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Abstract
Based on the ‘free-radical theory’ of disease, researchers have been trying to elucidate the role of
oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that ROS
and oxidative stress are important features of cardiovascular diseases including atherosclerosis,
hypertension, and congestive heart failure. However, blanket strategies with antioxidants to
ameliorate cardiovascular disease have not generally yielded favorable results. However, our
understanding or reactive oxygen species has evolved to the point that we now realize these
species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic
to assume a general antioxidant strategy will yield specific effects on cardiovascular disease.
Indeed, there are several sources of reactive oxygen species that are known to be active in the
cardiovascular system. This review will address our understanding of reactive oxygen species
sources in cardiovascular disease and both animal and human data defining how reactive oxygen
species contribute to physiology and pathology.
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Introduction
In the beginning of 20th century, ‘The rate-of-living hypothesis’ was derived from
observations that animals with higher metabolic rates were characterized by shorter life
spans, implying that a species metabolic rate ultimately determines its life expectancy. In
1956, Denham Harman proposed a ‘free-radical theory’ that endogenous oxygen radicals
were generated in cells over time resulting in cumulative cellular damage targeting DNA,
protein, lipids and other components of the cell [1]. Since cardiovascular disease is a
manifestation of aging, researchers have attempted to elucidate the relation between
cardiovascular disease and oxidative stress caused by free radicals.

Clinical studies of antioxidants in vascular disease
Initially, these studies focused on how antioxidants may influence the clinical course of
atherosclerosis and cardiovascular disease. Numerous clinical trials have been performed to
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examine the potential for preventing cardiovascular disease using antioxidant therapies
(please see Table 1). The term, cardiovascular disease encompasses the major clinical
endpoints related to the heart and vascular system including myocardial infarction (MI; heart
attack), ischemic heart disease (MI and angina), stroke, and peripheral arterial disease
(ischemia of the limbs). The most common manifestations of cardiovascular disease are MI
and stroke. Thus, a predominance of studies investigating antioxidant status focus on
cardiovascular disease (CVD) with combined endpoints of stroke and MI, whereas some
focus on MI using the term coronary heart disease (CHD).

Primary prevention of vascular disease
Some antioxidant studies have focused on the primary prevention of CVD, meaning the
prevention of CVD in patients that do not already have the disease. Observational studies of
vitamin C in the primary prevention of CVD have been conflicting with only some
suggesting a benefit with the consumption of vitamin C supplements [2–8]. Large-scale
randomized trials evaluating vitamin C indicate no effect on the primary endpoint of CVD
and no meaningful impact on all-cause mortality [9, 10]. In contrast, observational studies of
vitamin E supplementation predominantly found that vitamin E was associated with a lower
risk of CHD [6, 7, 11, 12]. These findings were of considerable interest, but had to be
interpreted with caution as observational trials are subject to unintended bias and
confounding. Thus, several randomized, double-blind, placebo-controlled trials were
conducted to investigate the impact of vitamin E supplementation on CVD and none have
found a benefit for the primary prevention of CVD [9, 13–16]. In fact, evidence from some
of these trials found that vitamin E treatment was associated with increased heart failure [17]
and hemorrhagic stroke [9]. Beta carotene has also been investigated and randomized trials
of this antioxidant failed to show any effect on the primary prevention of CHD or the risk of
death from CVD [13, 18–20]. Thus, it has been difficult to demonstrate that antioxidant
supplementations (vitamin C, E and beta carotene) have an impact on the primary
prevention of CHD or CVD.

Secondary Prevention of vascular disease
Secondary prevention refers to inhibiting manifestations of CVD in those patients who
already have the disease. Since the risk of a second cardiovascular event (MI, stroke, angina)
is highest in patients that have already had a first event, established prevention measures
(e.g. cholesterol lowering, smoking cessation, etc.) are most effective in secondary
prevention. Thus, if antioxidant therapy were to be of benefit, it would be expected to be
most effective in secondary prevention. However, treatment of postmenopausal women with
CHD using vitamins C and E showed no benefit on CHD and even demonstrated excess
death compared to placebo [21]. Similarly, in women with CHD or at high risk for CHD,
treatment with vitamin C, E, and beta carotene, either alone or combination, did not show
any benefits on cardiovascular events [22]. With regards to vitamin E alone, there are two
trials that suggested a benefit. The Cambridge Heart Antioxidant Study (CHAOS),
demonstrated a benefit for vitamin E in patients with coronary disease, but no impact on
mortality [23], and in patients with kidney disease the administration of vitamin E
significantly reduced the incidence of cardiovascular events [24]. However, in other large
scale randomized trials, vitamin E administration alone or in combination had no effect on
cardiovascular outcome [25]. With beta carotene, there is no convincing evidence of a
benefit on angina [26], and it may be harmful for patients with previous MI because of
increased cardiac death [27]. Thus, on balance, these results lead the conclusion that there is
no consistent evidence of benefit from vitamin C, E and beta carotene for the secondary
prevention of CHD. This conclusion is also supported by meta-analyses looking at all the
trials collectively [28].
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Other synthetic antioxidants have been studied in human clinical trials including probucol
and succinobucol. Probucol was originally developed as a lipid lowering agent and then also
noted to be a potent antioxidant that prevents endothelial dysfunction [29, 30] and (low
density lipoprotein) LDL oxidation [31]. Pretreatment with probucol significantly reduced
the arterial response to injury compared to placebo [32–34], suggesting promise for the
treatment of atherosclerosis. However, in one large clinical study probucol did not have a
significant impact on femoral artery atherosclerosis [35]. Moreover, probucol is no longer
available for clinical use due to prolongation of the QT interval and potential pro-arrhythmic
effects. Succinobucol is a probucol derivative with antioxidant efficacy[36] that lacks QT-
interval prolonging effects. However, a large scale randomized clinical trial with this drug
added to conventional treatments had no effect on cardiovascular death, resuscitated cardiac
arrest, MI, stroke, unstable angina, or coronary revascularization [37].

On balance, these trials have not demonstrated clinical efficacy of antioxidant treatment to
ameliorate the clinical manifestations of atherosclerosis. There have been multiple reasons
proffered, including the notion that the effects of ROS are complex, making outcome
predictions difficult, and that the types of antioxidants, their dosage, and their duration of
action have been inadequate [38–41]. It is also known that genetic factors influence the
response to antioxidants [42–44], raising the possibility that only some patients will benefit
from antioxidant treatment and that we lack the ability to identify this subset of patients.
This latter point deserves particular attention. During the time of many clinical studies, there
was not an agreed upon manner to identify patients who suffer from an excess of vascular
oxidative stress that would be most likely to benefit from antioxidant treatment. In fact, we
do not really know what proportion of CVD patients might fit into this category. As a
consequence, we could be treating large numbers of patients with only a small fraction likely
to benefit. Thus, in the future it may make more sense to measure oxidative stress markers,
such as F2-isoprostanes that have been used successfully clinically [45], as a means to target
appropriate patients and document appropriate antioxidant efficacy.

Another compelling explanation for the mixed performance of general antioxidant treatment
in mitigating cardiovascular disease is the incomplete knowledge of how reactive oxygen
species (ROS) impact both physiology and pathophysiology. There is now overwhelming
evidence that ROS have a role as second messengers for cellular signal transduction, and the
balance between oxidizing and reducing species is known to be an important component of
cellular homeostasis (Figure 1) [46, 47]. Thus, the premise that one can selectively scavenge
“pathological” vs. “physiological” ROS with specific antioxidants is likely not valid.
Consequently, it may be more fruitful to understand the mechanisms whereby ROS are
produced and the source(s) of ROS than to focus on a strategy directed at ROS scavenging.

Selected sources of reactive oxygen species (ROS) in cardiovascular
disease

A variety of enzymatic and non-enzymatic processes can generate ROS in mammalian cells.
Some of the most important sources are the mitochondrial respiratory chain, nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidase, lipoxygenase,
uncoupled nitric oxide synthase (NOS) and myeloperoxidase (MPO) and these systems are
depicted in Figure 2. There is evidence linking each of these sources with CVD pathology
(Table 2) and, as a consequence, we will discuss each in turn below.

Mitochondrial respiratory chain
Mitochondria have long been known as an important source of ROS generation. Of the
entire electron flux through mitochondria, more than 97% is utilized to reduce cellular
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oxygen to water [48]. Estimates from experiments in isolated mitochondria estimate a 2 –
3% leakage of electrons to form O2

•− that is largely dismutated to H2O2 by manganese
superoxide dismutase (Mn-SOD) in the mitochondrial matrix [48]. The importance of
removing mitochondrial O2

•− is emphasized by observations that animals null for the Mn-
SOD allele exhibit perinatal lethality due to cardiac dysfunction [49] and cardiac-specific
Mn-SOD deletion produces progressive congestive heart failure with specific molecular
defects in mitochondrial respiration [50]. It is also important to realize that Mn-SOD
generates H2O2, another ROS with pathophysiologic importance as overexpression of
peroxiredoxin-3 (a mitochondrial H2O2 scavenger) prevents heart failure after experimental
MI in mice [51]. Collectively, data indicate that mitochondria are an important source of
ROS that has implications for the cardiovascular system.

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
The NADPH oxidases are a family of multiple-subunit complex enzymes that generate O2

•−

via one electron reduction of oxygen using NADPH as an electron source. Interested readers
are directed to a recent excellent review of this enzyme family [52]. In brief, the prototypical
NADPH oxidase (Nox2) consists of two membrane-bound subunits (gp91 and p22) and
three or more cytoplasmic subunits (p40, p47, p67, G protein Rac1 or 2). Genetic defects of
gp91, p22, p47, or p67 are the basis for the clinical syndrome of chronic granulomatous
disease, because Nox2-derived ROS are necessary for host defense such as the killing of
microorganisms by neutrophils and monocytes. There are a total of 7 Nox isoforms that are
also present in non-phagocytic cells, including vascular endothelial cells, smooth muscle
cells, fibroblasts and cardiomyocytes [53]. Data generated from experimental animals
indicate roles for Nox isoforms in cardiac fibrosis [54], preconditioning [55], cardiac
remodeling post-MI [56] and angiotensin II -dependent cardiac hypertrophy [57–60]. Within
the vasculature, evidence indicates that Nox isoforms may contribute to atherosclerosis [61–
63], aortic aneurysm formation [64], and the response to arterial injury [65]. With regards to
physiologic responses, Nox-derived ROS have been linked to endothelial cell migration and
ischemia-induced angiogenesis [66]. Thus, there is ample evidence for Nox-derived ROS in
modulating both vascular physiology and pathophysiology.

Xanthine oxidase
Xanthine oxidase and xanthine dehydrogenase are forms of the same enzyme, known as
xanthine oxidoreductase. This enzyme is widely distributed in mammalian tissues and with
particularly high expression in capillary endothelium [67]. Both forms of xanthine
oxidoreductase catalyze the conversion of hypoxanthine to xanthine and xanthine to uric
acid, however only the oxidase form generates O2

•− and H2O2 [68]. The enzyme typically
exists in the dehydrogenase form, but under certain stressful conditions, such as hypoxia, the
oxidase isoform predominates [69]. Xanthine oxidase has been implicated as a source of
ROS after reperfusion of ischemic tissue in several organs [70–72]. However, genetic
evidence is lacking since xanthine dehydrogenase-null mice are runted and die by 6 weeks
of age from renal dysplasia [73]. As a consequence, most of the data implicating xanthine
oxidase relies on pharmacologic inhibition via allopurinol or oxypurinol, or by
administration of a tungsten-rich, molybdenum deficient diet to experimental animals, which
leads to an inactive enzyme [74] and is associated with reduced atherosclerosis [75]. In
addition to ROS production, xanthine oxidase may act as a NO3

− and NO2
− reductase to

generate nitric oxide (NO) under hypoxic conditions [76–79]. In addition, xanthine oxidase
expression and O2

•− production are upregulated by NADPH oxidase [80], indicating that
factors regulating NADPH oxidase may also have influence on xanthine oxidase [81].
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Lipoxygenases
The lipoxygenases are non-heme, iron-containing enzymes that catalyze the stereospecific
incorporation of molecular oxygen into polyunsaturated fatty acids [82]. Certain
lipoxygenase isoforms are thought to promote atherosclerosis by generating ROS and
oxidatively modified lipids, like oxidized low density lipoprotein (Ox-LDL) [83]. The
12/15-lipoxygenase (12/15-LO; also known as the leukocyte-type 12-lipoxygenase and 15-
lipoxygenase-1) and 5-lipoxygenase (5-LO) are most studied because of their expression
pattern in inflammatory cells and endothelial cells [84]. Lipoxygenases are the key enzymes
in the biosynthesis of leukotrienes that are playing an important pathophysiological role in
inflammatory diseases. Reactive oxygen species are generated as a byproduct during the
biosynthesis step of leukotrienes by lipoxygenases[84]. In human atherosclerotic lesions, 5-
LO is present in macrophages, foam cells, mast cells and dendritic cells [85] and 12/15-LO
is widely distributed to including blood vessels, the brain, and the kidneys [86].

There is considerable genetic evidence that lipoxygenases can participate in cardiovascular
physiology and pathophysiology. Mice lacking 12/15-LO exhibit decreased atherosclerosis
in a number of models [87–90]. Consistent with these observations, 12/15-LO has been
implicated in a number of events important for atherosclerosis such as cytokine production
[91] and the adhesion of monocytes to endothelial cells [92–94]. The 5-LO has been
implicated in atherosclerosis susceptibility in mice [90], suggesting that the lipoxygenases
represent a source of ROS that is relevant to CVD.

Given the available data in animal models, lipoxygenases have been investigated with
regards to human cardiovascular disease [95]. During the period from early to advanced
atherosclerosis, the quantity of 5-LO positive cells are increased in human atherosclerotic
plaque specimens [96] and elevated 5-LO activity has been linked to plaque instability [97].
In human abdominal aortic aneurysm tissue, 5-LO is expressed in macrophage-rich
adventitial areas and associated with intraluminal thrombus [98]. Thus, targeting the 5-LO
pathway could potentially reduce CHD or abdominal aortic aneurysm. To this end, a recent
study reported that a potent 5-LO inhibitor reduced leukotriene production and coronary
plaque burden (by CT scan) in patients after acute coronary syndrome [99]. Since this study
is preliminary and the observation period is relatively short (6 months), these results require
confirmation in larger scale trials of longer duration. Another drug of interest is an inhibitor
of 5-LO activating protein (FLAP), known as DG031. This compound was shown to reduce
biomarkers of cardiovascular risk in patients with genetic variants of the gene for 5-LO
activating protein [100].

Nitric oxide synthases (NOSs)
The NOS enzymes are a family that catalyze the conversion of L-arginine to L-citrulline
with the production of NO. There are three NOS isoforms that are termed neuronal NOS
(nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) based upon the tissues in
which they were first described (reviewed in [101]). In most cardiovascular tissues in which
they are expressed, nNOS and eNOS are constitutively present, but in distinct subcellular
locations. In contrast, iNOS is usually absent, but induced by pro-inflammatory mediators
[102]. The bulk of evidence linking NOS production of ROS pertains to the eNOS isoform.
Active eNOS exists as a homodimer with each monomer consisting of reductase and
oxygenase domains [103]. The production of NO via eNOS involves electron transfer from
the cofactor NADPH to flavin adenine dinucleotide and flavin adenine mononucleotide to
heme. This electron transfer affords oxidation of L-arginine is oxidized to form NO and L-
citrulline, with the assistance of tetrahydrobiopterin (BH4) as a cofactor. The tight coupling
of electron flow through eNOS to L-arginine is dependent upon adequate levels of cofactors
and, under specific circumstances, eNOS may become “uncoupled” and reduce molecular
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oxygen rather than transfer electrons to L-arginine, there by generating O2
•− as an important

source of ROS [104]. The most labile eNOS cofactor is BH4 and, as a consequence, it is also
the most common in vivo mechanism for eNOS uncoupling. Although all NOS isoforms are
capable of uncoupled NO production, it is most often described with eNOS.

The data for eNOS uncoupling in vivo spans animal and human data. With regard to the
former, platelets contain eNOS and platelets isolated from eNOS-null mice produce less
O2

•− than wild-type platelets [105]. Cholesterol-fed animals also exhibit eNOS uncoupling
that is linked to the amount of BH4 in vascular tissues [106]. We know that these findings
are clinically relevant, as arterial segments from humans with diabetes [107] or
atherosclerosis [108] exhibit eNOS uncoupling. The uncoupling is reversible, however, as
treatment with 5-methyl tetrahydrofolate (5-MTHF; the active form of folic acid), which
increases intracellular BH4 levels, also decreases vascular superoxide production [109].
Although the substantial long-term folic acid and vitamin B12 supplementation did not have
beneficial effects on vascular outcomes [110], 5-MTHF has a direct anti-atherogenic effects
by decreasing vascular superoxide generation and augmenting NO bioavailability in the
human vascular wall [109, 111]. The methyl tetrahydrofolate reductase gene polymorphism
which affected plasma or circulating 5-MTHF exerts a direct effect on vascular BH4 levels,
NO bioavailability, and eNOS coupling in human vessels in vivo [112].

Thus, it appears the impact of eNOS on the vasculature can depend upon whether there are
appropriate levels of cofactors to support eNOS function. Data on atherosclerosis support
this contention as eNOS-null animals on an apolipoprotein E (ApoE)-null background
exhibit more atherosclerosis than ApoE-null mice alone [113], whereas overexpression of
eNOS in ApoE-null mice shown increased atherosclerotic lesion formation with elevated
levels of vascular O2

•− [114]. These findings were explained by a relative deficiency in BH4
with eNOS overexpression leading to eNOS uncoupling. Consistent with this hypothesis,
overexpression of GTP-cyclohydrolase I (the rate-limiting enzyme for BH4 synthesis)
prevents eNOS uncoupling [115] and reduces atherosclerosis and ROS levels [116, 117].

In the heart, eNOS is not only expressed in the endothelium, but also in cardiac myocytes. In
general, evidence supports cardiac eNOS as a protective enzyme. Genetic eNOS deletion
increased long-term mortality and attenuated left ventricular (LV) function in mice with MI
[118]. In the case of pressure overload induced by aortic constriction, eNOS-null mice
exhibited more severe LV hypertrophy, LV dysfunction, and myocardial fibrosis than in
wild-type mice [119]. Consistent with eNOS as a protective factor, eNOS overexpression
protects against MI and ischemic reperfusion injury compared to the wild-type phenotype
[120, 121]. Cardiac-specific overexpression of eNOS also attenuates the LV hypertrophy
induced by coronary artery occlusion [122] and eNOS-null mice with eNOS restored only in
the myocardium showed less LV hypertrophy and dysfunction caused from pressure
overload than mice with global eNOS deletion [123]. As one might expect given the
deleterious effects of eNOS uncoupling, BH4 replacement therapy rescued pressure
overload-induced LV hypertrophy, fibrosis, and cardiomyocyte dysfunction after aortic
constriction and these effects were associated with less oxidant stress and recoupled eNOS
[124]. Thus, functional eNOS in either the endothelium or the cardiac myocyte appears to
promote adaptive responses in the heart.

The two other NOS isoforms, iNOS and nNOS have also been investigated in the
cardiovascular system, although the contribution of uncoupling is less clear. Several studies
performed in iNOS-null mice on the ApoE-null background show a significant reduction in
atherosclerotic plaque formation [125–127]. In an experimental MI model, iNOS-null mice
showed increased contractility and decreased mortality compared to wild-type mice [128].
In an aortic constriction model, iNOS-null mice demonstrated much less hypertrophy,
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dilatation, fibrosis, and dysfunction of the LV, than wild-type mice [129]. Conversely,
myocardial overexpression of iNOS in mice demonstrated cardiac fibrosis, cardiomyocyte
death, cardiac hypertrophy, and LV dilatation. These mice developed overt heart failure and
most of them died suddenly from atrioventricular block and asystole [130]. One possible
mechanism may be an iNOS-mediated oxidation of BH4 needed for eNOS-mediated NO
production [131].

With regards to nNOS, nNOS-null mice on the ApoE-null background demonstrated
promotion of atherosclerosis formation [132]. One potential explanation for the above
observations is that nNOS inhibits xanthine oxidoreductase activity and in nNOS-null mice
the production of ROS is increased [133]. With regards to the heart, nNOS-null mice with
acute MI showed severe LV remodeling and a higher mortality rate than wild-type mice
[134, 135]. Conversely, cardiomyocyte-specific nNOS overexpression produced better
preservation of LV function with pressure overload than wild-type mice [136]. Deletion with
both the nNOS and eNOS genes produces spontaneous concentric left ventricular
hypertrophy associated with interstitial fibrosis, impairment of LV diastolic properties, and
high mortality [137].

Myeloperoxidase
MPO is a member of the heme peroxidase family of enzymes. This enzyme is expressed in
neutrophils and monocytes, and it generates reactive species that can oxidatively modify
lipids and proteins [138, 139]. The MPO catalytic cycle typically involves the consumption
of H2O2 to produce a range of oxidizing products. Amongst the MPO-derived oxidants in
vivo, HOCl is the most abundant as physiologic chloride concentrations (~150 mM) favor its
formation [140–142]. One notable feature of HOCl as an oxidant is the fact that it is a two-
electron oxidant and reacts poorly with one-electron antioxidants such as vitamin E. Thus, if
HOCl were an important oxidant in the progression of atherosclerosis its chemical properties
could provide an explanation for the poor track record of antioxidant supplementation in
treating and preventing atherosclerosis.

There is considerable evidence that MPO produces oxidation during the course of
atherosclerosis. Enzymatically-active MPO is abundant in monocyte-derived macrophages
of human atherosclerotic lesions [143] that are co-localized with lipoproteins that show
evidence of HOCl-mediated oxidation [144]. Oxidation from MPO has also been implicated
in the transition of stable atherosclerotic plaques to a type more “vulnerable” to plaque
rupture. The mechanism relates to MPO-generated HOCl that can lead to matrix
metalloproteinase activation and lipid peroxidation in the artery wall [143, 145], two
processes linked to forming unstable atherosclerotic plaques [146]. In addition to producing
reactive chlorinating species in humans, MPO catalyzes the oxidation of NO in human
plasma in a manner that can reduce the bioavailability of NO [147, 148]. These data,
combined with observations that MPO-derived HOCl can induce endothelial dysfunction
[149] and eNOS uncoupling [150], indicate that MPO significantly disrupts normal vascular
homeostasis.

Efforts to model the impact of MPO on atherosclerosis have been difficult, in part, because
murine atherosclerosis, unlike the human condition, does not demonstrate lesional MPO
accumulation. Thus, the effects on animal atherosclerosis have been mixed. In low density
lipoprotein receptor (LDL-R)-null mice, populating the bone marrow with MPO-null cells
increases atherosclerosis [151], whereas populating the bone marrow with cells over
expressing human MPO also increased atherosclerosis compared to wild-type bone marrow
[152]. More recently, several studies with “humanized” MPO in murine models have
supported the notion that MPO promotes atherosclerosis [152, 153]. Collectively,
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differences between human and murine MPO have made the appropriate modeling of human
disease in mice challenging.

In contrast to the animal studies, human studies have been much more consistent with
regards to the role of MPO on CVD and its outcomes. Patients with reduced MPO levels
appear to have reduced CVD [154]. Leukocyte MPO levels are associated with the extent of
coronary atherosclerosis [155] and circulating MPO levels are a good indicator of the
presence and extent of coronary artery disease (CAD) [156, 157]. Finally, the activity of
atherosclerosis is also predicted by MPO in apparently healthy individuals [158]. Thus, data
from biochemical, animal, and human studies support a role for MPO and MPO-derived
oxidants in the clinical course of atherosclerosis.

The precise mechanism for these observations is not known. However, MPO has recently
been determined to have a significant impact on high density lipoprotein (HDL) and the
process of reverse cholesterol transport. Apolipoprotein A-I (Apo A-I), the major protein
component of HDL, contains a specific binding site for MPO [159, 160]. This HDL-bound
MPO retains enzymatic activity and modifies Apo A-I in a manner that further enhances
Apo A-I binding affinity for MPO [161]. The oxidation of Apo A-I also impairs the HDL
particle capacity to promote cellular cholesterol efflux by ATP-binding cassette transporter 1
[160] and oxidized Apo A-I cannot activate lecithin:cholesterol acyltransferase, an enzyme
important for HDL maturation [162]. Thus, MPO has the capacity to inhibit reverse
cholesterol transport and HDL function, thereby promoting both atherosclerosis and the
clinical activity of CVD.

Detection of ROS in cardiovascular disease
One strategy to determine the role of ROS in CVD involves looking for experimental
evidence of oxidative reactions in clinical populations. A major challenge in monitoring
ROS in biologic systems is the highly reactive nature of the compounds in question.
Fluorescence probes have been designed that can detect individual ROS [163] and electron
spin resonance probes exist that can provide information about the activity and location of
free radical reactions [164]. However, these tools are limited in human and animal
applications due to technical considerations [165]. As a consequence, there has been
considerable effort directed at developing techniques to assess either the downstream
consequences of ROS (e.g. oxidation products) or enzyme levels important for ROS
reactions (e.g. myeloperoxidase). The levels of these biomarkers, therefore, can provide at
least indirect evidence for ROS action in CVD.

Oxidized low density lipoprotein (Ox-LDL)
LDL contains lipid species that are subject to oxidation in the presence of several ROS
known to exist in vascular wall [87, 166, 167]. Oxidative modification of LDL is known to
be a feature of the atherosclerotic process [168] as Ox-LDL is taken up by macrophages via
scavenger receptor pathways to form cholesteryl ester-rich foam cells and endothelial cells
become dysfunctional, in part, by taking up Ox-LDL via the lectin-like oxidized LDL
receptor-1 [169]. The presence of Ox-LDL has been confirmed in atherosclerotic plaques
using immunohistochemical staining for modified apolipoprotein B-100, the protein moiety
in LDL [170]. Because the formation of Ox-LDL produces many immunogenic epitopes, it
has been possible to detect the presence of Ox-LDL via immunoassays of plasma or
circulating plasma auto-antibodies. Several clinical studies (Table 3) revealed that elevated
Ox-LDL, auto-antibodies against Ox-LDL or malondialdehyde modified LDL particles are
strongly associated with atherosclerosis and CAD including acute coronary syndrome [171–
177]. In healthy individuals, circulating levels of Ox-LDL are independent predictors of
atherosclerosis detected by ultrasound techniques or the occurrence of clinical CAD [178,

Sugamura and Keaney Page 8

Free Radic Biol Med. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



179]. Based upon this literature, Ox-LDL levels have been proposed as a biomarker of CVD
risk beyond LDL-cholesterol concentrations [179]. However, more information is needed
about how Ox-LDL compares to other, more established, biomarkers of CVD activity before
one can conclude with confidence the ultimate utility of Ox-LDL levels in predicting
atherosclerosis disease activity.

MPO
MPO can be measured in both inflammatory cells and as a circulating enzyme and it is
known to participate in both atherosclerosis and its clinical sequelae. In human
atherosclerotic lesions, MPO and hypochlorite-modified proteins are co-localized [144,
180]. Macrophages in eroded or ruptured plaques are rich in MPO compared to
macrophages in fatty streaks that contain little MPO [181]. These data suggest that MPO
predicts the clinical activity of atherosclerosis and there is data that tests this prediction
(Table 3). Indeed, in human study participants, there is a strong inverse association between
MPO serum concentrations and brachial artery flow-mediated dilation, another predictor for
the clinical activity of atherosclerosis [182]. As one might expect, this enzyme has been the
subject of a number of epidemiological studies across a wide range of patient populations
that clearly indicate MPO is an important risk marker for CAD, even in patients with
unstable angina and MI [155, 156, 158, 183–191]. If one accepts the notion that MPO is
associated with atherosclerosis-related CVD, it follows that reduced MPO levels should
predict a lower occurrence of CVD. Indeed, epidemiological studies have indicated that
individuals with total or near total deficiency of MPO are less likely to develop CAD [154].
Individuals who have specific MPO gene promoter polymorphism that decrease MPO
expression have reduced CAD manifestations, whereas subjects with polymorphisms
increasing MPO expression exhibit increased CAD [192, 193]. Thus, there is ample
evidence that measurements of MPO in humans provide important information about the
likelihood of CAD and its clinical sequelae.

Although the data outlined above provide a compelling case for MPO in the clinical
prediction of atherosclerosis, there are a few caveats that bear mention. For example, MPO
mass is typically measured in the clinical studies, whereas its activity has not been well
studied. It is also important to note that specific cut-off values for MPO levels have not been
firmly established. The relative merits of different types of analytical specimens also
remains to be established as plasma MPO levels are sensitive to heparin dosing [194, 195],
neutrophil activation [196], and the method of collection [197]. Thus, before MPO can be
used routinely in clinical practice for CVD risk stratification, there will need to be
considerable standardization of its sampling.

Plasma F2-isoprostanes
The F2-isoprostanes are a non-enzymatically generated oxidative products of arachidonic
acid that may be derived from esterified fatty acid sources such as membrane phospholipids
[198] or circulating LDL [199, 200]. Once formed, these compounds may circulate as the
free form, or remain esterified in phospholipids and may be found in both plasma and in
urine [201, 202]. Because F2 isoprostanes are structurally stable end products in vivo, they
are cumulative and serve as good markers of oxidative stress [203]. The reliability of
isoprostanes as in vivo markers of lipid peroxidation makes them an effective method of
quantifying both ROS impact and the biologic activity of antioxidants [204].

The production of F2-isoprostanes can occur through the action of several cell types known
to be involved in atherosclerosis including monocytes [205] and these oxidation products
have been localized within foam cells and atherosclerotic plaques in human specimen [206,
207]. Consistent with this production of isoprostanes during atherosclerosis, several clinical
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studies have established a link between CAD and isoprostane levels (Table 3). Elevated
levels of plasma F2-isoprostanes is associated with the extent and the severity of CAD
[208]. Increased levels of urinary isoprostanes are a sensitive and independent risk marker of
CAD and are known to be increased in patients with unstable angina [209, 210] and free F2-
isoprostane and choline levels are useful prognostic indicators of future (30 day) cardiac
events [211]. Isoprostanes also appear to be reliable markers of ischemic tissue injury. For
example, increased levels of F2-isoprostanes have been noted after ischemia/reperfusion
induced by percutaneous coronary intervention [212]. Furthermore, Pericardial levels of F2-
isoprostanes increase with the functional severity of congestive heart failure and are
associated with pathologic cardiac remodeling [213]. Plasma levels of F2-isoprostanes are
also increased in patients with chronic heart failure in relation to disease severity and the
degree of cardiac dysfunction [214].

The data outlined above suggest that F2-isoprostanes could be used as a clinical tool for the
prediction of cardiovascular events. However, before any biomarker can be used clinically,
there are certain requirements that must be met [215] and one of these criteria is the ease of
assay performance. Until the performance of isoprostanes is relatively facile and
reproducible in non-expert hands, it is unlikely they will serve as a clinical tool. Moreover,
few studies to date with isoprostanes have been sufficiently diverse to ensure that any
findings with this biomarker are broadly applicable. Thus, there is considerable work that
still needs to be done before the clinical utility of isoprostanes is secured.

Other specific measures of oxidative damage
In addition to those outlined above, there are other measures of ROS action that have been
applied to clinical populations as biomarkers of CVD (Table 3). On those whole, these
biomarkers are less mature in their development and, as a consequence, have less literature
supporting their use. For example, lower plasma concentration of ascorbic acid (a well
known endogenous antioxidant) predict the presence of an unstable coronary syndrome
[216]. Bilirubin is an effective antioxidant [217] and has been consistently shown to be
inversely related to CVD [218–220]. There are now several reports indicating that urinary
levels of biopyrrins, oxidative metabolites of bilirubin, may be useful in predicting
subsequent cardiac events after reperfusion in acute MI and that biopyrrins are elevated in
heart failure [221, 222]. The cellular antioxidant enzyme, glutathione peroxidase-1 (GPX-1)
activity was decreased in CAD patients and lower GPX-1 activity predicted the incidence of
cardiovascular events at five years [223]. Cellular DNA is a target of ROS-mediated damage
and 8 hydroxyl-2′-deoxyguanosine is a well-characterized product of DNA damage. The
urinary levels of 8 hydroxyl-2′-deoxyguanosine in acute MI have been used to predict
subsequent cardiac events [224] and patients with dilated cardiomyopathy exhibited
significantly elevated serum levels of 8 hydroxyl-2′-deoxyguanosine compared with control
subjects [225].

In considering new biomarkers as tools for predicting CVD, it is important to realize there is
already a rich literature in cardiovascular risk prediction. We know that LDL cholesterol,
HDL cholesterol, smoking, diabetes, advancing age, and hypertension are all informative
with regards to an individual patient’s risk of developing the two major manifestations of
CVD, heart attack and stroke. Moreover, there are numerous scoring systems used for risk
prediction that quantify the individual contributions of the risk factors outlined above. Thus,
it is rather difficult for any one (oxidative stress) biomarker to add significant information to
these existing risk prediction models. Nevertheless, the development of oxidative stress
biomarkers has helped establish that ROS and oxidative events are part of the
pathophysiology of CVD. It remains to be seen if consideration of these ROS-sensitive
biomarkers can add clinically important information to patient care [226].
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Studies of ROS involving the myocardium
In addition to the vascular component of cardiovascular disease, considerable morbidity and
mortality also results from pathology in the myocardium related to ischemia/reperfusion
injury and heart failure. The former being an important manifestation of heart attack and
stroke, whereas the latter is a consequence of poor myocardial function. Thus, there have
been attempts to determine the impact of ROS on the heart directly. In the paragraphs below,
we will focus on studies that have provided insight into how ROS impact heart function
independent from events in the vasculature.

Ischemic reperfusion injury, arrhythmia and infarction
Since MI involves interruption of the blood flow to the myocardium, contemporary therapies
for MI include using mechanical (balloon angioplasty) and pharmacological (thrombolysis)
strategies to restore blood flow. It has long been known that restoration of blood flow
affords the recruitment of inflammatory cells and the activation of cellular injury responses
that can produce additional cardiac damage and complications, a process known as
reperfusion injury [227–229]. This injury can be manifest as dysfunction and/or death of
myocardial and vascular tissue. Moreover, myocardial damage can also produce dysfunction
of the cardiac electrical system leading to arrhythmias. The pathophysiology of reperfusion
injury has been linked to changes in energy balance, cellular architecture, and the activity of
leukocytes, platelets, and the complement system. Also among the features of reperfusion
injury is a burst of free radical formation that may continue for hours [230] and has been
attributed to multiple sources including xanthine oxidase, activated neutrophils, electron
leakage from mitochondria, catecholamine oxidation, cyclooxygenase and lipoxygenase
[231]. This increased ROS flux has been shown to damage myocytes, impair contractile
function, and contribute to capillary leakage [231, 232]. Thus, there is considerable evidence
that reperfusion-induced ROS production can contribute to cardiac pathology. As a
consequence of the evidence outlined above, there has been investigation into the
implications of suppressing the ROS flux associated with reperfusion injury.

One strategy for mitigating ROS-dependent reperfusion injury relates to the release of free
iron, an element known to be released from tissues during ischemia and reperfusion [233].
Free iron supports the oxidation of lipids [234, 235], particularly in the presence of ROS
[236]. Moreover, metal-catalyzed oxidation reactions have been linked to cardiac
dysfunction during ischemia and reperfusion [233]. Thus, it not surprising that metal
chelation has been tested as an antioxidant strategy in preventing ischemia/reperfusion
injury. Treatment with the iron chelator, deferoxamine, has been shown to limit reperfusion
injury [237] and reoxygenation-induced myocyte death [238]. Consistent with these
findings, clinical trials of deferoxamine in cardiac bypass patients show reduced myocyte
necrosis [239] and improved cardiac function [240]. Thus, iron chelation limits reperfusion
injury in the clinical setting, supporting the notion that ROS are important for cardiac
reperfusion injury.

One agent that deserves mention is edaravone. This compound prevents lipid peroxidation
and is thought to function via free radical scavenging [241]. There have been two small
studies examining this agent before reperfusion in patients with acute MI that demonstrated
decreased incidence of reperfusion arrhythmia and reduced cardiovascular events in long
term follow-up [242, 243]. Consistent with this activity, edaravone is now approved in Japan
for the treatment of acute ischemic stroke [241]. It is important to realize, however, that the
trials in the heart have been of a small scale and without blinding. Therefore, more data will
be needed before this agent, currently unavailable in the US, can be recommended as a
treatment for reperfusion injury.
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Another interesting therapeutic strategy is the use of high oxygen tensions that can diminish
reperfusion injury [244]. It is though the effect is mediated, in part, by reducing the
formation of lipid peroxide radicals [245]. This concept was evaluated in two clinical trials
[246, 247] and the results demonstrated that supersaturated oxygen therapy was associated
with a reduction in infarct size.

There are a number of therapeutic challenges in devising strategies to prevent reperfusion
injury and many of these have been outlined in excellent reviews [248, 249]. In brief,
challenges lie in the multiple mechanisms that contribute to the consequences of MI and
reperfusion injury and it is naïve to believe any one strategy can target all of these
mechanisms. Moreover, it is exceedingly difficult to target ROS-mediated events in vivo,
particularly if they are occurring within the cell. Moreover, the therapeutic window is
extremely narrow. Most agents are very effective when administered before the injury and
their efficacy diminishes as a function of time after injury. In the clinical realm, we rarely
have the luxury of knowing when a patient is likely to suffer an MI or ischemic stroke, so
pre-injury administration is unlikely. Nevertheless, as we develop a more thorough
understanding of the mechanisms related to reperfusion injury, we may come upon the
requisite knowledge needed to design new therapies that are not as time sensitive with
respect to the ischemic insult.

Myocardial hypertrophy, cardiomyopathy and heart failure
Space constraints preclude a detailed discussion of the pathophysiology of heart failure here,
but it is a term used to describe the syndrome that results from poor contractile function of
the left ventricle, the cardiac chamber responsible for pumping blood into the systemic
circulation. Upon the failure of the left ventricle, the heart filling pressures increase (i.e.
congestion) and patients develop symptoms of breathlessness. Poor cardiac performance
also leaves vital organs underperfused. We know from many years of study, that heart
failure involves not only some acute injury to the myocardium (e.g. infarct, genetic
abnormality, pressure overload from hypertension, etc.), but also a maladaptive healing
process that can exacerbate the injury. There is evidence for oxidative stress in all of these
facets of heart failure development [250, 251]. It is clear ROS may contribute to myocyte
injury resulting from ischemic reperfusion injury (as above) [252], anthracycline
cardiotoxicity [253], reduction of endogenous antioxidants in the myocardium [254–258],
and the remodeling response [259]. For example, mice over expressing the endogenous
antioxidant enzyme glutathione peroxidase are protected against LV dilation, dysfunction,
and death after MI [260]. Overexpression of heme oxygenase-1, an antioxidant enzyme that
metabolizes heme and has anti-apoptotic effects, prevented pathologic LV remodeling with
decreasing oxidative stress in an MI model [261]. Antioxidant therapies for heart failure in
animal models also suggest a benefit from reduced generation of free radicals that: i) limits
myocyte damage [262]; ii) improves cardiac function after reperfusion [263, 264]; iii)
attenuate remodeling and cardiomyopathy [265–270].

There are several biomarkers that also specifically support the increase of oxidative stress in
patients with heart failure (please see table 3) [211, 213, 214, 222]. NADPH oxidase activity
in myocardium is increased in the failing human hearts [271] and electroparamagnetic
resonance studies with spin trapping directly demonstrate an increased levels of O2

•− in
human failing hearts [272]. Serum uric acid levels are increased as a function of heart failure
disease severity, and independently predict survival in chronic heart failure patients [273].
The uric acid levels are thought to reflect, in part, xanthine oxidase activation and this may
also predict the incidence of heart failure [274]. Consistent with this contention, xanthine
oxidase activity in the myocardium is increased in patients with chronic mitral regurgitation
with normal LV function and may contribute to myofibrillar degeneration and contractile
dysfunction [275].
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The finding that xanthine oxidase activity may be increased in the setting of heart failure has
prompted additional studies. Intracoronary infusion of allopurinol, a xanthine oxidase
inhibitor, increases myocardial efficiency in heart failure patients [276] and systemic
allopurinol reduces markers of oxidative stress and improves endothelial function in patients
diagnosed with heart failure [277], independent of serum uric acid levels [278]. While these
small scale studies demonstrate that xanthine oxidase contributes to some elements of heart
failure physiology (e.g. endothelial dysfunction and impaired myocardial efficiency), they
do not tell us if these effects translate into improved patient outcomes. To address this issue,
405 patients were enrolled in a randomized, multicenter trial (OPT-CHF) of oxypurinol in
the treatment of heart failure [279]. Oxypurinol, a drug similar to allopurinol, did not have
any impact on heart failure morbidity, mortality, or quality of life in that study [279]. The
most obvious explanation is that xanthine oxidase, while contributing to some aspects of
heart failure physiology, does not contribute to the clinical outcome of patients. Other
possible reasons for the discrepancy between physiologic and outcome studies are: a)
differences between allopurinol and oxypurinol; b) the fact that the OPT-CHF dose of
oxypurinol is only equivalent to a low dose of allopurinol [280]; and c) that many more
patients might be needed to detect clinical outcome differences compared to the modest
number of patients needed to detect physiologic changes to xanthine oxidase inhibition.

Conclusion
Overall, there are considerable data linking oxidative stress and ROS to the physiology and
pathophysiology of CVD. Initial attempts to ameliorate manifestations of CVD with simple
antioxidant strategies have not proven helpful, likely because ROS have important and
diverse physiological roles. As our understanding of how the source(s) of ROS are regulated
and how specific ROS interact with their target(s), we have developed a greater
understanding of how ROS modulate cardiovascular pathophysiology. It seems clear that
our ability to impact distinct ROS-sensitive pathways will require even more understanding
of the specific molecular targets and effective therapeutic strategies will likely exploit
factors that dictate ROS specificity.
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CAD coronary artery disease

CHD coronary heart disease

CVD cardiovascular disease
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eNOS endothelial nitric oxide synthase
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LDL low density lipoprotein
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Figure 1.
Roles of ROS in physiological vs. pathological states. Physiological states are characterized
by low levels of ROS that have been implicated in cell growth, stress adaptation, injury
responses, and various modifications in cellular phenotype. In contrast, pathological states
typically exhibit unregulated high levels of ROS that are linked to cellular apoptosis, killing
of pathogens, impairement of cellular functions and ongoing tissue injury.
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Figure 2.
Scheme depicting selected sources of ROS that are known to have implications for
cardiovascular disease. Complete explanations are contained in the text.
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