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FRAILTY is a late-life syndrome of vulnerability to 
adverse health outcomes and mortality that is character-

ized by muscle weakness, weight loss, and fatigue (1,2). 
The biological basis of frailty is unknown, but data from 
population studies of community-dwelling older adults 
demonstrate strong associations between frailty and serum 
inflammatory mediators, such as interleukin-6, C-reactive 
protein, and white blood cell count, and between frailty and 
hormones important in muscle mass maintenance, including 
IGF-1, DHEA-S, and cortisol (3–5). Although studies show 
that skeletal muscle strength and inflammatory pathway ac-
tivation are heritable traits (6,7), few studies have evaluated 
the genetic risk for frailty. Additionally, evidence for nonlin-
ear effects of multisystem dysregulation underlying the vul-
nerability and phenotype of frailty has led to a search for 

potential factors that might initiate dysregulation in multiple 
systems (8). Processes that span multiple physiological 
systems and tissues including apoptosis, cellular senescence, 
and cellular homeostasis are increasingly being implicated 
in a number of frailty- and aging-related phenotypes (9,10). 
Given this biological plausibility, we initiated this study to 
explore the influence of candidate genetic variants on frailty.

Methods

Population
Previously collected DNA and clinical information re-

garding frailty from the Women’s Health and Aging Studies 
(WHAS) I and II were utilized for this investigation (11,12). 
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WHAS was designed to study the natural history and evolu-
tion of disability in a representative community-dwelling 
population of older women from the Baltimore, Maryland 
metropolitan area. The design of these studies and their 
combination into a single data set have been previously  
described (1,2,13). Frailty was measured using a previously 
validated 5-point scale that includes measurements of grip 
strength, walking speed, weight loss, fatigue, and physical 
activity questions (1,12). Women were evaluated at baseline 
for the following frailty measures: (a) shrinking, defined as 
either body mass index less than 18.5 kg/m2 or greater than 
10% loss of body weight since age 60; (b) weakness, de-
fined as the lowest quintile of grip strength of the dominant 
hand assessed with a hand-held JAMAR dynamometer 
(model BK-7498; Fred Sammons Inc, Burr Ridge, IL); (c) 
poor endurance and energy, defined as self-report of being 
either more tired or weaker than usual in the past 30 days; (d) 
slowness, defined as the lowest quintile in time to complete a 
4-m walk; and (e) low activity level, defined by the lowest 
quintile of self-report of weekly activity determined by a sub-
set of questions from the Minnesota Leisure Activity Ques-
tionnaire. Those who met three of five criteria were considered 
frail, those that met one or two were considered prefrail, and 
those with none were considered robust or not frail. Three 
hundred and forty-nine Caucasian women aged 70–79 years 
from the combined baseline WHAS I and II populations who 
had genomic DNA available and provided consent for genetic 
studies were included in the current cross-sectional study.

Candidate Gene Selection and Genotyping
A broad set of candidate genes was initially selected 

based on roles in the physiological systems most likely to 
influence frailty, namely skeletal muscle and inflammation. 
These genes were entered into a manually curated protein 
interaction database, Human Protein Reference Database 
(14). Proteins that represented important interaction points 
between the endophenotypic pathways were identified and 
added to the candidate list if greater than three interactions 
per seed protein were identified. A total of 134 genes were 
selected to move forward for single-nucleotide polymorphism 
(SNP) analysis. An initial list of SNP markers in each gene or 
within 10 kb flanking either side of the candidate genes was 
created from two sources, (a) all HapMap Phase 1–genotyped 
SNPs (public release #16) and (b) heterozygous validated 
SNPs from the dbSNP database (Human Genome Build 33), 
dbSNP Build 116). SNP selection occurred prior to the emer-
gence of common SNP tagging tools and was thus carried out 
based on custom criteria and programming at the time as fol-
lows: SNP inclusion in this study was prioritized based on 
minor allele frequency (MAF > 0.05), Illumina design scores 
(>0.6), and coverage based on pairwise linkage disequilib-
rium estimates (LD) (D’ > 0.8) using the solid spine of LD 
definition in Haploview (15). SNP spacing was no more than 
20 kb within LD blocks and no more than 5 kb outside LD 

Table 1.  Descriptive Statistics for 349 Women’s Health and Aging 
Studies I and II Women

Mean age, y 74.2
Number
  Nonfrail, n (%) 32 (9.2)
  Prefrail, n (%) 165 (47.3)
  Frail, n (%) 152 (43.6)
Weakness, n (%) 77 (22.6)
Slowness, n (%) 98 (28.2)
Weight loss, n (%) 38 (11.1)
Fatigue, n (%) 54 (15.5)
Low physical activity, n (%) 65 (18.9)

blocks. Lastly, all available coding SNPs were included for 
each candidate gene. Tag SNPs were selected using HapMap 
CEU data to achieve the best possible coverage. Genotyping 
was performed on the Illumina custom GoldenGate 1536 
SNP panel (Illumina, Inc., Foster City, CA).

Statistical Analyses
To determine the strength of association between each 

SNP marker and three-level frailty phenotype, an additive ge-
netic model was assumed and multinomial logistic regression 
analyses adjusting for age were performed. A likelihood ratio 
test was implemented comparing the model with SNP geno-
type as a covariate (full model) to the model without SNP 
genotype (reduced model). To adjust for multiple comparisons, 
we controlled the family-wise false-discovery rate at 0.05 (16).

To determine whether frailty SNP associations were related 
to particular frailty components versus the syndrome itself, we 
also performed logistic regression analyses using each of the 
five binary components of frailty as the outcome variable in 
separate analyses while adjusting for age. The likelihood ratio 
test was used to compare the full model with the reduced model 
for each of the five components. We sought to identify variants 
that were common to all five components of frailty, assuming 
there are common underlying genetic pathways that con-
tribute to frailty physiology. For each SNP, we used Fisher’s  
method (17) to combine the p values obtained from logistic 
regression using the five components of frailty as outcomes 
and obtained the p value for the combined test statistic.

Results
Descriptive statistics for the 349 women genotyped are 

shown in Table 1. There are less than 2.3% of missing 
values occurred in the five components measurements and 
were treated as zero. After removal of 43 SNPs due to 
MAF < 0.01 in our sample and 23 SNPs due to deviation 
from Hardy–Weinberg equilibrium (p < .01), 1,354 SNPs 
remained for analysis. The average fraction of SNPs 
tagged per gene compared with Phase I HapMap data at r2 
> .8 was 67% (range from 17% to 100%). The top 20 
SNPs by strength of association with frailty are given in 
Table 2. Genes represented in this list include methionine 
synthase (MTR), Caspase 8 (CASP8), fibronectin (FN1), 



 GENES AND FRAILTY 977

CREB-binding protein (CREBBP), glutathione transfer-
ase zeta 1 (GSTZ1), lysine acetyltransferase 2B (KAT2B), 
T-cell lymphoma invasion and metastasis 1 (TIAM1), sig-
nal transducer and activator of transcription 1 (STAT1), 
transcobalamin II (TCN2), beta-transducin repeat contain-
ing (BTRC), and vitronectin (VTN).

In the MTR gene, 6 SNP markers are reported among top 
20 SNPs, among these, rs10925235, rs2297967, and 
rs10802569 might represent the same signal due to LD (|r2| 
> 0.98). Similarly, among the four SNP markers within the 
CASP8 gene, rs3769827, and rs6747918 might represent 
the same signal due to LD (|r2| > 0.99). After adjusting for 
multiple comparisons using family-wise false-discovery 
rate at 0.05, none of these SNPs passed the study-wide 
significance level for association with frailty.

Associations between the 20 SNPs most associated with 
frailty and each of the five frailty components are shown in 
the heat map presented in Figure 1. These results illustrate 
that there is no single frailty component driving the genetic 
signals observed among each of the top 20 frailty SNP asso-
ciations; indeed, when we combine the p values from each 
individual component, stronger genetic signals appear for 
most of these SNPs (Figure 1, column 2). In addition, the 
top ranking genetic signals from combined p values are 
consistent with the top association rankings for frailty and 
high correlation between the p values for frailty and for 
five-component combined p values is observed. As shown 
in the scatter plot (Figure 2), the correlation (r) for the two 
−log10 p values is .65 for the SNP markers that are highly 
associated with frailty (p value < .01). For the weaker SNP 

signals (p value > .1), we did not observe this consistency as 
the correlation decreases to .34. Although it seems that ex-
haustion status contributes the most significant signal to the 
combined p value, the same conclusion can be observed 
when we removed the p value of exhaustion status when 
pooling the p values (Supplementary Figure 1).

Discussion
In this study, we present genetic data from an exploratory 

candidate gene study in community-dwelling older women. 
Although the associations do not reach statistical signifi-
cance after adjustment for multiple comparisons, the results 
support and are consistent with theory and phenotypic evi-
dence that frailty is a clinical syndrome. It provides addi-
tional genetic support for the clinical theory and evidence 
reported in the literature that frailty is a syndrome which is 
a combination of these five components as a group and not 
driven by any one single component (1,2,18).

The syndromic aspects of frailty are supported by obser-
vations of association across multiple components and the 
consistent suggestive significant p values when the five 
frailty component p values are pooled together for the most 
frailty-associated SNPs. This is similar to other frailty-related 
evaluations where aggregate analyses are far more corre-
lated with adverse outcomes than any single measure (2).

These findings also provide preliminary corroborative in-
formation on biological pathways that may be operant in 
frailty. Of the 134 candidate genes and 1,354 SNPS studied 
in this analysis, 11 genes were represented with the most 

Table 2.  Top 20 SNPs Associated With Frailty

Gene (total SNPs genotyped) SNP Marker MAF Odds Ratio (95% CI) LRT, p Value

MTR (19) rs10925235* 0.36 (A) 1.78 (0.97–3.27) .0011
rs2297967* 0.36 (A) 1.89 (1.03–3.49) .0015
rs10802569* 0.37 (G) 0.56 (0.31–1.03) .0024
rs4659725 0.36 (C) 1.89 (1.03–3.47) .0014
rs1770449 0.36 (G) 0.52 (0.29–0.97) .0015
rs1050993 0.36 (A) 1.73 (0.96–3.15) .0027

CASP8 (14) rs3769827* 0.46 (G) 1.63 (0.94–2.81) .0014
rs6747918* 0.49 (G) 0.79 (0.46–1.36) .0032
rs2037815 0.50 (G) 0.77 (0.45–1.33) .0037
rs6745051* 0.50 (C) 1.31 (0.76–2.25) .0058

FN1 (15)* rs7567647 0.25 (A) 4.20 (1.69–10.39) .0016
CREBBP (17) rs129968 0.35 (A) 2.98 (1.48–5.99) .0038
GSTZ1 (7) rs2287396 0.18 (A) 0.49 (0.25–0.97) .0046
KAT2B (22) rs2929408 0.17 (A) 0.47 (0.23–0.93) .0079
TIAM1 (107) rs2833383 0.23 (A) 0.87 (0.47–1.60) .0088
STAT1 (10) rs1400657 0.11 (C) 3.01 (1.44–6.29) .0089
TCN2 (10) rs740234 0.20 (G) 0.36 (0.14–0.94) .0100
BTRC (33) rs10883642 0.46 (A) 0.48 (0.27–0.85) .012
FN1 (15) rs10883631 0.46 (A) 0.49 (0.28–0.86) .014
VTN (3) rs2227729 0.07 (G) 2.38 (1.13–5.01) .013

Notes: BTRC = beta-transducin repeat containing; CASP8 = Caspase 8; CREBBP = CREB-binding protein; CI = confidence interval; FN1 = fibronectin; GSTZ1 
= glutathione transferase zeta 1; KAT2B = lysine acetyltransferase 2B; LRT = likelihood ratio test; MAF = minor allele frequency; MTR = 5-methyltetrahydrofolate-
homocysteine methyltransferase; SNPs = single-nucleotide polymorphisms; STAT1 = signal transducer and activator of transcription 1; TCN2 = Transcobalamin II; 
TIAM1 = T-cell lymphoma invasion and metastasis 1; VTN = vitronectin.

* SNPs that likely represent the same signal within a gene due to linkage disequilibrium (r2 > .98).
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strongly associated 20 SNPs. Of these genes, many are in-
volved in apoptotic and transcription regulation pathways 
rather than inflammation per se. For example, Caspase 8 is 
a crucial protein that facilitates the later stages of apoptosis 
at the level of mitochondria (19). CREBBP plays important 
roles in homeostasis by coupling chromatin remodeling to 
transcription factor recognition and also acts as a scaffold to 
stabilize additional protein interactions related to inflamma-
tion, apoptosis, and many other transcription complexes 
(20). KAT2B is thought to regulate the balance between cell 
cycle arrest and apoptosis in hypoxia by modulating the ac-
tivity and protein stability of both p53 and HIF-1alpha (21). 
Methionine synthase (MTR) facilitates the remethylation of 
homocysteine to methionine; reduced MTR activity has 
been associated with hypomethylation and increased DNA 
damage (22).

Given that this was a candidate gene study and that only 
genes that had strong rationale were included in the list, the 
top genes make biological sense. However, it is worth not-
ing that none of the SNPs within inflammatory and muscle-
related genes chosen initially for these analyses were among 

Figure 1.  Heat map of ranked association p values for single-nucleotide polymorphisms (SNPs) in Table 1. First column: frailty association p values; second 
column: combined p values of frailty component variables; subsequent columns: individual phenotypic components of frailty. Each row represents one SNP with 
darker shades indicating increased strength of association compared with lighter shades.

the top 20 associated SNPs. Rather, the findings were 
mostly in genes identified through the protein interaction 
analyses; these helped to identify genes that acted as bridges 
between pathways or were important hub proteins in both 
systems. Interestingly, the function of the highest ranking 
genes is related to the regulation of apoptosis, biosynthesis, 
and transcriptional regulation rather than inflammation and 
muscle maintenance per se. This is consistent with previous 
gene expression studies in the skeletal muscle of a frail 
mouse model that showed a significant upregulation in ex-
pression of genes related to apoptosis and a downregulation 
in genes related to biosynthesis and transcriptional regula-
tion (23). In addition, other investigators have suggested 
that apoptosis and the development of cellular senescence is 
crucial to the development of frailty and aging processes 
and phenotypes across multiple tissues (9,10). Furthermore, 
Sharpless and DePinho (24) have recently reviewed data 
that suggest that heritable intrinsic events slow the renewal 
of stem cells and tissues and that apoptosis may accelerate 
the replicative decline of aging stem cells and tissues that 
underlie frailty and disease development . Although cer-
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tainly not conclusive, our data provide preliminary genetic 
evidence that is consistent with emerging evidence that pro-
teins in apoptotic pathways and in altered transcriptional 
and biosynthetic pathways may play a role in the develop-
ment of frailty and late-life decline.
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