytropis species.

Cold dehydrins is another “response to stimulus”
gene family largely present in the arctic Oxytropis
transcriptome. A certain level of constitutive expression
for cold dehydrins was described (Boudet et al. 2006), in
addition to its induction by heat, cold, drought, wounding
and virus infection in soybean (Takahashi and Shimosaka
1997) and in Medicago (Chen et al. 2008; Pennycooke et
al. 2008). Our finding that expression of a cold dehydrin
gene is less responsive to the growth conditions in the
arctic species than it is in the temperate species is in
agreement with reports on a less-responsive expression of
“response to stimulus” genes in stress-adapted plant
species, (Brosche et al. 2005; Taji et al. 2004). The
proposed role of cold dehydrins in drought tolerance
(Close 1996) is desirable in an environment where water
is limited (Aiken et al. 2007) and where frequent summer
frosts can induce ice formation in the apoplast leading to
cellular dehydration.

A concurrent overexpression of the gene families PR-10,
defensin and cold dehydrin, is a novel feature for plants
adapted to adverse environmental conditions. Other
“response to stimulus” genes are overexpressed in arctic
Oxytropis, although with a less-striking expression differ-
ence, and several of these were also overexpressed in other
stress tolerant species. The ELIP are overexpressed in
arctic Oxytropis, a pattern described earlier (Lai et al.
2006), but that is not universal since they were also
overexpressed in the lower altitude Pachycladon fastigata
(Voelckel et al. 2008) or the Californian Picea (Holliday et
al. 2008).

Ribosome biogenesis and assembly genes are differentially
expressed between arctic and temperate species

Results from the Oxytropis library subtraction suggest a
differential expression for genes involved in ribosome
biogenesis and assembly of a novel and not previously
described pattern for arctic plants. Since arctic Oxytropis
not only overexpress but also underexpress an important
set of ribosome related genes; ribosome organization
might play an important role in long-term adaptation of
plants to the arctic, or in specific response to arctic
conditions. In other species, it has been shown that
several of these genes either increase (Kim et al. 2004;
Saez-Vasquez et al. 2000) or decrease in (Berberich et al.
2000; Swindell et al. 2007) expression following stresses;
or are differentially regulated during development (McIntosh
and Bonham-Smith 2006; Whittle and Krochko 2009).
Furthermore, differential expression of ribosomal genes
among other population and species has been detected
(Voelckel et al. 2008; Hammond et al. 2006; Filatov et al.
2006; Holliday et al. 2008), where, as in Oxytropis, more
ribosomal genes are underexpressed than overexpressed in
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the species adapted to more stressful environment. This
observation could reflect the observed slower growth of
arctic plants (Bliss and Gold 1999; Aiken et al. 2007) in their
natural habitat.

Nucleosome assembly genes are underrepresented
in the arctic transcriptome

Histone genes are overrepresented in the temperate-
enriched library, suggesting an underexpression in the
arctic Oxytropis. Although a close look at differentially
expressed genes in other plant species adapted to stressful
conditions reveals anecdotic overexpression of some
histone genes and underexpression of others (Filatov et
al. 2006; Hammond et al. 2006; Holliday et al. 2008), we
have not found examples where this category of genes is
an important feature of a specialized transcriptome. In
addition to the differential expression that we show here in
Oxytropis for histone genes, previous findings describing
that different histone genes can be differentially regulated
during plant development (Huh et al. 1995) or stress
response (Kapros et al. 1992) suggest that regulation of
expression for genes related to chromatin assembly may
also participate in plant adaptation to environmental
conditions, rather than be a simple cause of slower cell
division for arctic species (Meshi et al. 2000).

Conclusion

This is the first report to our knowledge on gene expression
profiles of an arctic plant and our findings are supported by
previous reports on plant adaptation to stressful environ-
mental conditions. Arctic Oxytropis species, as opposed to
temperate ones, over express stress response genes such as
certain PR-10 genes, defensin and cold dehydrins and under
express photosynthesis and histone genes. Real-time RT-
PCR results also show that a cold dehydrin likely
participated in adaptation to the Arctic because it is
constitutive in the arctic species, and cold induced in the
temperate species.
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