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Abstract

A method for reducing the spurious pressure oscillations observed when simulating moving
boundary flow problems with sharp-interface immersed boundary methods (IBMs) is proposed.
By first identifying the primary cause of these oscillations to be the violation of the geometric
conservation law near the immersed boundary, we adopt a cut-cell based approach to strictly
enforce geometric conservation. In order to limit the complexity associated with the cut-cell
method, the cut-cell based discretization is limited only to the pressure Poisson and velocity
correction equations in the fractional-step method and the small-cell problem tackled by
introducing a virtual cell-merging technique. The method is shown to retain all the desirable
properties of the original finite-difference based IBM while at the same time, reducing pressure
oscillations for moving boundaries by roughly an order of magnitude.
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1. Introduction

Immersed Boundary methods (IBM)[1] are a highly versatile approach for the simulation of
flows around moving/deforming bodies with complex geometrical shapes. One undesirable
property of IBMs being reported for the dealing with such moving/deforming bodies on a
fixed, non-body conformal computational grid is, unphysical, temporal oscillation of the
pressure fields[2, 3, 4, 5, 6, 7, 8]. These spurious pressure oscillations are observed virtually
for all type of IBMs including flow-reconstruction based methods[2, 3, 4] as well as
discrete[5, 6] and distributed[7, 8] forcing methods. Other immersed boundary based
approaches also show spurious oscillations in the forces exerted on the moving body[9]. As
will be shown here, the primary source for this error is that for moving boundary problems,
the role of some grid cells (or grid points) in the computational domain changes in time
leading to spurious mass sources/sinks. For example, in an IBM based on the sharp-interface
treatment[2], the governing equations (mass and momentum conservation) are solved only
on the cells in the fluid domain and for moving immersed boundaries, this leads to the
generation of fresh cells (cells that go from being inside the solid to being in the fluid) and
dead cells (cells that go from being inside the fluid to being inside the solid). Luo et al.[3]
mentioned that the abrupt change of the stencils for the flow reconstruction and a finite-
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differencing of the governing equations associated with these cells causes spurious
oscillations in the pressure. Similarly, in IBMs using the forcing method [5, 6, 7, 8],
numerical stencils for applying forcing terms are changing with the boundary motion. Lee et
al.[5] identified two sources of the pressure oscillations in a discrete-forcing IBM; one
source is the spatial discontinuity in the pressure across the immersed boundary caused by
the fresh cells, and the other is the temporal discontinuity in the velocity at the dead cell. For
diffuse-interface IBMs such as distributed forcing methods[7, 8, 10, 11], spurious pressure
oscillations are diminished by spreading and smoothing out of the forcing term[8]. On the
other hand, in sharp-interface IBMs, the pressure oscillation error is manifested more
severely and it is more difficult to control, since these methods have no intrinsic smoothing
mechanism at the immersed boundaries. A few remedies have been proposed for sharp-
interface IBMs: for instance, pressure oscillations are reduced by applying the flow
reconstruction[3, 4] or forcing[6] on cells that at inside as well as outside of the immersed
body. Such treatments, however, reduce the sharpness of the immersed boundary and may
diminish the advantage of sharp interface methods.

In the present study, we have analyzed the pressure oscillations due to the boundary motion
in a sharp-interface immersed boundary method and made the case that the major source for
the pressure oscillations is found to be the violation of local mass conservation near the
immersed boundary. The mass conservation error is in-fact primarily due to violation of the
geometric conservation law (GCL), a concept that is well established in body-fitted grid
methods[12]. In order to reduce the spurious pressure oscillations, we propose a method that
significantly improves local mass-conservation. The proposed approach employs ideas from
the cut-cell approach but avoids some significant complexities associated with a cut-cell
discretization. Tests are carried out to demonstrate the effectiveness and accuracy of the
current approach.

2. Source of Pressure Field Oscillation

Consider a rigid moving, immersed boundary on a fixed, non-body conformal grid (Fig.1).
For the class of immersed boundary methods of particular interest here, the boundary
conditions, which include no-slip, no-penetration for velocity and appropriate Neumann
boundary condition for pressure, are imposed to some order of accuracy (typically between
1st and 2nd order) on o). This imposition may be through the use of direct flow
reconstruction by interpolation[3, 4] or extrapolation[2], or through the introduction of a
discrete forcing term[5, 6] in the momentum equations. Thus, the boundary conditions are
imposed at a finite number of points that are located precisely on the surface of the
immersed boundary and this leads to a “sharp-interface” representation of the immersed
boundary. For an incompressible fluid, the fluid volume inside the computational domain
should be conserved through the satisfaction of the following condition:

f?f’b.?dmf U -7 dA=0,
- . (1)

1B cv

where o1 and oy are the surfaces of the immersed body and the control volume,
respectively (see Fig.1), Uy, is the boundary velocity on the immersed boundary, and n'is the
surface normal unit vector. Here we assume that the solid boundary is a non-porous, no-slip
wall which allows no relative velocity between the fluid and the body. Using divergence
theorem on the first term, the above equation can be rewritten as
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where Vg is the volume enclosed by immersed boundary surface, o). The fluid control
volume is defined by (Vg N Vcy). For stationary bodies, the total fluid volume should be
unchanged in time. In projection-method based solution algorithms, mass (volume)
conservation is imposed when solving the pressure Poisson equation. In the finite-difference
based, sharp-interface IBMs, the pressure Poisson equation is solved for the cells inside the
fluid domain and the local mass conservation is satisfied by enforcing the following
condition;

—n+l

=0, )

where U1 is the face-velocity at the new time level. In a finite-difference based method,
the above local mass conservation can be written as (e.g. using the second-order central
differencing, see Fig. 2)

Uc - Uu' Vn - VS Wf - Wb
+ +— =0.
Ax Ay Az (4)

Now consider the situation for a cell that is intersected by the immersed boundary such as
cell “P” shown in Fig. 2. For such a cell, even though the velocities are carefully imposed
using a second-order accurate ghost-cell based prescription of the velocity on the immersed
boundary surface (in this case at the adjacent body-intercept points), the control volume of
such a cell remains cuboidal with volume equal to AV = Ax - Ay - Az, regardless of how the
immersed body “cuts” this cell. For example, on Fig. 2, the face velocity, Vg is computed
using the velocity on the ghost node which is evaluated with the fluid velocity on the image
point and the boundary velocity on the body-intercept point. The mass conservation for this
boundary cell is however still written by Eq. (4) for a cell volume AV. Additionally, the
mass conservation for the ghost cells (the cell-center of which is inside the immersed body)
is not considered at all although it contains some part of the fluid volume. In this case, the
fluid control volume is considered to be (Vss® N Vey). As a result, the global conservation
law applied in the current (as well as all other) sharp-interface IBM is effectively replaced
by the following equation:

AV
v —q")+f T’/f-?dmf U -7 dA=0,
t ogs oy (5)

where g¥ corresponds to the total number of solid cells at time level k, AV is the volume of
each of these cells, At is the time step size, and subscript f denotes the value on the cell faces
of the “stair-step” boundary, osg associated with the immersed body. The first term is
associated with the fact that the volume enclosed by a “stair-step” shaped boundary changes
abruptly with the appearance of “fresh cells” and ‘dead cells’ as shown in Fig. 3. The second
term represents the “transpiration” mass flux through the boundary which, as we will show
presently, is also generally non-zero even when the original immersed boundary has no
transpiration. In order to estimate overall mass conservation error associated with the sharp-
IBM treatment, the above equation is re-written as:
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where the right-hand side terms represent the error in mass conservation. The terms inside
the bracket can be estimated as follows (see Fig. 4):

f U, -RdA

B
—f U, - TdA

7ss
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As depicted in Fig. 4, each cell face is projected on to the immersed boundary surface and
the face-velocity is evaluated by a Taylor series expansion from the boundary velocity. In
the above analysis, AA is the cell face area, 6A is projected area on to the boundary surface,
and ng and ny, are the unit normal vectors of the cell face and the boundary surface,
respectively. Consequently, the conservation statement that is actually enforced in finite-
difference based sharp-interface IBM solvers is

dV — AV — — o
-+ f URdA=— (q"" ~¢")~0AY Up(h =70 (iy - 3) = AA ) (d -V)U 7.
Tev N—

y e face face
S

v

Se (8)

The right-hand side terms are essentially geometric conservation errors. The first term in the
right-hand side (Sy) corresponds to a spurious source of fluid volume and this source is
associated with the fresh and dead cells as shown in Fig. 3. On the other hand, the second
and third terms (S) are associated with the transpiration error through the surface area. The
second term is caused by the geometrical (shape and size) difference between the immersed
boundary and the stair-step boundary. As a simple example consider the fact that, for a
circular immersed body of radius R, the surface area of the immersed boundary is fclB dA =
2nR whereas the surface area of a corresponding ‘stair-step’ boundary is given by [ osg dA =
8R + O(A). For a stationary boundary, the first and second terms become zero, since q is
unchanged in time and Up=0. The third term is associated with the mismatch in the location
of the actual immersed boundary and the boundary on which the conservation statement is
enforced; it is proportional to the velocity gradients near the immersed boundary and is non-
zero even for a stationary boundary. It should be noted that while the third term is of a
higher order in grid spacing than the second term (due to the fact that d = O(A)), the actual
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magnitude of this term is difficult to determine a-priori since the velocity gradient in the
vicinity of the immersed boundary can be large.

Because the first term is associated with the sudden changes in fluid volume due to the fresh
and dead cells, this error would show a highly discontinuous variation in time. In contrast,
the second and third terms, that are associated with the shape change of the stair-step
boundary relative to the immersed boundary are expected to vary more smoothly in time
since Up, Np, N and d are all expected to vary smoothly in time. Shape changes associated
with the appearance of fresh and dead cells contribute only a small fraction to these error
terms and should not affect the temporal smoothness of these terms significantly.

We also note that if we reduce the control volume size down to that of an individual fresh or
dead cell, the volume conservation error can be written as
AV — _A

- \%
— Uy - Ay|= t|1—CFLbL

At A (9)

where_ Knls the normal area vector of the boundary surface segmented by the cell and CFL,,
= AtUyp, - Ay/AV. Thus, it is expected that the dominant component of the pressure oscillation
error is proportional to the grid area (volume in 3D), and inversely proportional to the size of
the time-step. This implies that one should choose the grid and time step size carefully to
reduce the pressure oscillation error. Lee et al.[5] have investigated the effect of time step
size, grid spacing, and CFL number on the pressure oscillation error for several test cases.

In order to demonstrate the generation of spurious pressure oscillations in a moving
boundary problem and investigate its relation to the volume conservation error, we devise a
simple test problem; a circular cylinder with center located at x; and of diameter D, which
oscillates sinusoidally in the x-direction .i.e.

Xe(D)=x:(0)+X, [ 1 = cos2r fon)], uc(t)=U, sin(2r fot), (10)

where Ug = 2xfgX( and the period of oscillation is T = 1/fy. For this case, we choose Xg =
0.05D. The Reynolds number defined as Re = UgD/v is set at 31, and the Strouhal number is
St = fgD/Ug = 3.2. The Neumann type boundary conditions with zero gradients are applied
for the pressure and velocities at the outer boundaries. A relatively coarse grid with Ax = Ay
= 0.1D is employed and this corresponds to the cylinder being covered by 10 x 10 cells (see
Fig. 5a). Furthermore, a small time-step corresponding to At = 0.01T, (CFL = UgAt/Ax =
0.0314) is used. In keeping with Eq. (9), the combination of a large grid spacing and small
time-step should produce large and noticeable spurious pressure oscillations. Furthermore,
while the cylinder motion for this case produces both fresh and dead cells, they do not occur
at the same time, and this allows us to distinguish the effect of these different cells on the
pressure oscillations.

The total pressure drag on the body is given by

fp(_n) ~_i>) dA
C(1/2)poD? fo? (1)

PD

where Cpp is a pressure drag coefficient, n is a unit surface normal vector, and Tisax-
direction unit vector, is a good measure of the instantaneous pressure around the body and
we estimate this using the trapezoidal rule. The time histories of Cpp are plotted in Fig. 5b,
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and one can see several peaks in the pressure force. The first term on the right hand side
source of Eq. (8) denoted by Sy (bar graph) and other two terms denoted by S, (solid line)
are also plotted at the bottom. It clearly shows that the volume source/sink error caused by
fresh and dead cells, (Sy) is much larger (by a factor of about 40) than the transpiration error
through the surface, (Sy). It is therefore not surprising that the oscillations on the pressure
force is correlated well with the Sy plot. By comparing the two plots, it is clear that the
pressure peaks appear when fresh or dead cells occur, and the peaks caused by fresh cells
and dead cells are marked with ‘F” and ‘D’, respectively. Also note that dead and fresh cells
are created at different times for this problem. Figure 5b, therefore, clearly shows that the
dominant source of pressure oscillations is connected with the spurious mass source/sinks
caused by the creation of fresh and dead cells. It should be noted that in general, both dead
and fresh cells may be created at a given time-step but the individual effects still do not
cancel out since they occur at different locations around the body. Figure 5b confirms that
the errors associated with the change in the shape of the stair-step boundary (second and
third terms on the right hand side of Eq.(8)) are smaller in magnitude and also vary more
smoothly in time than the volume change error.

In order to further assess the effect of grid spacing and time-step size on the pressure
oscillation, we solve the oscillating cylinder problem with larger oscillation amplitude, Xq =
0.125D, on four different grids (with grid spacing, Ax = Ay = D/16, D/32, D/48, and D/64)
and a fixed At equal to 0.002T (CFL =0.025, 0.05, 0.1, and 0.2). We also solve the problem
for different time-step sizes (At/T = 0.002, 0.004, 0.008, and 0.016) for a fixed grid spacing
of Ax = Ay = D/16 (CFL =0.025, 0.05, 0.1, and 0.2). In order to quantify the amplitude of
the pressure oscillations we define a 28-discontinuity in the temporal variation of a quantity
F as

FE(SZIF'HI _2Fn+Fn71|’ (12)

where n is time-step index. The root-mean-squared (RMS) values of Cif; are plotted in Fig. 6
as a function of grid spacing and time-step size. As expected (and predicted by Eg. (9)) the
pressure oscillations decrease with decreasing grid spacing and increase with decreasing
time-step. This tendency has also been confirmed in previous studies[3, 4, 5]. A best-fit
power-law though the points in Fig. 6 indicates that the pressure oscillations as quantified by

26
C,. scale as

s Ax)19

an™E (13)

This is very much in line with Eq. (9) which predicts that Cij’; would scale as (Ax)%/(At) for a
two-dimensional problem. It should be noted that for the present test case, the second term
of Eg. (9) is negligible, since the maximum CFL number based on the body velocity is 0.025
~ 0.2 and therefore much smaller than 1. Interestingly, for a solid body moving with
constant uniform speed Uy, if the local grid size and time step size satisfy the condition,
CFL = UpAt/Ax = 1, our analysis suggests that the conservation error terms vanish and the
regional(or global) volume conservation error (Eq. 8) is smooth in time (since q"*1 = q" and
the shape of ‘stair-step’ boundary is un-changed). We have tested such a case and observed
no noticeable pressure oscillations. These tests therefore provide strong support for our
hypothesis that the pressure oscillations are caused primarily by violation of the geometric
conservation law which introduces local mass sources and sinks. It should also be pointed
out that some past studies have focused primarily on the pressure oscillations caused by
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fresh cells[13]. The current analysis shows that dead cells are equally important sources of
spurious oscillations.

It is useful to point out that for diffuse-interface methods which include the discrete-delta
function based implementation[7, 8] or penalization based methods[14, 15], the interface is
normally described by a discretized delta function, which is spread smoothly over a set of
local grid points. For example, the immersed boundary velocity is distributed by

BD)=U,- 5" (2 — ). (14)

where 3" is a discretized delta function which varies smoothly in space, and X is the
position vector of immersed boundary. The smoothing of the interface can be viewed
conceptually as leading to the following modified local volume conservation error:

dt dt

dVs dV . AV
| Loy Rl R~ = CFL 16 (R =R~ 1,

(15)

where V; is the smoothed solid volume. Smoothing of interface therefore leads to a
smoother temporal variation of the error. This is the reason why the pressure oscillation can
be reduced by these diffuse-interface treatments. In fact, Yang et al.[8] have shown that the
pressure oscillations can be suppressed by introducing smoother discrete delta functions.
Also, in the diffused-interface IBM of Taira & Colonius [10, 11], they claimed that the
global mass is conserved well and there were no temporal oscillation errors on the body
force for a moving boundary problem. Note however that the smoothing of this form reduces
pressure oscillations without mitigating the underlying conservation error.

Based on the above analysis it is therefore clear that the pressure oscillations can be
suppressed by reducing the errors associated with the geometric conservation law. One way
to satisfy the geometric conservation law and local mass conservation accurately is through
the use of a Cartesian cut-cell method[16, 17]. In this method, the boundary cells which are
cut by the immersed boundary are reconstituted into non-rectangular control-volumes and a
finite-volume method used to ensure strict satisfaction of GCL as well as local and global
mass (and momentum) conservation. Due to these conservative properties, the Cartesian cut-
cell method produces no significant spurious pressure oscillations for moving boundary
problems[17]. However, there are two main challenges with cut-cell methods. First the cell
cutting procedure for a 3D geometry can produce seven different polyhedral control
volumes (if the cell is cut by only one surface) and handling all these different cell
topologies in a single solver is highly challenging. Even state-of-the-art finite-volume
solvers typically handle at most two different cell topologies. The second issue is the
formation of arbitrarily small cells which can lead to excessive stability constraints and
problems with convergence of elliptic equations such as the pressure Poisson equation. In
order to avoid the formation of very small cut-cells, a geometric cell-merging approach can
be adopted[16, 17]. Unfortunately, not only are these merging schemes highly complex, they
introduce additional cell topologies, and this severely complicates the discretization process
as well as the solution methodology. Consequently, the extension of these methods to 3D
problems has been very difficult. To resolve the small cut-cell problem in a 3D Cartesian
cut-cell method, Kirkpatrick et al.[18] used ‘cell-linking’ technique instead of ‘merging’,
and Meyer et al.[19] proposed a ‘momentum-exchange’ technique which is a type of
‘virtual’ cell merging. Recently, a 3D cut-cell method which allows multiple small cell
linking has been reported[20] for the viscous compressible flows, but the efficiency of the
method and its ability to address highly complex geometries remains to be established.
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In the present study, we propose a method to reduce the pressure oscillations for sharp-
interface IBMs by adopting the conservative properties of the Cartesian cut-cell method.
However, two strategies are employed in order to preserve the efficiency and simplicity of
the finite-difference method; first, the cut-cell methodology is applied only to mass (and not
to momentum) conservation, and second, the small cell-merging/linking process is
simplified by introducing the “virtual” merging technique of Meyer et al.[19]. This allows us
to avoid all the significant complexities associated with geometric cell merging/linking. The
details of our approach and the numerical procedure are given in the following section.

3. Numerical Method

The immersed boundary method used in this study is the sharp-interface IBM described by
Mittal et al.[2]. The method uses a ghost-cell method which is second-order accurate in
space and a detailed description of this method can be found in the original paper of Mittal
et al.[2]. The incompressible Navier-Stokes equations are solved by a fractional-step method
based algorithm and we provide a very brief description of this method here. In the first sub-
step of the fractional step method, the intermediate, cell-center velocity is computed by

3C" 1C”" +] (D"+D")
2 2 2

* n
U =0 +At-

]

(16)

where C and D represent convection and diffusion terms on the momentum equations and
both are discretized with a second-order central-difference scheme. The face-velocities are
subsequently evaluated from the cell-center velocities as

* *
o DAL

¢ A(»E +AoP ’ 17)

where A is the distance from the cell-face to the cell-center (see Fig.7). The pressure is
computed by the Poisson equation:
—k

VZ n+l:@ V. )
VAR (18)

Finally, the cell-center and cell-face velocities are corrected by

—n+l x At
i A

B 00 19

. At
U:,H—l ZU: _ _Vﬁ~17”+ 1 ,
Jeli (20)

where A.c and A denote the gradients at the cell-center and cell-face, respectively. The
moving, immersed boundary is represented in terms of Lagrangian markers whose location
and velocity is denoted by X;, and Uy, respectively. For fresh cells which have no time
histories of the flow velocity, the intermediate velocities are estimated by a trilinear (3D) or
bilinear (2D) interpolation[2] and this is followed by the pressure correction step.
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Since we have determined that the major source of pressure oscillation associated with the
boundary motion is spurious fluctuations in the fluid volume (and mass) as well as changes
in the effective geometry of the immersed interface, the cut-cell approach is applied to Eq.
(18) and (19) to achieve better volume and mass conservation. The momentum equation, Eq.
(16) is solved as usual by a second-order central finite-difference discretization using the
ghost-cell method[2] and one does not need to spend additional effort in computing
momentum fluxes and stresses for the cut-cells. Furthermore, the stability restrictions (CFL
and/or viscous stability depending on the temporal discretization of the method) caused by
small cut-cells can be avoided.

The finite-volume integration of Eq. (18) and (19) are written as

vl R A:@fﬁ*ﬁ A
f( P 1) d Ar ( n)dA, 1)

b7 * A
f?f’*'dv:f? dv - —'f(p"“?) dA.
o (22)

In order to apply the finite-volume discretization to Eq. (21) and (22), the volume-fraction
(the ratio of fluid volume to the total cell volume) and face-fractions (the ratio of face area in
fluid region to the total face area) should be determined for the cells cut by the boundary
surface. The procedure for determining the cell cuts and the associated cell volumes and face
areas is relatively straightforward and has been described in previous papers (Ye et al.[16],
Udaykumar et al.[17]). In the present sharp-interface IBM, the arbitrary boundary surface is
discretized with the triangular surface elements. For each cell near the immersed boundary
we first determine if the vertex of a given cell is located inside or outside the boundary
surface. If at least one vertex is determined to be inside the boundary surface, the cell is
considered to be a cut-cell. For each boundary cell, we find the nearest surface element, and
the cell-cut determination is based on the orientation of this surface element. This implies a
local linearization of the boundary surface, if the grid resolution is coarser than the surface
element resolution. Based on the vertex in/out test result, we also know which edge of the
cell is cut by the boundary, and we find those ‘edge intersections’ (see Fig.8) through
simple, three-dimensional coordinate geometry. The area of each cut-face and boundary
surface segmented by the cell can then be computed by constructing polygons with the edge-
intersections and cell vertices. Once all the areas are found, the cell volume is obtained using
the divergence theorem:

1 1
Vear=3 | Re-HdA=3 [Z?c.j R A Rer AT |, j=e w.n, s, f.b,
25 (23)

where X; is the position vector to the center of each surface, Ajand I" are the areas of cut-
face and boundary surface segmented by the cell, respectively (see also Fig.9). Figure 9
shows the typical cut-cell topology created by such a procedure and we note that there are
two types of cut-cells created in the fluid; cells whose nodes are in the fluid region (called
“regular” cut-cells) and cells whose nodes are in the solid (called “small” cut-cells). It
should be noted that the volume-fraction, o = Ve /AV, of regular cut cells is greater than 0.5
and those of the small cells is less than 0.5, and the discretization of the governing equations
is done differently for these two types of cells.
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For regular cut-cells, we proceed with a conventional discretization of the finite-volume
equations (21) and (22) as described in Ye et al.[16]. With the given face and volume
fractions, the discretization of Egs. (21) and (22) leads to

Prle — pplaetay)+pyay

Ax?
Pyan — Pplan+as)+pgag
Ay?
praf — pplag+ap)+pyap
AZ2
op| T
+_ —_—
on r AV
_Po Uia, - U;,a,\.+V;a,, - V;‘a5+ W}“f - Wyap K
Y, Ax Ay Az T (24)

k+

apo Ax Ay Az (25)

where aj = Aj/AA are the face-fractions, a is the volume fraction, I is the area of boundary
surface segmented by the cell, and subscript I" indicates the value on the boundary surface
(see Fig. 9). Note that Eq. (25) is only used to update cell-center velocities, while cell-face
velocities are updated by:

U=yt — A (u)
¢ ¢ Ax )

£o (26)

One can see that the above equations are very similar to the finite-difference discretization
of Egs. (18) and (19). For the cells located away from the boundary, all the face and volume
fractions are equal to one and the above equations exactly coincide with the second-order,
central finite-difference form of Eqgs. (18) and (19). The Poisson equation, Eq. (24), retains a
7-point (5-point in 2D) stencil and can therefore still be solved efficiently with our existing
line-SOR-based geometric multi-grid algorithm[2].

A different approach is adopted for the small cells. Given that a small cell can be arbitrarily
small, discretization of the equations for these cells along the lines of that described for the
regular cells can be highly problematic. While for convection-diffusion type of equations,
these small cells can cause CFL or viscous stability problems, for elliptic equations such as
the pressure Poisson equation, small cells produce ill-conditioned matrices that slow down
the convergence of the iterative solution methods. Furthermore, disretization of these cells
as separate finite-volumes changes the total number of unknowns that have to be solved for
at any given time-step. One way to avoid such problems is to geometrically merge small
cells with adjacent cut-cells as was done by Ye et al.[16] and Udaykumar et al.[17]. While
this eliminates the small-cell problem, the merging process is highly complex, especially in
3D, and can also lead to additional dependencies in the computational stencil that can
adversely impact convergence properties.

In the present method, the mass conservation associated with the small cell is accounted for
through a “virtual” cell-merging technique. In this approach, merging is effected by
transferring the source term of the Poisson equation for the small-cells to the adjacent cells
(which may include regular cut-cells as well as non-cut, Cartesian cells). The approach is
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inspired by the ‘momentum exchange’ method proposed by Meyer et al.[19] to solve the
momentum equations for small cells. However, instead of the momentum equation, we
apply virtual merging to mass conservation via Eq. (24). The following discussion is based
on the schematic shown in Fig. 10. First, the value of [(U™ - n)dA which is on the right-hand
side of Eq. (24) is computed for all cells including the small-cells. For the small cells, the
computed value is transferred to adjoining non-small cells (regular cut cells or normal, non-
cut cells) which share a face with the small-cut cell using the following prescription:

[fﬁ*iﬁm] =[fﬁ*~7dA] +X;
1g1—j 1gt—j 27)

U?]’*.?JA] :UT’J*.T}L/A] - > x=0,
src src i (28)

7

where subscript ‘src’ indicates the source (small cell) and ‘tgt’, the face connected normal or
regular cut-cell. In the above prescription, X; is the amount of mass flux transferred to the j-
th target cell and is evaluated by

X;= Pi [fﬁ -Tz’dA] L J=xv,2
E ‘gj src
J

(29)

Bi= t1j2aj (a1g-j>0.5)
I 0 (Qllgl—j < 05) ’ (30)

where nyy ; are X, y, and z component of unit normal vector to the immersed surface which
cuts the small cell, tgt_x, y, z indicate the target cells in the x, y, and z directions, and ay y , is
the face-fraction of a face connected to the target cell in each direction. Thus the amount
transferred to each target cell is chosen based on the direction of surface normal vector as
well as the face area shared with the target-cell. This is consistent with the general notion
that mass-transport associated with boundary motion would primarily be aligned with the
direction normal to the boundary and the amount of mass flux would be proportional to the
area. Once the virtual merging is done, the source of Poisson equation for the small cell
becomes identically zero. The pressure Poisson equation, Eq. (24) is then solved for the
remaining cells which consist of regular cut-cell and non-cut Cartesian cells, and the
pressure value on the ghost node associated with the small cell (see Fig. 10) is obtained
explicitly by the ghost cell method[2] while satisfying the boundary condition.

The above transfer procedure conserves the mass source regionally and ensures that the
geometric conservation law is satisfied. We refer to this conservative property as “regional”
conservation to distinguish it from strict local mass conservation which can only be achieved
through a cut-cell based finite-volume method with full geometric cell merging. This
property is also different from global mass conservation which conserves quantities only
over the entire computational domain. Note however that as with local conservation,
regional conservation also guarantees global conservation. Given our previous assessment of
the source of pressure oscillations, the regionally conservative cut-cell approach should
significantly diminish the local errors in mass conservation and in doing so, reduce the
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spurious pressure oscillations. The global conservation law applied in the present cut-cell
method can be represented by

Uy - 7dA = YUy Tr T
j

o, B

st

sh (31)

where Vg is the discretized cell volume given by Eq.(23) and the summation (j) is for all
the cut-cells (both small and regular). The error on the right-hand side is just caused by the
local linearization of the immersed boundary surface when determining cell cuts based on
the given grid resolution. The first term on the right hand side (Sy/’) is the volume error
caused by the linearization, while the second term (S;") is the transpiration error due to the
error in the surface area, and both terms are expected to be very small. The overall
magnitude of each error term is estimated to be

: Lo (2Y) and s’ ~ @, -5 0 [ AL
S! ZA’O (R,) and S, Z(U” )0 [Rf J where y=3 or 4 for 2D or 3D
problems, respectively, and R; is the local radius of curvature of immersed boundary
surface. In general, the order of magnitude of Sy’ and S5’ is smaller than the corresponding
error terms in Eq.(8) by (A/R) and (A/R)?, respectively. In the following sections we assess
the efficacy and performance of this new approach by simulating a variety of carefully
selected cases.

4. Result and Discussion

The oscillating cylinder problem considered in Sec. 2 is solved again with the current
method. The time histories of the pressure drag coefficient, Cpp are plotted in Fig.11 for the
original ghost cell method and the present regionally conservative cut cell approach. As one
can see from this figure, the present method significantly reduces the pressure oscillations.
While some small local extrema are still visible in the plot, the profile is smooth and
sinusoidal. This improvement is achieved just by satisfying the fluid mass/volume
conservation more accurately via the regionally conservative cut-cell method, and without
any arbitrary boundary forcing or flow-field modification or ad-hoc adjustment of
interpolation stencils. The results therefore confirm that the major source of spurious
pressure oscillations is the violation of the geometric conservation law. It should be noted
that in addition to the reduced amplitude of pressure oscillations, there is also a slight
difference in the overall amplitude as well as phase of the drag between the two results.
Thus, it seems that while the mass source errors are localized in time and space, these errors
can in-fact have a global (in time as well as space) effect on the pressure field. This is likely
due to a coupling between the pressure field, which is elliptic in nature, and the velocity
field which is governed by convection as well as diffusion.

In order to further analyze the effect of grid spacing and time-step size on the pressure
oscillation, we consider a horizontally oscillating cylinder but with a larger amplitude of
oscillations. The circular cylinder in this case is placed at the center of a 4D x 4D square
domain and the upper and lower boundaries of the domain are set to no-slip walls. Neumann
type boundary conditions with zero gradient are applied for the pressure and velocities at the
left and right outer boundaries. The oscillation parameter is set to X = 0.125D(see Eq. (10)),
and the Reynolds number, Re = UgD/v and Strouhal number, St = foD/Uj are set to 78.5 and
1.27, respectively. This larger (25% of the diameter) amplitude of oscillations should lead to
significant force generation and should serve as a more typical scenario for moving
boundary problems.
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The problem is first solved on the following four uniform grids: 642, 1282, 1922, and 2562
with a time-step is fixed to At = 0.002T (CFL =0.025, 0.05, 0.1, and 0.2). Thus on these four
grids, the cylinder diameter D is spanned by 16, 32, 48 and 64 grid points, respectively. The
computations are performed with the original IBM as well as the present cut-cell approach,
and the time histories of the pressure drag coefficient are plotted in Fig. 12(a). As predicted
by Eq. (9), the peak amplitude of pressure oscillation decreases as the grid is refined. An
interesting observation is that the most severe pressure oscillation occurs when the body
velocity is small (i.e. around the force is maximum and minimum) and this behavior is in
line with Eq. (9) which indicates larger conservation errors when the instantaneous CFL
number is small. It is notable that a much smoother solution is obtained with the present
method for all grid resolutions. The temporal variation of drag force for the present method
is acceptably smooth for D/Ax > 32. Note, however, that the amplitude of pressure
oscillations in the original results decreases rapidly with increasing grid resolution and only
on the very coarse resolution (D/Ax < 16), does the original method exhibit a noticeable
phase shift in time and a different in peak force (see also Fig.11), compared to the present
result. For the resolution of D/Ax = 64, the original result is almost the same with the present
one in overall, except for some small oscillations. Thus, as shown in previous studies[3, 4,
5], one can in fact suppress the pressure oscillations in sharp-interface IBMs and obtain
reliable results using fine enough grid resolution.

The effect of time-step size is also investigated for this case and the results are shown in Fig.
12(b). For this study, we employ a 64 x 64 grid and the following time-steps are used:
At=0.002, 0.004, 0.008, and 0.016 (CFL =0.025, 0.05, 0.1 and 0.2). For the original method,
the oscillation amplitude decreases with increasing time-step size but remains un-smooth
even for the largest time-step. In contrast, the present cut-cell method produces a much
smoother temporal variation for all time-steps.

Figure 13 shows the time evolution of the pressure field around a cylinder on the 64 x 64
grid (D/Ax = 16) with At = 0.002 for both the present and original methods. A coarse grid is
chosen here to accentuate the discretization errors. The plots clearly show the presence of
massive and highly non-localized fluctuations in the pressure field for the original method.
Thus, the elliptic nature of the pressure ensures that the pressure perturbations produced at
the immersed boundary have an instantaneous and global effect on the pressure field. In
contrast, the time evolution of the pressure field with the present method is much more
continuous in time. It should be noted that the velocity field (not shown here) itself is not
significantly different between the present and original method since the pressure correction
to the velocity is scaled down by the multiplication with At during the velocity-update step
of the fractional-step method.

In order to quantify the pressure oscillations, we again compute the 25-discontinuity in the
pressure drag as defined by Eq. (12). The RMS (root-mean-squared) values of this quantity
are plotted in Fig. 14 both as a function of grid spacing as well as time-step size for both
methods. Overall, the current method produces roughly a seven-fold reduction in the RMS
values of the pressure oscillation. As seen for the previous case in Sec. 2, for the original

method, the RMS values of C:jf; can be fitted by a power-law (Eq. 13) with E=1.9 and n =
0.8. On the other hand, a best-fit through the results of the new cut-cell method indicates a
power-law with & = 1.8 and n = 0.5. The scaling with grid-size is effectively the same as the
original method but the different scaling of the error with time-step suggests that the
dominant source of pressure oscillation has been moved from the spurious volume source/
sink associated with fresh/dead cells (expressed by Eq. (9)) to another mechanism. The

candidates for these remaining mechanisms include:
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» the inability to formulate a physically well-posed advection-diffusion equation for
fresh cells. Past approaches to the discretization of fresh-cells have involved actual
or effective merging of fresh-cells with neighboring cells[16], use of ghost-cells
values to provide time-history for fresh-cell variables [21], and the use of
Lagrangian interpolation along particle paths[13] to estimate the fresh-cell velocity;

» the abrupt change of velocity for boundary cells in the vicinity of fresh as well as
dead-cells. Our simulations indicate that this is particularly important for cells in
the neighborhood of dead-cells. This temporal discontinuity in velocities caused by
the dead cell is also mentioned by Lee et al.[5]. One solution to this is the use of
smooth stencils[3, 4] to alleviate the temporal discontinuity. However, this stencil
modification process is ad-hoc and also reduces the sharpness of the immersed
boundary;

e errors in momentum conservation around the immersed boundary. This could be
remedied by a cut-cell method such as that of Ye et al.[16] or Giinter et al.[20] or
by application of the current regionally conservative cut-cell method to the
momentum equation;

* geometric conservation errors associated with the local linearization of the surface
employed in determining cell-cuts: right-hand side of Eq.(31). For the current case,
these are O(10~°) but they could be larger in case where A/R is larger.

Our current results however also indicate that, at least for the case simulated here, all these
other mechanisms put together produce pressure oscillations which are about 6 times smaller
than those produced by the mass-conservation errors which have been eliminated by the
current cut-cell method. Furthermore, as shown by the above results, the residual oscillations
can be further suppressed by refining the grid.

The original immersed-boundary method of Mittal et al.[2] is locally and globally second-
order accurate. However, since the current, regionally conservative cut-cell modifies the
discretization in the vicinity of the immersed boundary, it is useful to reassess the grid
convergence and spatial accuracy of the present method. This is accomplished by solving
the same oscillating circular cylinder problem described earlier in this section on three grids
(642, 1922, and 3202 points) and assessing the behavior of the error on these grids. The time-
step in these simulations is fixed to a small value of At =5 x 1074 and since the analytical or
exact solution is not available, the reference solution for the estimation of the error is
obtained from the computation with a fine 5762 grid. For the flow field at t = 0.5T, the
relative error, € is computed for the velocity components u and v. The grid convergence of
pressure is assessed by the relative error on the pressure gradient, dp = |Vp|, since the
pressure value itself obtained with all Neumann boundary conditions is not unique. For the
fair assessment of the error, the gradient is computed on the coarsest grid stencil. The
variation of the RMS (grms) and maximum-error (gqmax) norm plotted in Fig. 15 represent the
global and local errors respectively, and it indicates that the local as well as the global
accuracy of the original sharp-interface IBM[2] is preserved in the current method.

We now validate the present method by comparing the result with a well established case[6,
21, 22, 23] of a horizontally oscillating circular cylinder problem for which comparisons can
be made with results from a body-fitted computational method[24]. The amplitude of
vibration as defined by Eqg. (10) is set to Xo = 0.7957D and the Keulegan-Carpenter number
is set to KC = Uy/fyD = 5. The Reynolds number based on the maximum velocity is 100.
This problem has been used as a validation case in many computational studies of moving
boundary problems[6, 21, 22, 23]. In the present study, the overall computational domain of
100D x 100D is resolved by 512 x 256 grid points with a non-uniform grid spacing. The
minimum grid spacing is Ax = Ay = 0.015D and the cylinder diameter is therefore resolved
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by about 60 grid points. The time step size, At, corresponds to the CFL number 0.533. At the
outer boundaries, Neumann boundary conditions are applied for the pressure and velocities.

The time histories of the total drag coefficient, C, =F/0.5poU; D obtained with the present
as well as the original method are plotted along with the data of Diitsch et al.[24] in Fig. 16.
The present result is clearly smoother than the original result; the RMS value of 25-
discontinuity is 0.23 for the original method, while the value decreased to 0.0322 with the
present method. This degree of reduction of oscillation is consistent with the results of the
previous test case. As predicted by Eq.(9), the largest pressure fluctuations for the original
method are observed when the body velocity is small. Note however that, although the
original result shows some small level of spurious oscillations, the phase and amplitude of
the drag matches the reference value quite well. This reconfirms our earlier notion that with
sufficient resolution, the original method provides good prediction of the forces.

The current approach is easily applied to 3D geometries and we demonstrate this by
simulating a canonical 3D problem. The problem tested is that corresponding to a sphere
oscillating horizontally with Xg = 0.125D, Re = 78.54 and St = 1.2732. The domain size is
(4D)3 and is covered by a 643 uniform Cartesian grids. Neumann velocity boundary
conditions are applied for the velocities at the x-boundaries of the domain and all other
boundaries are set to no-slip walls. The sphere diameter is resolved by 16 grid points (D/Ax
= 16) and the time-step size is equal to 0.01T (CFL = 0.125). The time-histories of the
pressure drag coefficient (in x-direction) are plotted in Fig. 17 for the original as well as the
present method. Similar to the 2D case, the drag variation for the current method is
significantly smoother than that for the original method. Thus the present method maintains
its effectiveness for 3D moving boundary problems. It should be noted however that the
pressure oscillations produced by the original method are somewhat smaller when compared
to the corresponding 2D case (see Fig. 12). This is consistent with Eq. (9) which indicates
that for 3D problems, the mass-error scales with the cube of the grid spacing whereas it
scales with the square of the grid spacing for 2D problems.

We note that the moving sphere problem is particularly relevant to the direct numerical
simulation of particulate flows[7, 25]. In such simulations, each particle might only be
resolved by O(10) grid points per particle diameter. With such coarse particle resolution,
diffuse-interface type method would result in significant numerical errors. However, if one
solves this problem with a typical sharp-interface immersed boundary approach, the force on
the particle (and therefore its motion) might be affected by spurious pressure oscillations.
The new, regionally conservative cut-cell based method can alleviate this problem while
retaining the accuracy of the sharp-interface approach and lead to acceptable results with a
relatively coarse particle resolution.

5. Summary

We have presented an approach for reducing the spurious pressure oscillations that are
observed in simulations of moving boundary problems with sharp-interface immersed
boundary methods. The approach is grounded in analysis and numerical experiments that
indicate that the primary source of these oscillations are the errors in the geometrical
conservation law due to the appearance of fresh and dead cells, and local changes in the
effective geometry of the immersed body, which together, lead to local mass conservation
errors. In order to reduce these errors, we apply a Cartesian cut-cell method to the solution
of the pressure Poisson equation. The cut-cell approach is coupled with a virtual merging
technique to handle the small-cell problem. With this implementation of the cut-cell, we
retain the simplicity, efficiency and accuracy of the original sharp-interface IBM while
reducing the spurious pressure oscillations by a factor of about seven. Reduction of
oscillations is demonstrated for 2D as well as 3D canonical moving boundary problems.
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While the current method is implemented for one particular ghost-cell based implementation
of the sharp IBM[2], the ideas proposed here should be useful and effective for all methods
in this category.

Spurious pressure oscillations for moving boundary problems have long been considered
one of the primary deficiencies of sharp-interface immersed boundary methods. Although
such oscillations can be suppressed by increasing grid resolution, this is very costly,
especially for three-dimensional problems. The current method provides an effective and
efficient approach for addressing this deficiency. The method proposed here would be
particularly useful in flow problem such as fluid-structure interaction and flow-induced
sound where smoothness and accuracy of the pressure field and the hydrodynamic force on
the immersed body is essential.

Research Highlights

> The violation of geometric conservation law causes spurious pressure
oscillations.

> A cut-cell approach with a virtual cell-merging technique has been proposed.

> The proposed method reduces pressure oscillations by roughly an order of
magnitude.
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Figure 1.
Immersed boundary in a fixed, non-body conformal Cartesian grid. og: Immersed boundary

surface, ogg: Surface of stair-step representation of solid body, ocy : Control volume
surface, and Grayed: Computational cells inside the immersed boundary.
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Figure 2.

Sharp interface immersed boundary method based on a finite difference method. The
velocity on the ghost node is obtained by extrapolation with the fluid velocity on the image
point and the booundary velocity on the body-intercept point.
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Boundary motion on a fixed Cartesian grid from time level nton + 1. ‘F” and ‘D’ denote

fresh and dead cells generated by the boundary motion.
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Fluid

Figure 4.

Projection of face areas on to the immersed boundary surface; AA: face area, AA: area
projected on the boundary surface, f: face-center point, and b: projected point on the
boundary surface.
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Figure 5.

a) Geometry and computational grid for fundamental oscillating body test problem. Bodies

are resolved by about 10 by 10 grid points and oscillation amplitude is 1Ax. b) Time history
of pressure drag coefficient. ‘F’” and ‘D’ mark time instances where fresh and dead cells are
created respectively. The bar graph below represents the first term on the right hand side of
Eqg. (8), (Sy), and the solid line is the sum of the second and third terms, (S;).
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Figure 6.

RMS of 25-discontinuity in pressure drag coefficient (cgg) for an oscillating circular
cylinder. The results are shown for different grid (solid, triangles) and time-step sizes

(dashed, squares). Lines are power-law fitting, C,Z,‘DS ~ (A and Cig ~ (1/A)", where £=1.9
and n = 0.8. (Axg = 1/16, Aty = 0.002)
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F

Figure 7.

Notations of numerical stencils for the discretization of governing equations. Capital letters
indicate neighboring cells (‘P’ denotes the current cell) and small letters represent cell faces.
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Vertex inside the boundary

Boundary surface

o

Figure 8.
Schematic for determining cell cuts and some example of cut-cell topologies. Edge-
intersection is the intersection between the boundary surface and the edges of the cell.
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Regular cut-cell
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Solid
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Figure 9.

AN A

Cut-cell notations in 2D (left) and 3D (right, only one regular cut-cell is shown). A: face area
in the fluid region and T is the boundary surface area segmented by the cell. A cell of which
volume fraction is smaller than 0.5 is determined to be a ‘small’ cut-cell and it is always a

part of ghost cell.
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Figure 10.

X

X

_____________________

Schematic of virtual merging technique. The source of pressure Poisson equation on the
small cut-cell is trasferred to adjoining non-small cut-cells. X denotes the transferred amount
in each direction.

J Comput Phys. Author manuscript; available in PMC 2012 August 10.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Seo and Mittal Page 28

4= Present Method

| | | | | | | | | | | | | | | |

Original Method

1 1.2 1.4 1.6 1.8

Figure 11.

Time histories of pressure drag coefficient for horizontally oscillating circular cylinder (total
oscillation amplitude: 1Ax); comparison between the original sharp-interface IBM and the
present regionally conservative cut-cell method
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Figure 12.

Time histories of pressure drag coefficient for a oscillating circular cylinder, Xy = 0.125D,
Re = 78.5, St = 1.27. a) on different grid resolutions with fixed time step size, At = 0.002, b)
for different time step size on the fixed resolution, D/Ax = 16. Solid lines: original finite
difference method, Dash-dot lines: present.
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Page 30

Time evolution of pressure field on 642 grid (D/Ax = 16) for t/T = 1.612 ~ 1.618. Upper half
of each plot shows the contours for the present method whereas the lower half shows the

corresponding contours for the original non-cut-cell method.
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Figure 14.
26-discontinuity in pressure drag coefficient (ijf;) for (a) different grid spacing and (b) time

step size. Lines are power-law fitting, C° ~ (Ax)* and C20 ~ (1/A1)" (Axg = 1/16, Atg =
0.002)
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2nd-order

Figure 15.

Grid convergence of the present method for moving body problem. The relative error of u
(square symbol) and v (triangle) velocities, and pressure gradient, 6p (diamond) for the flow
around oscillating circular cylinder at t = 0.5T.
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Time histories of drag coefficient for oscillating cylinder at Re = 100, KC = 5. Symbols are
the result of Dutsch et al.[24]. Right: zoomed view of the region inside the box on the left

figure
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Figure 17.
In-line oscillating sphere. Left: Instantaneous velocity vector and stream trace colored by

pressure. Right: Time histories of pressure drag coefficient
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