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Abstract
We present a flexible branching process model for cell population dynamics in synchrony/time-
series experiments used to study important cellular processes. Its formulation is constructive,
based on an accounting of the unique cohorts in the population as they arise and evolve over time,
allowing it to be written in closed form. The model can attribute effects to subsets of the
population, providing flexibility not available using the models historically applied to these
populations. It provides a tool for in silico synchronization of the population and can be used to
deconvolve population-level experimental measurements, such as temporal expression profiles. It
also allows for the direct comparison of assay measurements made from multiple experiments.
The model can be fit either to budding index or DNA content measurements, or both, and is easily
adaptable to new forms of data. The ability to use DNA content data makes the model applicable
to almost any organism. We describe the model and illustrate its utility and flexibility in a study of
cell cycle progression in the yeast Saccharomyces cerevisiae.
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1. Introduction
In this paper we describe a novel branching process model that characterizes the temporal
evolution of population heterogeneity in cell synchrony experiments. These experiments are
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designed to measure the dynamics of fundamental biological processes related to the cell’s
progression through the cell division cycle. Careful characterization of these dynamic
processes requires experiments where quantitative measurements are made over time. In
many cases, accurate measurements cannot be made on single cells because the quantitative
methods lack the sensitivity to detect small numbers of biomolecules. For example, accurate
quantitative measurements of genome-wide transcript levels by microarray require more
mRNA than is physically available within a single cell. Thus, researchers are forced to work
with populations of cells that have been synchronized to a discrete cell cycle state.

Two distinct problems arise in these synchrony/time-series experiments. First, synchronized
populations are never completely synchronous to begin with, and tend to lose synchrony
over time. The lack of perfect synchrony at any given time leads to a convolution of the
measurements that reflects the distribution of cells over different cell cycle states. Second,
multiple synchrony experiments are often needed to measure different aspects of a process,
and it is often desirable to compare the temporal dynamics of these aspects. However,
synchrony/time-series experiments, even in the best of experimental circumstances, exhibit
considerable variability which make time-point to time-point, cross-experiment comparisons
imprecise. Thus, a mechanism is required to accurately align the data collected from each of
the synchrony/time-series experiments. The model we describe addresses both of these
problems.

Most of the numerous models designed to measure cell population dynamics in synchrony/
time-series experiments fall into two related classes: population balance (PB) and branching
process (BP) models. PB models are usually formulated as partial-integro-differential
equations and are often very difficult to work with except under special conditions [Liou,
Srienc and Fredrickson (1997), Sidoli, Mantalaris and Asprey (2004)]. BP models are
stochastic models for population dynamics that have been used to study both the asymptotic
[Alexandersson (2001)] and short term behaviors [Larsson et al. (2008), Orlando et al.
(2007)] of populations; certain BP models have PB analogues [Arino and Kimmel (1993)].
Several models that do not explicitly account for reproduction, and hence are neither PB or
BP models, have also been used to model data from asynchrony experiments [Bar-Joseph et
al. (2004), Lu et al. (2004)].

The most critical distinction between models, however, is in the sources of synchrony loss
the model includes. Most describe synchrony loss as the result of a single parameter,
equivalent to a distribution over division times [Bar-Joseph et al. (2004), Chiorino et al.
(2001), Larsson et al. (2008)]. In contrast, the model we describe here (the CLOCCS model,
in reference to its ability to Characterize Loss of Cell Cycle Synchrony [Orlando et al.
(2007)]) is the only model to account for variability in cell-division time, initial asynchrony
in the starting population and variability due to asymmetric cell division [Chiorino et al.
(2001)], all of which we will show to be important. The CLOCCS model is based on a novel
branching process construction and can be written in closed form. Its formulation is
constructive, based on an accounting of unique cohorts in the population at any given time.
Hence, the model can attribute one-time effects to specific subsets of the population,
demonstrating flexibility not available using the PB and BP models historically applied to
these populations. Further, the model’s construction allows full Bayesian inference without
the use of approximations to the likelihood. The Bayesian approach to inference has the
additional advantage that it sidesteps many of the difficulties encountered by frequentist
inference for BP models [Guttorp (2001)].

In this paper we present a model which can utilize two forms of data that provide
information regarding the cell cycle position of Saccharomyces cerevisiae, baker’s yeast:
DNA content data and budding index data. An overview of the yeast cell cycle and these
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data types can be found in Section 2. While applied here to yeast, the ability to fit DNA
content data, described in Section 3, is a critical advance that allows the CLOCCS model to
be applied to an array of more complex organisms that do not undergo the kinds of
morphological changes that yeast do (e.g., budding) during the cell division cycle. In Section
4 we apply the model to fit budding index and DNA content data from a synchrony/time-
series experiment in yeast. Using these data, we compare the model to a collection of nested
alternative parameterizations with subsets of the novel asynchrony sources removed. We
conclude with a discussion of the model and of the results of this analysis in Section 5.

2. Yeast cell cycle
One organism commonly studied using synchrony/time-series experiments is the common
baker’s yeast, S. cerevisiae, because many features of its cell cycle are well characterized.
Figure 1A depicts the landmark events that can be used to determine the cell cycle state of
individual cells [Gordon and Elliott (1977), Hartwell (1974)]. The first, bud emergence, is a
distinct morphological landmark easily detected by simple light microscopy. It first appears
near the time that a cell transitions from G1 into S phase. Cells become unbudded after the
completion of mitosis (M) when the cell and its bud separate. We refer to the progenitor cell
as the “mother” and what had been the bud as the “daughter.” In S. cerevisiae, this division
is often asymmetric: the mother cell is often larger and progresses more quickly through the
cell cycle than the daughter [Hartwell and Unger (1977)]. Cell cycle position can also be
determined by measuring genomic DNA content of the cell, which increases as cells
progress through the S phase of the cell cycle [Haase and Reed (2002)]. Haploid yeast cells
begin the cell cycle with one copy of genomic DNA (red bar in Figure 1). During the S
phase, DNA is replicated such that, at the completion of the S phase, the cell has two copies
of genomic DNA.

Counts of budded cells and cell-level DNA content are typically measured in independent
samples, drawn at regular time points after the population’s release from synchrony. The
resulting time series of budded cell counts is referred to as a budding index. DNA content is
measured by flow cytometry. Budding index and DNA content data can be used to fit
accurate models of the underlying cell cycle position distributions.

3. Model
The model we describe is comprised of two components: an underlying model for the
population dynamics of the cells in a synchrony/time-series experiment, and independent
sampling models for the budding index and DNA content measurements made on samples
drawn from the population. We refer to the population dynamics model component as
CLOCCS. CLOCCS is a branching process model for position, Pt, of a randomly sampled
cell in a linearized version of the cell cycle (Figure 1B)—which we refer to as a cell cycle
lifeline—given the experimental time, t, at which the cell was sampled. The sampling
models for the budding index and DNA content measurements are conditioned on the
distribution of lifeline position and time. In what follows, we describe the model’s
components in greater detail.

3.1. Model for position given time
The CLOCCS model specifies the distribution of cell positions over an abstract cell cycle
lifeline as a function of time. We define λ to be the amount of time, in minutes, required by
a typical mother cell to undergo one full cell cycle. We divide the lifeline into λ units, thus
the average cell will move one lifeline unit per minute. The advantage of using a lifeline
characterization is that it allows for introduction of one-time effects, such as the recovery
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period following release from synchrony or the delay in cell cycle progression of new
daughter cells.

We model position as having three independent sources of variability: the velocity with
which the cell traverses the cell cycle, the time it spends recovering from the
synchronization procedure, and the additional time spent by a daughter cell as it traverses its
first cell cycle [Hartwell and Unger (1977)]. It is well known that cells in synchrony
experiments progress through the cell cycle with varying speeds. We assume that each cell
moves at a constant velocity along the lifeline, and that this velocity is random, following a
normal distribution. While this is technically inappropriate as velocities must be positive, in
practice it is reasonable: fitted distributions give almost no mass to the negative half line.
We measure velocity, V, in lifeline units per minute; by definition, the mean cell velocity is

1.0. The velocity distribution’s variance, , is unknown.

When released from synchrony, cells spend more time in their first G1 phase than they
spend in G1 during subsequent cell cycles. The added time reflects a period of recovery
from the synchronization process, whose length varies from cell to cell. We term this
recovery period Gr as if it were a distinct cell cycle phase. We model this effect as a random
offset, P0, in the starting position on the lifeline. While this offset should be strictly positive,

we let P0 be distributed  for convenience. Later, we comment further on this
choice. Daughter cells tend to be smaller and require additional time in G1 before they begin
to divide. We term this daughter-specific period of growth Gd and model it by introducing a
fixed offset, δ, to the cell’s lifeline position.

With each wave of division, the population expands in size. If cells in the culture remained
synchronous, the population would branch and double in size every λ minutes after an initial
delay of μ0 minutes. Because they do not, the dynamics of this expansion is more complex:
at any point in time, the population may represent a number of distinct cohorts, each defined
by its lineage. Cohorts are determined by g, their “generation”—the number of daughter
stages in their lineage—and r, their “reproductive instance”—the wave of division that gave
rise to the cohort. Figure 2A depicts the branching dynamics of this process and a snapshot
in time projected onto a common lifeline (Figure 2B). In A, four distinct time periods are
color coded with each cohort distribution labeled with its {g, r} index. At time zero there is
a single cohort, {0, 0}, depicted in black, whose position distribution is located in Gr and
centered at −μ0. As time passes (red), this cohort enters its second cell cycle and spawns a
daughter cohort, labeled {1, 1}, which begins on its own lifeline in Gd. Later (blue), cohort
{0, 0} gives rise at its second reproductive instance to another first generation cohort, {1, 2}.
At the same time, cohort {1, 1} cells are progressing through G2/M. At the last depicted
time point (green), the population is comprised of four distinct cohorts, representing three
generations of cells arising at three distinct reproductive instances. Figure 2B is a plot of the
population at this time point on the common lifeline. The CLOCCS model is a distribution
over position along this common lifeline as a function of time.

In what follows we use a description of the behavior of individual cells as a device for
deriving population level cohort position distributions. Each such distribution is normal with
parameters that depend on the starting position and velocity distributions, time t and the
cohort’s indices g and r. Since cells in the {0, 0} cohort are unaffected by the daughter
specific delay, δ, their positions, Pt, at time t are determined only by their starting positions,
P0, and their velocity, V. For these cells, Pt = P0 + Vt. Hence, p(Pt|Θ, R = 0, G = 0, t) is

normal with mean −μ0 + t and standard deviation . In contrast, cells in cohorts
at generations greater than zero have their position distributions truncated at the beginning
of Gd, −δ on the lifeline, and are set back by g daughter offsets of length δ and r cell cycle
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offsets of length λ. The remaining contributions to such a cell’s position are the velocity by
time contributions of each of its ancestors and the initial position of its ancestor in cohort {0,
0}. For simplicity, we assume that daughter cells inherit their mother cell’s velocity. With
this, the velocity by time contribution to position simplifies to Vt, where V is the common
velocity and t is total time since population release. For these cells, Pt = P0 + Vt − gδ − rλ,
hence, position, p(Pt|Θ, G ≥ 0, R ≥ G, t), is normal with mean −μ0 + t − gδ − rλ and

standard deviation  truncated so that Pt ≥ −δ.

Thus, we write the model for position, Pt, given time, t, in closed form by enumerating the
population’s cohorts using the latent variables r and g. In particular,

(1)

where  and where the sum is over possible cohorts, = {{g, r} : (g = 0 ∧ r
= 0) ∨ (0 < g ≤ r ≤ R)}. While the number of cohorts represented in the population could
theoretically be large, in practice, their number is limited by the number of cell cycles that
cohort {0, 0} is able to undergo during the experimental period. In most cases, synchrony
experiments are terminated after 2 or 3 cycles, so choosing R = 4, 5 or 6 is usually sufficient.
For notational clarity, we use C to represent the sufficient number of cell cycles examined.

The marginal probability of drawing a representative of cohort {g, r} from the population at
time t is p(g, r|Θ, t). For example, in the scenario depicted in Figure 2B, p(1, 1|Θ, t) is the
ratio of the mass under the cohort {1, 1} density to the total mass under all of the cohort
densities present on the lifeline. The mass under the cohort {1, 1} density is the probability
that a randomly drawn member of the {0, 0} cohort has completed its first cell cycle and
contributed a daughter cell to cohort {1, 1}. This probability is equal to

. The mass under the cohort {2, 2} density is the probability that a
randomly drawn member of the {1, 1} cohort has finished its first cell cycle; this, in turn, is
the probability that a randomly chosen member of the {0, 0} cohort has traveled δ units into
its third cell cycle. The δ appears because the {1, 1} cohort’s progress through its first cell
cycle is δ units longer than the {0, 0} cohort’s progress through its second cell cycle. In this
way, the relative contribution of any cohort in the population can be determined by
calculating the probability that the position of a randomly drawn member of the {0, 0}
cohort is past a threshold position that is a function of g and r. Let MΘ(g, r, t) denote the
mass under cohort {g, r}’s position distribution at time t,

where Φ(·) denotes the standard normal CDF. The combinatoric term arises from that fact
that, for r ≥ g ≥ 1, multiple lineages may contribute members to a given cohort. For example,
cohort {1, 1} will contribute to cohort {2, 3} as its members pass the point 2λ on its lifeline
(rightmost point on the third branch from top in Figure 2A), while cohort {1, 2} will
contribute to the same cohort, {2, 3}, as its members pass the point λ on its lifeline
(rightmost point on the second branch from top in Figure 2A). Finally, let QΘ(t) denote the
mass under all cohort distributions in the population at that time,
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In general, p(g, r|Θ, t) = MΘ(g, r, t)/QΘ(t).

3.2. Sampling models
To utilize the CLOCCS model, it is necessary to relate distributions over the artificial cell
cycle lifeline to observable cell features. In the next two sections we present two sampling
models which allow CLOCCS to utilize commonly collected landmark data, namely
budding index and DNA content data. While time series of budding index and DNA content
data are each sufficient to estimate the CLOCCS parameters, Θ, they provide
complementary information on the cell cycle timing of distinct landmark events. Timing of
these events is of independent interest, and estimates of the same may improve the utility of
the model as a tool for deconvolution of transcription data and other types of downstream
analysis.

3.3. Sampling model for budding index data
Presence or absence of a bud is an easily measured landmark tied to a cell’s progression
through the cell cycle (see Figure 1). Buds emerge and become detectable near the transition
between G1 and S phases, at a fraction β of the way through the normal cell cycle and split
off as daughter cells at cell cycle completion (Figure 3, dashed line).

Assume that budding index samples are drawn at T time points, ti, i = 1, …, T, and that ni
cells are counted at time ti. Let bji = 1 if the jth cell at time ti is budded and bji = 0 otherwise.
The event that bji = 1 implies that the position of the jth cell at time ti, Pji, falls into the
lifeline interval ((c + β)λ, (c + 1)λ] for some cell cycle c ≥ 0; the probability of this is
dictated by the CLOCCS model.

Following the development of Section 3.1, we calculate p(bji = 1|β, Θ, ti) by introducing
cohorts and marginalizing over them. In particular, let

where p(bji = 1|β, Θ, g, r, ti) is the probability that a cell randomly sampled from cohort {g,
r} is budded at time ti. For the progenitor cohort, {0, 0},

while, for subsequent cohorts, 0 < g ≤ r,
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We model bud presence as a Bernoulli random variable with success probability p(bji = 1|β,
Θ, ti) and assume that samples drawn at the various time periods are independent conditional
on the CLOCCS model.

3.4. Sampling model for DNA content data
DNA content data measured by flow cytometry provides an ordinal measurement of the
DNA content of each cell in a sample: each cell appears in one of 1024 ordered channels on
the basis of its fluorescence, which is proportional to its DNA content [Pierrez and Ronot
(1992)]. In practice, channel number is often log2 transformed and treated as a continuous
measurement.

Adapting the CLOCCS model to DNA content data requires that we annotate the lifeline
with the positions, measured as fraction of cell cycle length, at which S phase begins and
ends. We denote these locations γ1 and γ2, respectively. As the population loses synchrony,
the distribution of cells over channels will typically be bimodal, with one mode
corresponding to cells in G1 (centered at α1), and the another corresponding to G2/M
(centered at α1 + α2). Cells transiting the S phase will fall between these points in
expectation. Further, we assume that DNA content increases linearly over the course of the
S phase. In particular, the expected DNA content of a cell is

(2)

where . The black line in Figure 3 is a
plot of this curve.

Measurement of DNA content by flow cytometry is imprecise. Machine noise, variation in
the cell’s orientation to the laser beam and variation in the performance of the fluorescent
stain each contribute to measurement error [Pierrez and Ronot (1992)]. Hence, a flow
cytometry measurement made on a sample of cells drawn at a particular time point will be a
sample from the convolution of a noise distribution and the CLOCCS position distribution.
In particular,

(3)
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where fji denotes the log fluorescence intensity of cell j at time ti and where Ψ denotes the
vector of parameters in the model for fji not in Θ. From above it follows that p(fji|Pt, Ψ, Θ, t)

can be modeled as a normal with mean given in equation (2) and variance . The log
normal distribution is a common choice in this setting [Gray and Dean (1980)].
Additionally, the noise characteristics of the flow cytometer typically vary from one sample
to the next, causing the locations of the G1 and G2/M modes, as well as the level of machine
noise (τ) to vary. Hence, we allow the parameters of the DNA content sampling distribution,
p(fji|Pt, Ψ, Θ, t), to vary across time periods.

Note that equation (3) can be written as

where

is a convolution of two normals, one of which is truncated.

Let lgr denote the left limit to the support of cohort {g, r}’s position distribution, where lgr =
−∞ if g = r = 0 and lgr = −δ otherwise. Further, let Ggrt(x) denote the normal cumulative

distribution function with mean −μ0 + t − r · λ − g · δ and variance  evaluated at x
and let Scgrt(x) denote the normal cumulative distribution function with mean

and variance

evaluated at x. It can be shown that , where
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and where ϕ(·) is the standard normal density function. In the equation above, the first line
of the right-hand side corresponds to cells in G1, the second to cells in G2 or M, and the
third to cells in S.

We assume that cell-level DNA content measurements are conditionally independent within
and between samples drawn at the various time periods conditional on the CLOCCS model,
Ψ and the sampling times. DNA content and budding index measurements are made on
separate samples drawn from a population’s culture, sometimes at the same points in time,
sometimes not. Because they are distinct samples, we model the DNA content and budding
index data as conditionally independent given the CLOCCS parameters Θ, the budding
parameter β, the DNA content parameters Ψ and sampling times.

3.5. Prior distribution
What follows is a description of, and justification for, the prior choices used in our analysis.
Columns 2 and 3 of Table 1 tabulate prior expected values and 95% equal-tailed intervals
for each parameter as implied by these choices.

Lord and Wheals (1983) estimate S. cerevisiae cell cycle length in culture at 30 degrees
Centigrade—the temperature employed by our lab—to be 78.2 minutes with a standard
deviation of 9.1 minutes. To allow for differences in experimental protocol, we place a
normal, mean 78.2, standard deviation 18.2 prior on cell cycle length, λ. In S. cerevisiae,
duration of the S phase, (γ2 − γ1)λ, is about one quarter of the cell cycle; it begins a short
time before buds can be visually detected and continues until mother and daughter cells
separate [Vanoni, Vai and Frascotti (1984)]. Based on an analysis of 30 DNA content
measurements made on an asynchronous population conducted using the same protocol as
used in the synchrony experiment described in the next section, we estimate that γ1 is
approximately 0.1 and that β is approximately 0.12. Hence, we expect γ1 < β < γ2. With
this in mind, we let γ1 ~ Beta(2, 18), β ~ Beta(2.4, 17.6) and γ2 ~ Beta(7, 13), constrained
as above. Bar-Joseph et al. (2004) estimates the standard deviation of the velocity
distribution in S. cerevisiae to be 0.09 and observed a range of values 0.07 to 0.11 across 3
experiments. For this reason, we place an independent inverse-gamma(12, 1) prior
distribution on συ.
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Aspects of experimental protocol, most notably the method used to synchronize the
population, have a strong influence on the parameters of the starting position distribution
and on duration of the daughter-specific offset, δ. Centrifugal elutriation, the method used in
the experiment we describe in the next section, selects for small unbudded cells, while other
methods, such as α-factor arrest, do not. Because of their size, elutriated cells tend to spend
more time in Gr and their daughters spend more time in Gd than their counterparts in α-
factor experiments [Hartwell and Unger (1977)]. We have chosen to specify our prior
distributions on these parameters to accommodate—not condition on—this source of
protocol dependent uncertainty. In particular, we place an inverse-gamma distribution with
shape parameter 2 and mean 78.2/3 on σ0 and the minimally informative exponential, mean
78.2 prior distribution on μ0. The former reflects our belief that almost all cells will be in Gr
at release; the latter places highest prior likelihood on a short Gr, as is expected in an α-
factor experiment, but allows for the longer Gr that is expected in elutriation experiments.
Similar reasoning was behind our choice of an exponential mean 55 prior distribution on δ:
in α-factor experiments, δ can be very brief, while in elutriation experiments it can exceed
40% of the length of a typical cell cycle [Hartwell and Unger (1977), Lord and Wheals
(1983)].

In the DNA content distributions, flow cytometer fluorescence noise, as measured by τi, and
location of the G1 and G2/M modes, as measured by α1i and α2i respectively, vary
randomly from assay to assay over time. We model this variability hierarchically: first
placing independent normal prior distributions on log(τi), α1i, and α2i, i = 1, …, T, followed
by independent conjugate normal-inverse-chi-square hyperprior distributions on the
parameters of the normal distributions. The latter are parametrized as in Gelman et al.
(1995). In particular,

where Inv-χ2(ν, γ2) denotes the scaled inverse χ2 distribution with ν degrees of freedom
and scale parameter γ. Given this specification, we define

We chose the hyperparameters of the above hierarchical model on the basis of an
exploratory analysis of the same asynchronous DNA content data used above. We set ηα1 =
7.58, ηα2 = 0.82 and ητ = −1.91, the average of the observed estimates of α1, α2 and τ,
respectively. We set each of the prior sample size parameters, κτ, κα1 and κα2, and each of
the prior degrees of freedom parameters, ντ, να1 and να2, equal to 2 to keep these margins
of the prior distribution relatively diffuse. Finally, we set

—in each case 16 times the observed variance in the
asynchronous experiment.
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4. Analysis
In what follows, we utilize the model to analyze budding index and DNA content data from
a cell cycle synchrony experiment in S. cerevisiae using cells synchronized by centrifugal
elutration and cultured at 30°C. Details of the strain and growth conditions used can be
found in Orlando et al. (2007). After synchronization, 32 samples were collected at 8 minute
intervals starting 30 minutes after release. Two aliquots were taken from each sample, one
for each type of measurement. Budding index was measured by microscopically assessing at
least 200 cells for the presence of a bud and recording the number of budded and unbudded
cells observed. The relative DNA content of 10,000 cells in each sample was measured by
flow cytometry as described previously [Haase and Reed (2002)]. The observed
fluorescence values for each measured cell in each sample were log2 transformed prior to
analysis. The DNA content measurement of the 38 minute sample was not available due to a
technical problem encountered during preparation of that sample.

We compare parameter estimates given both the budding index and DNA content data,
given the DNA content data alone and given the budding index data alone. In addition, using
only the budding index data, we estimate Bayes factors for the full CLOCCS model to
submodels obtained by systematically removing each novel source of asynchrony, δ, μ0 and
σ0 separately and in combination.

4.1. Estimates given the experimental data
We use a random walk Metropolis [Gilks, Richardson and Spiegelhalter (1996), Metropolis
et al. (1953)] algorithm for each model fit. In each case, the algorithm was tuned to mix well
and the chain was given a lengthy burn-in period. Subsequent to this, we ran the chain for
400,000 iterations and saved every fourth for inference. Plots of sampled values appear
stationary, and the Raftery and Lewis diagnostic [Raftery and Lewis (1996)], implemented
in the R package CODA, indicates that the sample is sufficient to estimate the 0.025th
quantile of any marginal posterior to within 0.01 with probability 0.95. All coefficients and
associated interval estimates are based on summary statistics of marginal sample
distributions. We tested our implementation of the model and the Markov chain Monte
Carlo sampler by analyzing simulated data sets. Parameter estimates derived from these
analyses were consistent with their true values.

Table 1 provides marginal summaries of the prior (columns 1 and 2) and of the posterior
distributions after fitting the model to both the DNA content and budding index data
(columns 3 and 4), to the DNA content data only (columns 5 and 6) and to the budding
index data only (columns 7 and 8). Note that point and interval estimates of common
parameters derived using both the budding index and DNA content data are very close to
their counterparts fit only to the DNA content data. This is not surprising given the
information rich nature of the DNA content data: at each time period approximately 10,000
cells are assayed for DNA content, while only approximately 200 are assayed for presence
of a bud. On average, point estimates of the common parameters differ by less than 1% and
the associated posterior interval estimates are only about 2% narrower when the budding
index data is added. The parameter β can only be estimated with budding index data, but it is
estimated more accurately when DNA content data is included, owing to the fact that it is
constrained by γ1 and γ2.

Figure 4A is a plot of the observed budding index curve (black) overlayed with 95%
pointwise interval estimates from the analysis of only the budding index data (green) and of
both the budding index and DNA content data (red). The latter analysis estimates the
recovery period (Gr) to be slightly shorter and more variable and estimates cell cycle length
to be longer and less variable than estimated with the budding index data alone. This is
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evident in the red confidence bands positioned to the left of the green between 70 and 100
minutes and to the right of the green between 190 and 225 minutes experimental time. Note
that both curves increase more smoothly and sooner than the observed budding index
following recovery from synchronization. This is likely due to our choice of the normal
distribution to characterize time spent in Gr. It appears that a left skewed distribution may
give a better fit to this feature in the data.

Figures 4B–F plot observed DNA content densities (gray) and their posterior mean estimates
(red) at five experimental time points selected to highlight the population’s transition from
G1 (B) through the S phase to G2/M (C and D) and the effect of its growing asynchrony (E
and F). The corresponding time points are identified by labels on the budding index curve
Figure 4A. The observed DNA content densities are discrete and unsmoothed. They are
calculated by normalizing the raw DNA content channel counts and transforming them, via
the change of variables formula, to the log2 scale. The estimates are extremely good: in all
cases, the G1 and G2/M modes are accurately scaled and located and capture the shape of
the distributions between the modes, suggesting that the model is accurately accounting for
the cells transiting the S phase.

4.2. Model evaluation
In what follows, we estimate Bayes factors (BFs) [Kass and Raftery (1995)] for a series of
pairs of models nested under the fully parametrized CLOCCS model using importance
sampling. These quantities allow us to measure the weight of evidence in the budding index
data in favor of alternate parametrizations of the model, including variants that drop the
daughter offset and/or one or both parameters of the starting position distribution. The
hierarchy of models we examine is not complete but accounts for all reasonable alternatives

to the full model. The simplest model, where we set μ0 = 0,  and δ = 0, corresponds to
a branching process version of the Bar-Joseph et al. (2004) model. We employed a separate
sampler to estimate each marginal likelihood and used 100 degrees-of-freedom multivariate
t densities as the importance densities, each with mean and covariance matrix matching that
estimated from a Markov chain Monte Carlo analysis of the associated model. For purposes
of this calculation, we used only the budding index data to inform the model and drew
10,000 importance samples for each calculation. The variance of the normalized weights
was less than 1.45 in all cases. Hence, the effective sample size [Liu (2001)] for estimating
the marginal likelihood was never smaller than 4000.

Table 2 reports estimates of loge Bayes factors (lBFs) for various nested model comparisons
given the budding index data. In these tables, the model indexed by an entry’s column is the
larger of the models and is represented in the numerator of the lBFs in that column; the
model indexed by an entry’s row is the smaller of the two. As a guide to interpreting these
numbers, Kass and Raftery (1995) classify lBFs between 0 and 1 as “not worth more than a
bare mention,” those from 1 to 3 “positive,” those from 3 to 5 “strong” and those greater
than 5 “very strong.” Using this scale as a guide, the full CLOCCS model is very strongly
preferred to all alternatives, including the model of Bar-Joseph et al. (2004). The worst
alternative sets only μ0 = 0. When μ0 is constrained to be zero, better fits to the data are

achieved by setting one or the other, or preferably both, of δ and  to zero.

Figure 5 depicts posterior mean fits to the budding index data under each of the competing
models. We estimated the posterior means using the MCMC output that was used to
determine the importance distributions. Each MCMC analysis followed the same procedure,
described in Section 4.1, used for the primary analyses. Note that the fits achieved by all
model variants that set μ0 = 0 are visually indistinguishable and markedly inferior to any
variant that allows μ0 > 0. The last two rows of Table 2 provide estimates of the root mean
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squared error (RMSE) of the fits to the budding index data achieved by each model’s
posterior mean curve. These estimates reinforce what is evident from the marginal
likelihood and graphical analyses, namely, that models that do not allow for a nonzero
location in the distribution of initial cell position are markedly inferior to those that do and
that accounting for a mother/daughter offset is particularly important, at least in the case
where the cell population was arrested using centrifugal elutriation. Finally, these results
demonstrate that the extremely good fits depicted in Figure 4 are the result of a
parsimoniously parametrized model and not due to over-fitting.

5. Discussion
Synchrony/time-series experiments on populations of cells are essential for understanding
the dynamic processes associated with the cell cycle. In this paper we have described the
CLOCCS model, sampling models for fitting this model to both budding index and DNA
content data, and a detailed model evaluation. We have demonstrated that accurate model
fits can be obtained using budding index, DNA content data or both. While previous models
only account for one source of asynchrony, namely, variation cell cycle length [Bar-Joseph
et al. (2004), Chiorino et al. (2001), Larsson et al. (2008), Liou, Srienc and Fredrickson
(1997)], the CLOCCS model adds two novel sources of asynchrony. These are variation in
initial synchrony and variation due to asymmetric cell division. In Section 4.2 we showed
that the CLOCCS model is very strongly preferred to all nested alternatives, including a
branching process version of the model of Bar-Joseph et al. (2004).

The more accurate description of population dynamics achieved by the CLOCCS model will
allow more accurate deconvolution of dynamic measurements such as transcript abundance.
Additionally, because the model maps time-series data onto a common cell cycle lifeline,
different data types (e.g., mRNA levels, protein levels, protein localization, etc.) from
multiple synchrony/time-series experiments can be aligned such that the dynamics of
multiple events can be temporally compared. Furthermore, DNA content measurements are
commonly used to measure cell cycle position in organisms from yeast to mammals. Thus,
the model permits the alignment and comparison of dynamics of cell cycle events across
species, potentially providing an accurate view of evolutionary changes in cell cycle
progression and regulation.

The model’s parameter estimates are also interpretable in terms of biological quantities
associated with the cell cycle, so their estimates are of independent interest. For example,
the measure of initial synchrony, σ0, can be used to tune synchrony protocols for optimal
results. When using budding index data, λ and β allow researchers to map temporal events
to pre- or post-G1 cell cycle phases. When DNA content data is used, this resolution is
increased and events can be placed accurately into the G1, S or G2/M phases of the cell
cycle.

The CLOCCS model is unique, to our knowledge, for providing a closed form expression
for the likelihood function in a complex branching process. This expression is written by
enumerating and then marginalizing over the distinct cohorts present in the population at a
given time. The explicit accounting of cohorts allows for extensions of the model that
introduce cohort dependent effects such as one-time events and effects, such as the mother–
daughter offset, that may diminish with generation. The approach we describe is very
general and has the potential to provide a flexible and efficient alternative in a range of
problems where population balance or branching process models are used to describe the
short term dynamics of a branching population.
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While CLOCCS is better than its nested alternatives, the model can be improved to better fit
experimental data and to better reflect biological reality. First, our data suggest that a left
skewed distribution with finite support may be more realistic a choice for the initial position.
Second, while our data do not contradict a linear accumulation of DNA during the S phase,
others have suggested alternative parametrizations [Larsson et al. (2008), Niemistö et al.
(2007)]. We are currently exploring a flexibly parametrized S phase function that will allow
inference on its functional form and, by doing so, address a question of fundamental interest
to the greater biological community. Third, we plan to generalize the model to allow for an
unspecified correlation between mother and daughter cell velocities; this parameter is
currently set to one. Finally, we assume that the delay due to asymmetric cell division (δ) is
constant over time. Evidence exists, however, that the magnitude of this effect may change
as the experiment progresses. This issue can be addressed with a suitably parametrized
cohort-specific delay term, although the duration of a typical time-course experiment may
limit power to detect this effect.

The strength of the CLOCCS modeling framework lies in its flexibility. It is adaptable to
new experimental measurements, and given its ability to use DNA content data, is already
applicable to virtually all biological systems where synchronized populations are studied,
most notably human cell-culture systems. Further integration of the model with
deconvolution and alignment algorithms will provide researchers with a powerful new tool
to aid in the study of dynamic processes during the cell division cycle. Software
implementing the CLOCCS model can be found at http://www.cs.duke.edu/~amink/
software/cloccs.
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FIG. 1.
Over the course of its life, the cell repeatedly traverses the cell cycle, which is divided by
landmark events associated with asexual reproduction into the G1, S and G2/M phases. In
the figure, this corresponds to the cell in light gray traveling around the circle in A or from
left to right in B. At each completion of G2/M it spawns a daughter cell. This process begins
with development of a bud (dark gray) and the start of DNA replication (denoted by the
appearance of a second red bar) and is completed when the daughter cell (dark gray)
separates from the mother cell at the end of G2/M with a full complement of DNA.

Orlando et al. Page 16

Ann Appl Stat. Author manuscript; available in PMC 2011 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 2.
Graphical representation of the branching dynamics of the cell population, A, and a snapshot
in time plotted on a common lifeline, B. A: The position distributions of the cohorts,
indexed by {g, r}, in the population at four points in time, each color-coded. Black: at
release from synchrony, there is a single cohort, {0, 0}. Red: as it enters its second cell
cycle, {0, 0} spawns a daughter cohort, {1, 1}, located on its own lifeline in Gd. Blue: at
cohort {0, 0}’s second reproductive instance, it gives rise to another first generation cohort,
{1, 2}; meanwhile, most cells in cohort {1, 1} are progressing through G2/M. Green: the
population is comprised of four distinct cohorts; B: a plot of the population at this time point
on a common lifeline.
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FIG. 3.
Plot of expected flow cytometry channel for a cell given its lifeline position in units of λ
(black curve, left vertical axis). An indicator function for the cell’s budding status is also
plotted (grey dashed curve, right vertical axis).
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FIG. 4.
Estimated budding and DNA content curves accurately reflect complex, biologically
relevant patterns in the data. A: plot of observed budding index curve (black) and 95%
pointwise interval estimates from budding index only analysis (green) and budding index/
DNA content analysis (red). B–F: DNA content densities (gray) and their posterior mean
estimates (red) at five points in time, highlighting the population’s transition from G1 (B)
through the S phase to G2/M (C and D) and the effect of its growing asynchrony (E and F).
The corresponding time points are labeled above the budding index curve. In all cases, the
G1 and G2/M modes are accurately scaled and located, as is the shape of the distributions
between the modes.
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FIG. 5.
Plot of observed budding index curve (black) and posterior mean fitted curves under each of
the competing models for the budding index data. The full model is plotted in red; the
competing models are obtained by constraining the parameter(s) indicated in the figure
legend to be zero. Quantitative summaries of these fits can be found in Table 2.
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