
Truncated (N)-Methanocarba Nucleosides as A₁ Adenosine Receptor Agonists and Partial Agonists: Overcoming Lack of a Recognition Element

Dilip K. Tosh, Khai Phan, Francesca Deflorian, Qiang Wei, Zhan-Guo Gao, and Kenneth A. Jacobson*

Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States

ABSTRACT: A₁ adenosine receptor (AR) agonists are neuroprotective, cardioprotective, and anxiolytic. (N)-Methanocarba adenine nucleosides designed to bind to human A₁AR were truncated to eliminate S'-CH₂OH. This modification previously converted A₃AR agonists into antagonists, but the comparable effect at A₁AR is unknown. In comparison to ribosides, affinity at the A₁AR was less well preserved than that at the A₃AR, although a few derivatives were moderately A₁AR selective, notably full agonist 21 (N⁶-dicyclopropylmethyl, K_i 47.9 nM). Thus, at the A₁AR, recognition elements for nucleoside binding

depend more on 5' region interactions, and in their absence, A₃AR selectivity predominates. Based on the recently reported agonistbound AR structure, this difference between subtypes likely correlates with an essential His residue in transmembrane domain 6 of A₁ but not A₃AR. The derivatives ranged from partial to full agonists in A₁AR-mediated adenylate cyclase inhibition. Truncated derivatives have more druglike physical properties than other A_1AR agonists; this approach is appealing for preclinical development.

KEYWORDS: G protein-coupled receptor, purines, molecular modeling, radioligand binding, adenylate cyclase

denosine modulates many physiological processes by acti-Avating one or more of four subtypes of G protein-coupled receptors (GPCRs). The medicinal chemistry of adenosine receptors (ARs) is now well advanced in comparison to the cases of many other GPCRs, with the existence of numerous selective agonists and antagonists, allosteric modulators, prodrugs, radioligands for imaging, fluorescent probes, and macromolecular ligand conjugates.² A₁AR ligands have been considered clinically for a variety of conditions: agonists (diabetes, pain), partial agonists (arrhythmias), and antagonists (heart failure, renal protection).3

The adenosine structure has been extensively modified, on both the nucleobase and ribose, for pharmacological optimization to selectively activate ARs. One means of achieving AR subtype selectivity has been the replacement of ribose with a sterically constrained methanocarba ([3.1.0]-bicyclohexane) ring system. This bicyclic system adopts a North (N)-envelope conformation in MRS3558 (1) (Chart 1) to maintain a receptorpreferred conformation and enhanced affinity at the A₃AR. The (N)-methanocarba modification is also tolerated at A₁AR, but without affinity enhancement. Consequently, the cardioprotective MRS3630 (2) containing the A_1AR -favoring N^6 -cyclopentyl substituent is a mixed A₁/A₃AR agonist.

Another useful modification is truncation of the ribose at the 4' position, that is, removing the 5'-CH2OH moiety, while retaining all other features of the ribose-like moiety and its stereochemistry. Thus, 4'-thionucleoside antagonist LJ-1251 (3) and 4'-oxo antagonist 4 preserve affinity and selectivity at the A₃AR, while removing the ability to induce the required conformational change for receptor activation.^{8,9} Truncation of (N)-methanocarba nucleosides originally was reported to

convert A3AR agonists into selective antagonists in a guanine nucleotide binding assay. 10 Subsequently, partial agonism in a functional assay of adenosine 3',5'-cyclic phosphate (cyclic AMP) at the G_i-coupled A₃AR was shown for MRS5127 (5) and congeners. ¹¹

In contrast to the reduced A₃AR efficacy of 5'-truncated nucleosides, at the G_s-coupled A_{2A}AR, full agonism is retained, as shown recently for the 4'-thio series. 12 The effects of truncation on A₁AR efficacy are unknown. Our major objective was to probe the effects of truncated (N)-methanocarba nucleosides at the human (h) A₁AR, both pharmacologically and with insight into the structural basis for receptor recognition. Therefore, we have incorporated N^6 substituents that are expected to promote A_1AR affinity. For example, nucleoside 6, previously characterized at the A_3AR , ¹² contains N^6 -cyclopentyl, which generally produces A₁AR selectivity in the riboside series. The G_i-coupled A₁AR is more homologous in primary sequence and effector coupling to the G_i-coupled A₃AR than to the G_s-coupled A_{2A}AR. If it more closely resembles A₃AR in ligand binding and activation mechanism, the truncated analogues such as 6 will be A₁AR antagonists or partial agonists. However, if its activation more closely resembles the A_{2A}AR, then these truncated derivatives will be full A₁AR agonists. With the recent structural elucidation of an A2AAR active state, 15 it is feasible to relate these findings to specific binding site interactions.

Received: May 10, 2011 Accepted: June 1, 2011 Published: June 01, 2011

Chart 1. Structures of Representative Ribosides and Ring-Constrained Methanocarba Nucleoside Derivatives That Have Been Characterized as Agonist, Partial Agonists, and Antagonists at the A_3AR (K_i , nM, in Binding to the hA_3AR in Italics)^{6–10}

■ RESULTS

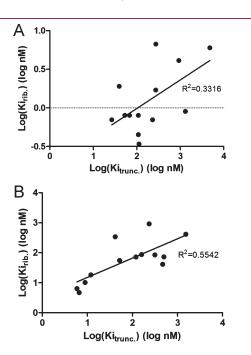
With the objective of increasing A₁AR affinity, we explored N^6 substitution of 4'-truncated (N)-methanocarba nucleoside derivatives, which were shown previously to be selective A₃AR antagonists/partial agonists.¹² Therefore, the series included N^6 -cycloalkyl (8–12) and N^6 -bicycloalkyl (13,14), and N^6 -acyclic alkyl and N^6 -cyclopropylalkyl (15–21) substitutions associated previously with A₁AR selectivity of ribosides (Table 1).¹³ Finally, certain substituted N^6 -benzyladenosine derivatives, such as 2-fluorobenzyl, were reported to have enhanced affinity at the A₁AR.²³ Therefore, a variety of fluorinated and nonfluorinated N^6 -benzyl derivatives (22–28) were prepared.

The synthetic route to the truncated derivatives involves nucleophilic displacement by the appropriate amine of a 6-chloroadenine group in a 2',3'-isopropylidene-protected precursor **29** (Scheme S1 of the Supporting Information). All of the analogues contain a 2-chloro substitution of the adenine ring, which has been shown to increase affinity at either or both A_1AR and A_3AR . 2-Chloro substitution of the A_1AR agonist N^6 -cyclopentyladenosine (CPA, **30**) also was shown to reduce agonist efficacy at the A_3 but not A_1AR . ¹⁴

Several previously reported 2-chloro (N)-methanocarba derivatives (1, 2, 5, and 6) were used for comparison in the biological assays (Table 1). Binding assays at three hAR subtypes were carried out using standard radioligands and membrane preparations from Chinese hamster ovary (CHO) cells (A₁ and A₃) or human embryonic kidney (HEK) 293 cells (A_{2A}) stably expressing a hAR subtype (Table 1). Since activity within the class of (N)-methanocarba nucleosides was previously noted to be very weak or absent at the hA_{2B}AR, we did not include this receptor in the screening protocol.

Generally, the 5'-truncated (N)-methanocarba-adenosine derivatives, in comparison to the corresponding 9-ribosides, maintained affinity at the A_3AR more effectively than at the A_1AR . Nevertheless, affinities of <100 nM at the A_1AR were achieved for certain N^6 -alkyl and cycloalkyl members of this series. Among the most potently binding 2-chloro (N)-

methanocarba analogues (Ki, in nM) at the hA1AR (with Ki of the corresponding N^6 derivatized 9-ribosides at rat A₁AR in parentheses ¹³) are the following: cyclobutyl 9, 51.6 (0.7); isopropyl 17, 72.2 (1.9); cyclopropylmethyl 19, 68.4 (0.8); and di(cyclopropyl)methyl 21, 47.9 (0.8). The A₁AR affinity of the N° -ethyl analogue 15 was more substantially reduced, by 141-fold, with K_i values of 930 and 6.6 nM for the truncated and 9-riboside analogues, respectively. Other N^6 analogues that were more significantly reduced in their hA₁AR affinity in comparison to the corresponding riboside at rat A1AR (K_i, nM) are as follows: cyclohexyl 10, 131-fold (0.9); endonorbornyl 13, 113-fold (0.34); exo-norbornyl 14, 231-fold (0.7); and 2-fluorobenzyl 22, 800-fold (6). Because of this reduced affinity, the selectivity for the A₁AR was diminished overall. Only a few derivatives tended toward A₁AR selectivity in comparison to the A₃AR: di(cyclopropyl)-methyl 21, 10-fold; endo-norbornyl 13, 4-fold; and large cycloalkyl derivatives 10-12, 2-3-fold. The degree of selectivity vs $A_{2A}AR$ was higher: 21, 74-fold; 13, 30-fold. Many of the other derivatives were equipotent in binding to A₁ and A₃ARs, and the substituted N^6 -benzyladenosine derivatives (22–28) were generally selective for the A₃AR, similar to previous observations with truncated N° -benzyl derivatives. 10,12


Functional data determined at a single concentration (10 μ M) in an assay of adenylate cyclase (A₁AR-induced inhibition of cyclic AMP) are reported in Table 1. The potent and selective agonist CPA was used as the standard full agonist, and the nonselective AR agonist 5'-N-ethylcarboxamidoadenosine (NECA) was also a full agonist in this assay. Most of the analogues were partial agonists of the A₁AR. However, concentration—response curve for dicyclopropylmethyl analogue 21 in A₁AR-mediated inhibition of cyclic AMP indicated full agonism compared to NECA (Figure S1 of the Supporting Information). The EC₅₀ values for 21 and NECA were 40.7 \pm 19.7 and 10.2 \pm 3.3 nM, respectively, in close agreement with the A₁AR binding affinities.

A correlation plot of the hA₃AR affinity of truncated 2-chloro-(N)-methanocarba analogues in the present study

(x-axis) vs the hA₃AR affinity of 2-unsubstituted adenine-7-riboside analogues (y-axis)¹³

demonstrated a parallel in these parameters (Figure 1B). The affinity at the A_3AR subtype was relatively well maintained (correlation coefficient of 0.55). The enhanced A_3AR affinity of a 5'-truncated ribonucleoside derivative was first noted for the 2-chloro- N^6 -(3-iodobenzyl) derivative and has been validated consistently in SAR studies that also showed lowered efficacy in this series. However, a similar plot of A_1AR affinity comparing ribonucleosides and truncated ringconstrained nucleosides illustrated the trend of consistently lower affinity with truncation (Figure 1A), but without correlation of K_i values (correlation coefficient of 0.33). Therefore, in comparison to the case of ribosides, the affinity of the truncated ring-constrained analogues at the A_1AR was less well preserved than that at the A_3AR .

One derivative that tended toward A_1AR -selectivity, the full agonist 21, contained a N^6 -dicyclopropylmethyl group. Curiously, truncated analogues of N^6 -cyclopentyl and N^6 -benzyl derivatives were notably reduced in A_1AR affinity, even in the case of a 2-fluoro analogue 22, a modification previously found to enhance A_1AR selectivity in the riboside series. ¹³

Figure 1. (A) Correlation of the affinity of truncated 2-chloro-(N)-methanocarba analogues (x-axis, at the hA₁AR) and 2-unsubstituted adenine-7-riboside analogues (y-axis, at the rat A₁AR).¹³ (B) Correlation of the hA₃AR affinity of truncated 2-chloro-(N)-methanocarba analogues (x-axis) and 2-unsubstituted adenine-7-riboside analogues (y-axis).¹³

Compound **22** was 115-fold selective for the A_3AR in comparison to the A_1AR . A 2-fluoroethyl ether **23** was a potent and selective ligand at the A_3AR (K_i 10.3 nM), which might be sufficient affinity for use in radiofluorination for positron emission tomography.

There is a general phenomenon of reduced AR efficacy by removing H-bonding groups from the ribose moiety, especially at the A_3AR but also at the A_1AR . 5,16 A precedent for reduced A_1AR efficacy in nucleoside derivatives is the series of xanthine 7-ribosides. The 5'-uronamide analogue 5'-N-methyl 1,3-dibutylxanthine 7- β -D-ribofuronamide (DBXRM) was a full agonist at both A_1 and A_3AR s. However, removal of the 3'-hydroxyl group produced antagonism at the rat adipocytes A_1AR and partial agonism at the rat A_3AR . In examining the question of whether 5'-truncation in the present series of rigid (N)-methanocarba analogues provides agonists or antagonists at the A_1AR , we found that the answer lies in the middle; that is, the agonist efficacy is partially maintained for many of the derivatives, as shown in Table 1, but the pattern is not uniform.

To examine docking of truncated (N)-methanocarba nucleosides, homology models of the hA1AR and hA3AR were produced from the agonist-bound A2AAR X-ray structure (3QAK).¹⁵ It was noted that key interactions of the nucleoside ligand with His251 in transmembrane domain (TM) 6, conserved between A₁AR and A_{2A}AR, and with Thr91 in TM3 are necessarily missing in the truncated derivatives. In the A_{2A}AR structure, this essential His residue, which is absent in the A₃AR, and Thr91 both H-bonded to a 5'-CO-NH-alkyl moiety of a cocrystallized NECA-like agonist. 15 We predict that the difference in this key His residue is related to the dramatically altered binding of the truncated ringconstrained nucleosides at A1 and A3ARs. Thus, in general, A₃AR recognition would depend more on interactions of groups other than the nucleoside 5' substituent; A₁AR recognition depends more on 5' region interactions, and in their absence, A₃AR selectivity predominates. This is consistent with the truncated derivatives maintaining A3AR, but not A_1AR , affinity.

Furthermore, the hydrophilic region of the receptor associated with ribose binding is critical for activation. This step likely involves essential residues of TM3, TM6, and TM7 throughout the AR family, as in the A2AAR. 15 Multiple Hbonding groups in this region promote agonism at the A₃AR, ¹⁴ such as the interactions of the 5'-CH₂OH of the ribose moiety or the corresponding 5'-CO-NH-alkyl in NECA-like analogues. Thus, loss of the 5' substituent is expected to reduce AR efficacy, which it clearly does at the A3AR. However, the effect at the A₁AR is highly variable, with relative maximal efficacies of the truncated (N)-methanocarba analogues ranging from low (20-30% in compounds 14, 16, and 18) to high (80-100% in compounds 8, 19, and 21). The structural basis for the full agonism of 21, in contrast to closely related compounds such as the N° -(3-pentyl) derivative 18, which has greatly reduced efficacy at this subtype, must arise from conformational effects of the N^6 group.

The docking poses of nonselective agonist NECA, full agonist 21, and low efficacy partial agonist 16 in the putative binding site of the A_1AR were compared (Figure 2 and Figure S2 of the Supporting Information). The H-bond interactions between the 5'-CO-NH-ethyl group of NECA and the two residues, His251(6.52) and Thr91(3.36), could lock the ribose

Table 1. Potency of a Series of Truncated (N)-Methanocarba Adenosine Derivatives at Three Subtypes of hARs and Relative Efficacy at hA_1AR

Compd	R =	K _i , nN	% Inhibition, cyclic AMP ^d		
		A_1	A_{2A}	A ₃	A_1
1 ^b		260±60	2300±100	0.29±0.04	
2 ^b		18.3±6.3	3250±300	13.1±5.1	
5 ^b		3040±610	1080±310	1.44±0.60	
7	Н	350±90	3140±450	160±42	68.1±4.4
8		210±30	3700±340	12.1±3.4	79.0±18.8
9	\Diamond	51.6±12.6	3020±90	5.9±0.5	46.7±2.1
6 ^b		109±16	1640±360	120±31	
10	<u></u>	140±10	2720±450	500±120	38.0±17.6
11		230±30	3930±520	560±90	48.1±10.2
12	○ }	760±110	(43%)	1530±60	40.1±9.0
13		82.6±15.8	2450±90	315±48	62.1±18.5
14	A Zz	200±30	4080±170	236±43	27.8±6.2
15	CH ₂ CH ₃	930±110	(11%)	6.6±1.6	
16	(CH ₂) ₃ F	72.7 ± 28.0	(29%)	32.4±6.7	23.2±2.6
17	>-%	72.2±16.4	(39%)	12±1	50.5±6.4

Compd	R=	Affinity K _i , nM or (% inhibition) ^a			% Inhibition, cyclic AMP ^d
		A_1	A _{2A}	A_3	A_1
18		78.8±15.6	3700±300	52±14	28.6±3.8
19	√	68.4±8.9	4410±1090	8.9±1.9	81.0±21.1
20°	→	86.8±23.7	(41%)	110±17	45.5±4.8
21	→	47.9±10.5	3950±410	470±15	94.3±5.3
22	2/2	4790±670	(31%)	41.5±1.0	
23	2 ₁	(46%)	(32%)	10.3±1.5	
24	3-0	(34%)	(32%)	15.2±3.0	
25	\$\\c\\c_\c_\c_\c_\c_\c_\c_\	3580±220	(46%)	114±45	
26	25/	1260±240	(38%)	16.5±2.8	
27	'227 F	(41%)	(30%)	83.2±35.7	
28	CH ₃ O F	1910±310	7510±690	40.4±13.1	

^a Using CHO or HEK293 (A_{2A} only) cells stably expressing a hAR (Supporting Information); affinity was expressed as K_i value (n=3-5) or percent inhibition of radioligand binding at 10 μM. ^b Values from refs 6, 7, and 12. 5 and 6 were prepared previously. ^{12 c} 20 is a diastereometric mixture. ^d Maximal efficacy (at 10 μM) in an A₁AR functional assay, determined by inhibition of forskolin-stimulated cyclic AMP production in AR-transfected CHO cells, expressed as percent inhibition (mean ± standard error, n=3-5) in comparison to effect (100%) of full agonist CPA 30 at 10 μM. The value for NECA was 100 ± 15 .

moiety in an active conformation, with the 2',3'-hydroxyl groups of the ribose ring correctly directed toward Thr277-(7.42) and His278(7.43) in order to pull TM7 toward TM3 to efficiently activate the receptor. ¹⁵ In the absence of an interaction with His251(6.52) and/or Thr91(3.36) due to the lack of the 5' substituent, the orientation of the rigid methanocarba moiety could be less effective in forming the H-bond interactions with Thr277(7.42) and His278(7.43) needed to attract TM7. In the case of A₃AR, the activation process could be

slightly different from that for the A_1AR , due to some differences in the key residues of the binding pocket. Position 3.32 in A_3AR consists of a nonconserved bulky and hydrophobic leucine residue, while a smaller valine is present in the other AR subtypes. Residue 3.32 was close to the ribose ring of the docked NECA in both A_1AR and A_3AR binding sites. The longer side chain of Leu90(3.32) in A_3AR , in comparison to Val87(3.32) of A_1AR , could contribute to a stronger hydrophobic interaction with the methanocarba moiety of the

5'-truncated agonists. At the same time, the different nature of the substituents at the N° position of the adenine ring could influence the selectivity and the efficacy of agonists at both the A_1AR and the A_3AR . The N^6 groups in the docking poses of the studied agonists lay in a region of the pocket formed by residues in the upper part of TM6 and TM7. The A1AR and A₃AR differ in the nature of the residues lining this pocket. The variation of the affinity and potency of this series of 5' truncated methanocarba analogues at the A₁AR indicates that the N^6 substituent can greatly affect these parameters, in some cases compensating for the lack of H-bonding interactions in the ribose 4' region. From the docking pose of full agonist 21 in the A₁AR model (Figure 2B), the favorable interactions of the N^6 -dicyclopropylmethyl substituent and the residues in the upper part of TM6 and TM7 (such as Thr257, Leu253, and Thr270) could maintain the adenine and methanocarba moieties in an efficacious active conformation with strong H-bond and hydrophobic interactions with residues in TM6, TM3, TM7, and EL2. A smaller and more flexible N° group, such as the 3-fluoropropyl substituent of 16, in addition to the lack of interactions with His251(6.52) and Thr91(3.36), could negatively affect the ability to fully activate the receptor through conformational affects originating at the upper pocket of TM6 and TM7 (Figure S3 of the Supporting Informa-

The physicochemical properties of nucleosides that act as AR agonists often lead to limited in vivo bioavailability. The C-log p of compound **21** is 1.41, with the optimal for small molecular pharmaceutical substances being typically 2–3.¹⁷ The comparable parameter for the related A₁AR-selective riboside and prototypical agonist CPA is 0.14, which is less desirable. Also, the polar surface area (PSA) values for **21** and CPA are calculated to be 92.8 and 122 Å², respectively. Most druglike small molecules have a PSA smaller than 120 Å². Compound **21** has fewer hydroxyl groups than CPA, which

would favor bioavailability. The molecular weight of 21 of 376 is comfortably within the preferred range. Therefore, by several criteria, the full agonist of the A_1AR 21 is more druglike than CPA.

The bioavailability of peripherally administered 21 in the brain, i.e. whether its altered physicochemical properties may facilitate its passage across the blood brain barrier, is undetermined. Many of the efforts to develop A_1 agonists have attempted to limit central nervous system (CNS) penetration to avoid central mediated side effects, but other envisioned applications of A_1 agonists depend on brain entry. In previous studies of the activity of A_1AR agonists in the CNS, only a small fraction of a peripherally administered agent crossed the blood brain barrier. However, a similar attempt to alter the biodistribution by removing the 2'-hydroxyl group of CPA did not enhance brain uptake.

In conclusion, truncated (N)-methanocarba adenine nucleosides display highly variable degrees of binding affinity and activation at the hA₁AR. Based on the recently reported agonist-bound AR X-ray structure, this difference between subtypes likely correlates with an essential His residue in TM6 of A₁ but not A₃AR. By overcoming the lack of an important recognition element for receptor binding, i.e., the 5' substituent, a N^{6} -dicyclopropylmethyl derivative 21 was empirically identified as a moderately A₁AR selective, full agonist. This is counterintuitive given that many 5'-modified analogues are partial agonists at the A_1AR . 18 A_1AR agonists hold interest therapeutically for their cardio- and neuroprotective, antiarrhythmic, antiseizure, antilipolytic, antiglaucoma, and anxiolytic actions. It is conceivable that the expanded range of physical properties in the present series of truncated derivatives would offer pharmacokinetic advantages. Therefore, this approach is appealing for preclinical development. This hypothesis will have to be evaluated in the future in vivo studies.

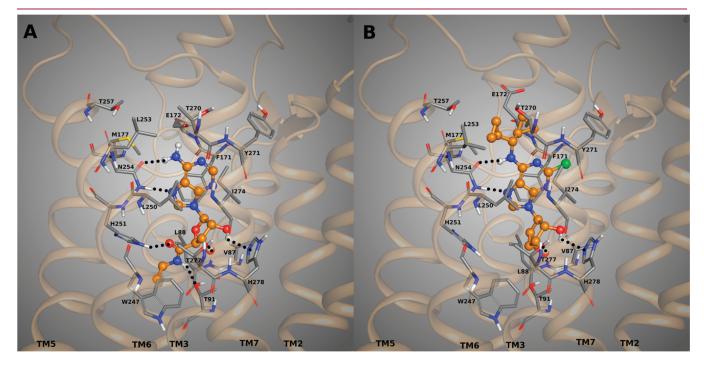


Figure 2. Docking poses of NECA (A) and truncated nucleoside 21 (B) in the binding site of the hA_1AR homology model based on the X-ray structure of an agonist-bound $hA_{2A}AR$, indicating the main H-bond interactions.

■ ASSOCIATED CONTENT

Supporting Information. Synthetic procedures for compounds 7−28, their characterization and bioassays, and modeling procedures and results. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Molecular Recognition Section, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892-0810. E-mail: kajacobs@helix.nih.gov. Telephone: 301-496-9024. Fax: 301-480-8422.

Funding Sources

The authors thank the Intramural Research Program of the NIH, NIDDK, for support.

ACKNOWLEDGMENT

We thank Prof. Ray Stevens (Scripps Research Institute, La Jolla, CA) and Dr. Vsevolod Katrich (University of California, San Diego) for helpful discussions and Dr. Noel Whittaker (NIDDK) for mass spectral determinations.

■ ABBREVIATIONS

AR, adenosine receptor; cyclic AMP, adenosine 3',5'-cyclic phosphate; CPA, N⁶-cyclopentyladenosine; CHO, Chinese hamster ovary; GPCR, G protein-coupled receptor; HEK, human embryonic kidney; MRS3558, (1'S,2'R,3'S,4'R,5'S)-4'-{2-chloro-6-[(3-chlorophenylmethyl)amino]purin-9-yl}-1-(methylaminocarbonyl)bicyclo[3.1.0]hexane-2,3-diol; MRS3630, (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide; MRS5127, (1'S,2'R,3'S,4'R,5'S)-4'-[2-chloro-6-(3-iodobenzylamino)-purine]-2',3'-O-dihydroxybicyclo[3.1.0]hexane; NECA, 5'-N-ethylcarboxamidoadenosine; TM, transmembrane domain

■ REFERENCES

- (1) Fredholm, B. B.; IJzerman, A. P.; Jacobson, K. A.; Linden, J.; Müller, C. Nomenclature and classification of adenosine receptors—An update. *Pharmacol. Rev.* **2011**, *63*, 1–34.
- (2) Müller, C.; Jacobson, K. A. Recent developments in adenosine receptor ligands and their potential as novel drugs. *Biochim. Biophys. Acta, Biomembranes* **2011**, *1808*, 1290–1308.
- (3) Giorgi, I.; Nieri, P. Therapeutic potential of A₁ adenosine receptor ligands: a survey of recent patent literature. *Expert Opin. Therap. Patents* **2008**, 18, 677–691.
- (4) Bueters, T. J.; IJzerman, A. P.; van Helden, H. P.; Danhof, M. Characterization of the pharmacokinetics, brain distribution, and therapeutic efficacy of the adenosine A₁ receptor partial agonist 2'-deoxy-N⁶-cyclopentyladenosine in sarin-poisoned rats. *Toxicol. Appl. Pharmacol.* **2003**, *192*, 86–94.
- (5) Park, K. S.; Hoffmann, C.; Kim, H. O.; Padgett, W. L.; Daly, J. W.; Brambilla, R.; Motta, C.; Abbracchio, M. P.; Jacobson, K. A. Activation and desensitization of rat A₃-adenosine receptors by selective adenosine derivatives and xanthine-7-ribosides. *Drug Dev. Res.* **1998**, *44*, 97–105.
- (6) Tchilibon, S.; Joshi, B. V.; Kim, S. K.; Duong, H. T.; Gao, Z. G.; Jacobson, K. A. (N)-Methanocarba 2, N^6 -disubstituted adenine nucleosides as highly potent and selective A_3 adenosine receptor agonists. *J. Med. Chem.* **2005**, 48, 1745–1758.
- (7) Jacobson, K. A.; Gao, Z. G.; Tchilibon, S.; Duong, H. T.; Joshi, B. V.; Sonin, D.; Liang, B. T. Semirational design of (N)-methanocarba

- nucleosides as dual acting A_1 and A_3 adenosine receptor agonists: Novel prototypes for cardioprotection. *J. Med. Chem.* **2005**, *48*, 8103–8107.
- (8) Jeong, L. S.; Pal, S.; Choe, S. A.; Choi, W. J.; Jacobson, K. A.; Gao, Z. G.; Klutz, A. M.; Hou, X.; Kim, H. O.; Lee, H. W.; Lee, S. K.; Tosh, D. K.; Moon, H. R. Structure activity relationships of truncated D- and L- 4¢-thioadenosine derivatives as species-independent A₃ adenosine receptor antagonists. *J. Med. Chem.* **2008**, *51*, 6609–6613.
- (9) Pal, S.; Choi, W. J.; Choe, S. A.; Heller, C. L.; Gao, Z. G.; Chinn, M.; Jacobson, K. A.; Hou, X.; Lee, S. K.; Kim, H. O.; Jeong, L. S. Structure-activity relationships of truncated adenosine derivatives as highly potent and selective human A₃ adenosine receptor antagonists. *Bioorg. Med. Chem.* **2009**, *17*, 3733–3738.
- (10) Melman, A.; Wang, B.; Joshi, B. V.; Gao, Z. G.; de Castro, S.; Heller, C. L; Kim, S. K.; Jeong, L. S.; Jacobson, K. A. Selective A_3 adenosine receptor antagonists derived from nucleosides containing a bicyclo[3.1.0]hexane ring system. *Bioorg. Med. Chem.* **2008**, *16*, 8546–8556
- (11) Hou, X.; Kim, H. O.; Alexander, V.; Kim, K.; Choi, S.; Park, S. G.; Lee, J. H.; Yoo, L. S.; Gao, Z. G.; Jacobson, K. A.; Jeong, L. S. Discovery of a new human A_{2A} adenosine receptors agonist, truncated 2-hexynyl 4'-thioadenosine. *ACS Med. Chem. Lett.* **2010**, *1*, 516–520.
- (12) Tosh, D. K.; Chinn, M.; Ivanov, A. A.; Klutz, A. M.; Gao, Z. G.; Jacobson, K. A. Functionalized congeners of A_3 adenosine receptor-selective nucleosides containing a bicyclo [3.1.0] hexane ring system. *J. Med. Chem.* **2009**, 52, 7580–7592.
- (13) Gao, Z. G.; Blaustein, J.; Gross, A. S.; Melman, N.; Jacobson, K. A. N^6 -Substituted adenosine derivatives: Selectivity, efficacy, and species differences at A_3 adenosine receptors. *Biochem. Pharmacol.* **2003**, 65, 1675–1684.
- (14) Gao, Z. G.; Kim, S. K.; Biadatti, T.; Chen, W.; Lee, K.; Barak, D.; Kim, S. G.; Johnson, C. R.; Jacobson, K. A. Structural determinants of A₃ adenosine receptor activation: Nucleoside ligands at the agonist/antagonist boundary. *J. Med. Chem.* **2002**, *45*, 4471–4484.
- (15) Xu, F.; Wu, H.; Katritch, V.; Han, G. W.; Jacobson, K. A.; Gao, Z. G.; Cherezov, V.; Stevens, R. C. Structure of an agonist-bound human A_{2A} adenosine receptor. *Science* **2011**, 332, 322–327.
- (16) Jacobson, K. A.; Siddiqi, S. M.; Olah, M. E.; Ji, X. D.; Melman, N.; Bellamkonda, K.; Meshulam, Y.; Stiles, G. L.; Kim, H. O. Structure-activity relationships of 9-alkyladenine and ribose-modified adenosine derivatives at rat A₃ adenosine receptors. *J. Med. Chem.* **1995**, *38*, 1720–1735.
- (17) Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular properties that influence the oral bioavailability of drug candidates. *J. Med. Chem.* **2002**, *45*, 2615–2623.
- (18) Zablocki, J. A.; Wu, L.; Shryock, J.; Belardinelli, L. Partial A1 adenosine receptor agonists from a molecular perspective and their potential use as chronic ventricular rate control agents during atrial fibrillation (AF). *Curr. Top. Med. Chem.* **2004**, *4*, 839–854.

■ NOTE ADDED IN PROOF

The X-ray structure of NECA bound to a thermostabilized $A_{2A}AR$ was recently solved (RCSB ID: 2YDV; Lebon et al. **2011**, *Nature*, doi:10.1038/nature10136) and is very similar to our docked pose of NECA.