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The temporal and spatial expression of proteins defines cell-specific activities and how a
given cell responds to a local microenvironment. Thus, cells have evolved numerous
integrated mechanisms to control which proteins are expressed and where they function at
any given time. A small percentage of the human genome (<2%) encodes for messenger
RNA (mRNA). A growing body of evidence suggests that noncoding RNAs (those that do
not encode protein) constitute a substantial class of functional RNAs. Since the discovery
that a small RNA molecule could control developmental transitions in Caenorhabditis
elegans,! microRNAs have been identified in numerous metazoans. In the past few years,
human microRNAs (685 currently listed in the microRNA registry, version 11.0) have been
shown to have a major role in complex gene regulatory networks and are estimated to
contribute to the regulation of one third of all human genes. MicroRNAs, along with
transcription factors, constitute the largest family of trans-acting, gene regulatory molecules,
whose cell-specific expression directly and precisely regulate cellular functions. It is
therefore not surprising that microRNAs are implicated in a wide variety of diseases,
including cancer and diabetes mellitus. The role of microRNAs in the biology and
pathobiology of Gl tissues is now being unraveled. The purpose of this minireview is to
provide current information on microRNA synthesis and processing, as well as microRNA-
dependent gene regulation events that influence Gl tissues in health and disease, and to
highlight the potential of microRNAs for diagnosis and therapy.

MicroRNA Synthesis, Processing, and Function

The expression of a single microRNA potentially impacts the expression of a few to
hundreds of proteins with a variety of cellular functions.2 Conversely, a single nRNA (and
its translated protein) might be under stringent, but redundant, control of numerous
microRNAs. To mechanistically address how cells control microRNA expression requires
knowledge of their transcription and processing.

Synthesis and Processing

MicroRNAs are transcribed as mono- or polycistronic primary microRNAs (pri-
microRNAS), which are processed to mature microRNAs (Figure 1). Human pri-microRNASs
are often located between known protein encoding genes (intergenic microRNAs), but might
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also lie within an intron of a parental protein-coding gene (intronic microRNAS). Similar to
protein-coding genes, intergenic microRNAs have promoters that interact with RNA
polymerase 11 and transcription factors,3=> permitting tissue-specific expression and signal-
dependent regulation. Intronic microRNAs are cleaved from the primary mRNA transcript,
suggesting mRNA promoter-dependent transcription of these microRNAs. The pri-
microRNA molecule forms a hairpin structure recognized by the microprocessor complex
containing the nuclear RNase 111 endonuclease, Drosha, and is rapidly processed to a 60- to
90-nucleotide stem loop RNA (~25-30 base pair stem). The resulting precursor microRNA
(pre-microRNA) is actively transported from the nucleus through the nuclear export
receptor, exportin 5. In the cytoplasm, the pre-microRNA is further processed by the RNAse
I11 endonuclease, Dicer, which cleaves the precursor approximately 20 base pairs from the
Drosha cut sites, thereby resulting in the formation of a short, double-stranded RNA
molecule. The double-stranded microRNA associates with the RNA-induced silencing
complex (RISC), where the RNA duplex is separated to yield a single-stranded mature
microRNA, with strand selection based upon base-pair stability at the termini of the
duplex.5” The “guide” strand typically loads into the RISC while the “passenger” strand
(denoted by an asterisks; e.g., miR-199a*) is degraded. Recently, Kim et al® have
demonstrated that the microRNA* can load into the RISC and suppress translation of target
MRNA, suggesting that specific spatial and temporal cellular environments may influence
strand selection and, ultimately, protein expression.

In addition to acute and epigenetic transcriptional regulation, the potential exists for
microRNA expression regulation at any of the posttranscriptional processing steps. For
instance, posttranscriptional regulation has been demonstrated at the level of Drosha®0 and/
or Dicer,11 which enables the expression of either the primary or precursor microRNA,
whereas expression of the mature, functional microRNA is inhibited.® This regulated
processing has been observed in embryonic tissues and human primary tumors.® For
example, Lin28, a developmentally regulated RNA binding protein that in conjunction with
Nanog, Oct-4, and Sox2 can reprogram fibroblasts to pluripotency,1? selectively blocks the
processing of primary let-7 microRNAs in embryonic cells.10 Interestingly, a Lin28
homolog, Lin28B, which also inhibits let-7 processing, is over-expressed in human
hepatocellular carcinoma (HCC) as well as several cancer cell lines. Processing of the
primary transcript can also include adenosine to inosine (A to I) editing by adenosine
deaminases that act on RNA.13 This RNA editing might result in decreased cleavage by
Dicerl4 or, because inosine preferentially base pairs with guanosine, the modified nucleotide
can alter target selection.1® Therefore, as with mRNAs, the functional expression of
microRNASs is a complex, highly regulated process including both transcriptional and
posttranscriptional processes.

Frequently, there is dissociation between mRNA expression and cellular protein levels;
microRNA-induced suppression of translation is a possible mechanism for this. MicroRNAs
function to “fine tune” cellular expression of proteins. Unlike short interfering RNAs
(siRNAs), which are designed to target mMRNA with 100% complementarity and promote
MRNA degradation, microRNA binding to mRNAs requires fewer complementary bases.
Complementary base pairing between the microRNA seed region (nucleotides 2-8) and the
3" untranslated region (UTR) of target mRNA is required for posttranscriptional gene
silencing. However, recent reports have demonstrated the existence of microRNA targets
within the coding sequence of several mMRNAs.16:17 The degree of complementary base
pairing over the entire length of the microRNA determines the mechanism of microRNA-
induced mRNA translation suppression. Perfect or near-perfect complementarity between
the microRNA and the mRNA results in mRNA degradation, similar to sSiRNA translational
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inhibition.18 More frequently, translational suppression occurs when the microRNA seed
region binds target mRNA with less complementarity throughout the entire sequence. The
precise mechanism of translational suppression by this pathway is not defined clearly, but
most likely involves recruitment of mMRNAS to processing bodies, intracellular organelles in
which mRNAs could be sequestered or degraded.1® A recent report has described the
microRNA-dependent sequestration of cationic amino acid transporter mRNA in hepatocyte
processing bodies with subsequent release and rapid protein production during cellular
stress.20 Therefore, microRNA-induced sequestration of MRNAs inhibits translation;
conversely, protein levels can be rapidly increased under specific cellular conditions through
release of the mRNA from the processing body.

Recently, reports have also defined a role for microRNASs in hepatitis C virus (HCV)
replication.?! Specifically, miR-122 complementary sites were identified in both the 5’ and
3' UTR of HCV RNA and were conserved among genotypes. The authors concluded that
miR-122 does not affect viral RNA translation or stability but is likely recruited to the 5’
UTR for viral RNA replication. This study not only defines a novel role of animal
microRNAs in viral replication, but also is the first to suggest that animal microRNAs
contribute to gene transcription through recruitment to the 5’ UTR of transcripts.

Expression Profiling and Functional Analyses

Expression Profiling

Modifications of common molecular protocols allow for the analysis of mature microRNA
expression. Microarray, cloning, and real-time polymerase chain reaction (PCR)-based
approaches are commonly performed for microRNA expression analyses. Several
microarray platforms are available; each address issues of sensitivity and specificity in a
different manner. In general, the isolated or enriched microRNAs are labeled and hybridized
to arrays spotted with microRNA-specific probes and scanned to obtain the relative
expression in a given sample. For cloning analyses, small RNAs are enriched and cloned,
followed by sequencing to identify microRNAs and their relative abundance.22-23 Large-
scale, quantitative reverse transcriptase (RT) PCR is a technique frequently used to obtain
the microRNA expression profile of a given sample. The small size of microRNAs
precludes the use of standard RT PCR protocols; therefore, the reverse transcribed product
must be extended before amplification. One way to achieve this is through the addition of a
poly-A tail to mature microRNAs, which serves as a binding-site for oligo dT-primed
reverse transcription. A 5’ extension on the oligo dT primer, including a universal primer
binding site, extends the length of the synthesized first strand. Specific amplification thus
depends on primers complementary to individual microRNAs. Whereas expression analyses
are required to identify microRNAs with altered expression patterns in diseased tissues,
functional analyses of the ability of these microRNAs to regulate expression of target
mMRNA s are essential to understand their impact on pathogenic pathways and processes.

Functional Analyses

Functional data exist for a small percentage of microRNAs. These studies are frequently
performed by transfecting precursor microRNAs or antisense-inhibitor microRNAs
(antagomirs) into cells and using immunoblot analyses to identify resulting changes in
protein levels. One obvious disadvantage of this technique, as with the transfection of
SiRNAs, is the potential for off-target effects. Report assays (typically with firefly luciferase
or green fluorescent protein) are utilized to show functional interactions between
microRNASs and the 3’ UTR of a target mRNA. With this technique, the predicted target
region of the mRNA is inserted into the 3’ UTR of the reporter construct or the entire 3’
UTR of the target MRNA is cloned at the 3’ end of the reporter coding sequence. The
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plasmid construct can then be transfected and the expression of the reporter, if targeted by
the microRNA of interest, correlates inversely with the amount of the microRNA of interest.

Short hairpin RNAs (shRNAs), structural and functional homologs of pre-microRNAs
encoded in a plasmid or viral vector, can be used to increase the expression of a microRNA
in a specific cell type; this technique can generate continuous cell lines or transgenic animals
with stable and heritable gene silencing. A drawback of this technique is the potential to
inhibit endogenous microRNA function through saturation of a limiting level of 1 factors
involved in microRNA biogenesis. Studies have demonstrated that over-expressed ShRNAs
saturated the activity of exportin 5, a factor required for pre-microRNA export from the
nucleus, and interfered with endogenous microRNA processing.24:25 In vivo studies have
also demonstrated the toxicity of this approach as shRNA expression in the livers of adult
mice resulted in significant fatality.2> Furthermore, the expression of ShRNAs can result in a
nonspecific interferon response through RNA-activated protein kinase and interaction with
Toll-like receptors (TLRs). Further optimization and regulation of ShARNA expression,2° as
well as nucleotide modifications that limit immune stimulation,26 could prove useful in
moving this technology from bench to bedside.

Recently, locked nucleic acid (LNA) microRNA antagomirs were shown to be highly
effective at modulating endogenous microRNA expression. LNA antagomirs, 1 type of
modified antisense oligonucleotides (AMOs), are synthesized DNA molecules that contain
modified ribose moieties in which the pentose sugar is constrained in the N-type
conformation seen in A-form DNA. LNA-modified oligonucleotides have several
advantages over standard antisense molecules. For example, the modified oligonucleotide
increases thermal stability between the hybridized LNA molecule and target nucleotides,
increasing binding affinity.2’-2% The LNA modification also enhances mismatch
discrimination, compared with un-modified antisense molecules, resulting in increased
target recognition.30 Furthermore, LNA oligonucleotides exhibit high levels of stability (the
LNA half-life in serum is reported to be ~15 hours, compared with ~12 hours for a 2'-O-
methyl modified antisense molecule)?® and solubility in aqueous solutions.39 LNA-based
microRNA probes are used commonly for in situ hybridization studies and array-based
detection.

Several groups have developed microRNA knockout mice31-33 or transgenic animals that
over-express microRNAs34-36 to study the roles of microRNAs in vivo. Zhao et al3!
developed miR-1-2 knockout mice to study heart development and observed partial
embryonic lethality owing to abnormal heart morphogenesis. Those mice that survived to
adulthood demonstrated heart defects, including increased cardiomyocyte proliferation and
electrophysiologic defects. Additionally, Johnnidis et al®” demonstrated that loss of function
of a single miR-223 allele leads to an inflammatory lung pathology. The development of
microRNA knockout mice is clearly a useful tool to improve our understanding of the
relevance of microRNAs to Gl function and disease.

MicroRNA Expression Profiles Are Altered in Malignant Diseases of the Gl

Tract

As with other complex gene regulatory networks, aberrant expression or processing of
microRNAs could have profound effects on cellular function and contribute to disease
states. Profiling studies have revealed that microRNA levels are dysregulated in
hepatic,38-41 bile duct,*2 colon,*344 and pancreatic*>7 cancer cells. For example, members
of the miR-17-92 cluster, as well as miR-21, miR-224, and miR-221/222, were typically
expressed at higher levels in HCC tissues compared with normal tissues. Of interest, levels
of let-7 family members, miR-29 family members and miR-103/107 were all dysregulated,
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but were either over-expressed or under-expressed in different tumor samples. These
variations might have resulted from different methodologies or predisposing risk factors and
etiologies of the HCCs studied. In colon cancer tissues, several microRNAs were expressed
at altered levels in independent expression analysis studies. For example, miR-143 and
miR-145 were consistently down-regulated,*3:48:49 whereas miR-21 was consistently up-
regulated*3:4849 in colorectal tumor samples versus normal tissues. Additionally, microRNA
expression analysis of pancreatic tumors or cell lines derived from pancreatic tumors
demonstrated altered expression compared with normal pancreatic tissue. Pancreatic tumors,
regardless of histologic type, could be distinguished from normal pancreas by the over-
expression of miR-103 and miR-109, and the lack of miR-155.46 However, conflicting
expression data were reported from studies using both array#> and PCR-based
approaches#>47 in that miR-155 was over-expressed in pancreatic ductal adenocarcinomas
and cell lines derived from these tumors, which is consistent with solid tumors of other
origins. The conflicting reports demonstrate the need to verify altered expression of
individual microRNAs using several methodologies.

MicroRNAs Contribute to Cellular Processes Associated With Gl Diseases

Apoptosis

Important studies have demonstrated that microRNAs regulate tumor suppressors4:50 and
oncogenes®-53 in a variety of tissues (Table 1). For instance, the let-7 family has been
shown to regulate the Ras oncogene and the decreased let-7 expression observed in lung
tumors is permissive for Ras over-expression.® Therefore, decreased expression of this
microRNA results in the over-expression of an oncogene, making let-7 a putative tumor
suppressor. Specific examples of microRNA dys-regulation with functional implications for
Gl cancers include the frequent up-regulation of miR-21. Functional analysis has
demonstrated that miR-21 contributes to regulation of the tumor suppressor PTEN in both
cholangiocarcinoma and HCC®>#* and posttranscriptionally inhibits expression of the tumor
suppressor PDCD4 in colorectal cell lines.%9 Several studies also consistently reported
miR-21 over-expression in pancreatic adenocarcinomas. Although the functional
implications of miR-21 over-expression in this tissue has not been determined, it seems
likely, based on studies from other tissues, that this microRNA regulates the expression of
relevant tumor suppressor proteins. Furthermore, strong expression of this microRNA
predicts limited survival in patients with node-negative pancreatic cancers.>®

Apoptosis is an important factor in the pathophysiology of several Gl diseases. For instance,
in primary liver cancers such as HCC and cholangiocarcinoma, malignant cells resist
apoptotic signals, inappropriately surviving oncogenic transformation and often displaying
resistance to chemotherapeutic agents. We reported that decreased miR-29b in the cultured
malignant cholangiocarcinoma cell line (KMCH) increases Mcl-1 protein expression,
compared with nonmalignant human cholangiocytes (H69), and contributes to survival of
malignant cells.52 Datta et al°® recently reported the methylation-mediated silencing of
miR-1-1 in both HCC cell lines and primary HCCs. Reintroduction of this microRNA to
HCC cell lines promoted both cell-cycle arrest and apoptosis, possibly through the
attenuated expression of the transcription factor FoxP1 and the receptor tyrosine kinase Met.
miR-155 is over-expressed in pancreatic tumor samples; this microRNA targets and limits
the expression of the stress-induced gene TP53INP1,57 which promotes p53-dependent
apoptosis and is decreased in many pancreatic tumors. Animal models support the
importance of microRNAs in apoptosis regulation. For example, Bim expression is
increased in mice deficient in miR-17-92 and the mice die of pulmonary hypoplasia,
possibly resulting from excessive cell death.%8
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Proliferation and Cell-Cycle Regulation

Increased proliferation accompanies dysregulated apoptosis in many cancers. MicroRNAS
regulate the cell cycle and proliferation in many cell types. Gramantieri et al>® demonstrated
that several microRNAs were differentially expressed between HCC and nonneoplastic liver
tissues; miR-122 was down-regulated in HCC cells and its expression was inversely
correlated with cyclin G1 expression. Furthermore, Shah et a5 demonstrated that agonist-
activated peroxisome proliferator activated receptor-a, a member of the steroid hormone
nuclear receptor superfamily, altered microRNA expression in a model of hepatocellular
proliferation and tumorigenesis. One down-regulated microRNA, let-7c, targets the
oncogenic transcription factor c-myc; let-7c down-regulation and the resulting increase in c-
myc increased miR-17-92 expression and the proliferative capacity of hepatocytes.
Cholangiocyte hyperproliferation was associated with cystogenesis in polycystic liver
diseases, most notably with autosomal recessive polycystic kidney disease. Levels of
miR-15a were significantly decreased in a cholangiocyte cell line derived from a rat model
of autosomal recessive polycystic kidney disease compared with a normal cholangiocyte cell
line; this microRNA targets the cell-cycle regulation gene Cdc25A. Transient over-
expression of miR-15a ultimately led to decreased protein levels of Cdc25A and numbers of
cells in the DNA synthesis phase of the cell cycle.1 MicroRNAs also contribute to intestinal
epithelial cell hyperproliferation—transfection of the commonly dysregulated microRNAs
miR-143 or miR-145 into colon cancer cell lines significantly inhibited cell proliferation.
Furthermore, manipulation of cellular miR-143 levels altered the expression of ERKS5, a
mitogen-activated protein kinase that promotes proliferation.62

Differentiation

Using a cell culture model of intestinal cell differentiation, Hino et al% found that miR-194
was induced and regulated by the transcription factor HNF1 during differentiation.
Additionally, overlapping microRNA expression patterns exist between the embryonic
colonic mucosa and colorectal cancer.54 The miR-17-92 cluster increased in embryonic
colon mucosa and colorectal cancer tissues; this increase was associated with decreased
levels of the transcription factor E2F1, which promotes apoptosis and regulates cell-cycle
progression through the tumor suppressor protein Rb. Increased expression of the
miR-17-92 cluster of microRNAs has been associated with colonic development, decreased
apoptosis, increased proliferation, and cell-cycle progression in various tissues. The
functional role of this cluster of microRNASs has been observed in transgenic mice that over-
express the miR-17-92 cluster and develop a lymphoproliferative phenotype.3¢ Thus, it is
intriguing to speculate that microRNAs have a similar role in human embryogenesis and
neoplastic transformation.

Immune Regulation and Pathogen Recognition

MicroRNAs are implicated in the regulation of immune cell differentiation?2:% as well as
innateb6:67 and adaptive3233 immune responses. Little is known about the mechanisms that
control expression of proteins that contribute to chronic inflammatory diseases of the Gl
tract (ie, ulcerative colitis, Crohn’s disease, primary sclerosing cholangitis, or primary
biliary cirrhosis). Although the contribution of microRNAS to chronic inflammatory
conditions of the Gl tract is unclear, their general contribution to the initiation and
attenuation of inflammatory cascades is better understood. In an effort to find candidate
microRNAs involved in host cell responses to microbial challenge, Taganov et al®’ analyzed
the microRNA expression profile of a monocytic leukemia cell line following TLR
stimulation with ligands. Several microRNAs (miR-146a, miR-132, and miR-155) were up-
regulated after stimulation with the bacterial endotoxin lipopolysaccharide. Functional
analysis demonstrated that miR-146a expression is nuclear factor kappa B (NF-«B)—
dependent and this microRNA targets interleukin-1 receptor-associated kinase and TRAF®6,
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which each activate the TLR and pro-inflammatory cytokine signaling cascades. Therefore,
expression of miR-146a has a negative effect on pro-inflammatory signaling in a leukemia
cell line. Conversely, in a model of biliary cryptosporidiosis, infection of cultured human
cholangiocytes with C parvum (a parasite that causes intestinal and biliary disease)
decreased let-7i expression in a MyD88 and NF-xB—dependent manner. Decreased let-7i
expression resulted in up-regulation of TLR4 in infected cells and increased NF-«xB
signaling.56 These data raise the possibility that microRNA-regulated posttranscriptional
pathways contribute to host—cell responses to microbial infection by increasing
inflammatory signaling in response to pathogens®® or attenuating the inflammatory
response.8’

Clinical Relevance

MicroRNAs for Diagnosis, Prognosis, and Therapy

Improved the understanding, detection, and delivery of microRNAs could have clinical
value in approaches to Gl diseases. Analysis of the microRNA profiles from diseased tissues
might aide in diagnosis, allowing pathologists to distinguish between similar conditions,
define the origin of a tumor of unknown primary, or distinguish benign from malignant
lesions.38 Alternatively, microRNAs might provide evidence for underlying pathologies®®
and improve de novo diagnosis; assays of sentinal microRNAs in blood, bile, or stool
samples could be used to follow progression of a known condition. Additionally, prognostic
information could be gained from knowing the expression level of individual microRNAs.
Bloomston et al%9 found that high expression levels of miR-196a-2 predicted poor survival
of lymph node-positive pancreatic cancer patients and specific microRNA profiles have
been associated with increased metastatic potential 1270 This prognostic information may
therefore act as a tool for disease management decisions. Further study is required to
determine whether there are individual microRNAs or microRNA expression patterns
associated with Gl diseases that can be used in prognosis, such as determining progression
of hepatitis or inflammatory bowel disease. This line of diagnostic and prognostic
information will certainly mature as the phenotypic effects of individual microRNA
alterations are better understood in the Gl tract.

Therapeutically, it seems reasonable to predict that the microRNA profile of a tumor biopsy
could be used to direct individualized therapy, based either on empiric correlations between
microRNA expression profiles or on mechanism-based alterations in specific pathways
caused by microRNA dysregulation. The identification of aberrantly expressed microRNAs
and advances in our understanding of the pathways affected by microRNA dysregulation
indicate the exciting possibility of therapeutic interventions involving the reintroduction of
mature microRNAs (in instances where a microRNA is reduced or absent) or selective
inhibition of over-expressed microRNAs (using AMOs). One advantage of microRNA-
based therapy, compared with siRNA-based therapy, is that reintroduction of a microRNA
results in expression of an endogenous regulator of physiologic processes. However,
introducing antisense oligonucleotides to reduce the expression of a microRNA has the
potential to generate undesirable off-target effects, although direct modulation of microRNA
levels is not the only approach that could be used in microRNA-based therapy. Indeed, some
cancers are marked by deficiencies in microRNA processing.%! In these instances, small
molecule activators or repressors of endogenous microRNA processing or expression could
affect a cellular phenotype to therapeutic gain.

MicroRNA-based therapies face many of the same considerable challenges as gene
therapies, including selectivity, delivery, and efficacy. However, the approaches developed
for in vivo delivery of siRNAs or shRNAs, including viral vectors, liposomes, and
nanoparticles’2-"4 and specific nucleotide delivery through cell-surface receptor
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targeting,”>~/7 improve progress toward microRNA-based therapies. There are several
examples of successful therapeutic application of RNA interference that use these
technologies, typically in tissues that are easily accessible to delivery, such as the retina or
lung epithelia.’879

Although obstacles and concerns remain, successful application of microRNA therapies has
been established in non-human primates, where antagonism of miR-122, through
intraperitoneal delivery of an AMO, significantly lowered plasma cholesterol levels.8°
Although other, more effective cholesterol-lowering therapeutics exist, this accomplishment
highlights the opportunity to modulate organ function by controlling microRNA levels.
Recently, Santaris Pharma (Denmark) initiated a clinical trial for treatment of HCV infection
using SPC3649, an AMO that targets miR-122. Although SPC3649 is the only microRNA
antagomir currently in clinical trials, other groups are likely to evaluate the therapeutic
efficacy of other microRNA-based therapies. microRNAs have an important role in normal
and pathologic cellular processes in the Gl tract; their roles in effecting coordinated changes
in expression of multiple proteins places these regulators in prime position for their utility in
diagnosis, prognosis, and treatment of complex conditions.
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Figure 1.

Biogenesis and processing of microRNAs. MicroRNAS are endogenous, non—protein-coding
genes that are transcribed and ultimately processed into 20-22 nucleotide single-stranded
RNA molecules. As indicated above and in the text, the production of a mature microRNA
and ultimately translation inhibition is a highly regulated process.

Gastroenterology. Author manuscript; available in PMC 2011 August 16.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

O’HARA et al.

Table 1

Page 14

Examples of microRNAs with established targets in various organs within the gastrointestinal tract. Altered

microRNA expression is frequently associated with known disease processes or conditions. The OMIM

reference number for protein description is provided for each target protein
(http://lwww.ncbi.nlm.nih.gov/sites/entrez?db=0OMIM)

microRNA Established target (OMIM #)  Pathway/function Disease/process [Ref.]
Liver
miR-122 — Cholesterol metabolism [80]
miR-122 Viral RNA Transcription HCV [21]
miR-122 CAT-1 (104615) Transport — [20]
miR-122 Cyclin G1 (601578) Cell cycle Hepatocellular carcinoma  [59]
miR-21 PTEN (601728) Cell cycle Hepatocellular carcinoma  [54]
miR-29 MCL-1 (159552) Apoptosis Cholangiocarcinoma [52]
let-7 TLR4 (603030) Infection/immune response Cryptosporidiosis [66]
miRNA-15a CDC25A (116947) Cell cycle Cystic liver disease [61]
miR-223 STMN1 (151442) Cell cycle/Signal transduction  Hepatocellular carcinoma  [84]
miR-148a PXR (603065) Nuclear receptor Xenobiotic metabolism [83]
Stomach
miR-106b-25 cluster  E2F1 (189971) Cell cycle Gastric cancer [82]
miR-15b/16 BCL2 (151430) Apoptosis Gastric cancer [85]
Pancreas
miR-155 TP53INP1 (606185) Apoptosis Ductal adenocarcinoma [57]
Colon/Rectum
let-7-a-1 RAS (190070) Signal transduction Colorectal cancer [53]
miR-143 Erk5 (602521) Signal transduction Colorectal cancer [62]
miR-21 PDCD4 (608610) Translation inhibition Colorectal cancer [50]
miR-126 PI3K (603157) Signal transduction Colorectal cancer [81]
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