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Abstract
Stressful experiences during adolescence can alter the trajectory of neural development and
contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male
rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content
both at baseline and in response to amphetamine when tested in adulthood. In the present study we
examined whether markers of adult dopamine function are also compromised by adolescent
experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors
act as regulators of psychostimulant action, are stress sensitive and undergo changes during
adolescence, quantitative autoradiography was used to measure [3H]-GBR12935 binding to the
dopamine transporter and [3H]-SCH23390 binding to dopamine D1 receptors, respectively. Our
results indicate that social defeat during adolescence led to higher dopamine transporter binding in
the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in
the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it
appears that social defeat during adolescence causes specific changes to the adult DA system,
which may contribute to behavioral alterations and increased drug seeking.
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1. Introduction
Adolescence marks a period of critical change in which the mesocorticolimbic dopamine
(DA) system undergoes substantial reorganization, enabling emotional and cognitive
development that aids in the transition to adulthood [61, 70]. While such changes are
inherently adaptive to survival, they also make the adolescent brain particularly vulnerable
to insults from the experience of stressors [2, 3, 61]. Stress is a potent activator of the
mesocorticolimbic DA system [1, 6], and evidence suggests that stressful experiences during
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adolescence can lead to long-term changes in this system that may contribute to increased
incidence of psychiatric disorders in adulthood [7, 14, 23, 39, 47, 49, 62, 72, 74].

One particularly common yet severe stressor that adolescents encounter is bullying [45].
Along with its immediate consequences to psychological well-being, bullying is associated
with a greater incidence of psychiatric disorders that may emerge either in adolescence or in
later life [8, 25, 27, 36, 45, 65, 71]. In order to gain insight into the potential neural
mechanisms by which bullying might contribute to later psychopathology, we have
developed a rodent model of adolescent social defeat that mimics the victimization and
imbalance of power defining human adolescent bullying [11, 72]. In line with the
aforementioned developmental vulnerability of the mesocorticolimbic DA system, rats
undergoing repeated social defeat in adolescence exhibit reduced dopamine content in the
medial prefrontal cortex (mPFC) as adults [72]. Furthermore, amphetamine-induced
increases in DA responses are attenuated in the mPFC of adult rats that had experienced
adolescent social defeat [14]. Conversely, previously defeated rats showed an enhanced
increase in amphetamine-induced DA responses in the nucleus accumbens (NAc) core
compared to controls [14]. This particular pattern of low mPFC DA activity and high NAc
DA activity has been associated with enhanced locomotion responses to both novelty and
amphetamine, as well as increased psychostimulant self-administration [13, 51, 57, 67].
Indeed, rats exposed to social defeat in adolescence do show greater locomotion activity in
novel environments as adults [14, 72], along with enhanced conditioned place preference for
amphetamine [15]. Together, these findings suggest that the experience of social defeat in
adolescence may have long term consequences on mesocorticolimbic DA regulatory
processes that contribute to altered novelty and psychostimulant responses.

One point of DA regulation is the DA transporter (DAT), which acts as both a mechanism to
clear synaptic DA and as a pharmacological target for amphetamine [55, 77]. Differences in
DAT function and expression have also been found in rats with high versus low locomotion
responses to novelty [28, 76]. Given findings of altered psychostimulant and novelty
responses in previously defeated rats [14, 72], and that DAT levels are also affected by
social defeat stress [22, 30, 40], we hypothesized that adolescent social defeat may lead to
long-term changes in DAT expression. Besides DAT, the DA D1 receptor plays a role in
facilitating amphetamine-induced locomotion behavior [26, 29, 68, 69, 75] and also
participates in modulating the balance between mPFC and NAc DA levels [21, 48, 68, 69].
As rats defeated in adolescence also show decreased amphetamine-induced locomotion in
adulthood compared to non-defeated controls [14], it was additionally hypothesized that DA
D1 receptors may be altered by adolescent defeat experience. In order to investigate
potential changes to these dopaminergic markers, we sought to analyze DAT and DA D1
receptors in mPFC, NAc, and striatum, as DA activity is affected by social defeat in these
regions [30, 40, 66]. In addition, these structures are principally involved in mediating
novelty and amphetamine-evoked responses on both a pharmacological and behavioral level
[19, 51, 67, 77]. Thus, the present study utilized quantitative autoradiography to measure the
binding of [3H]-GBR12935 to DAT sites and of [3H]-SCH23390 to DA D1 receptors in the
mPFC, NAc, and striatum of adult rats that had undergone repeated social defeat in
adolescence.

2. Materials and Methods
2.1. Subjects

Male juvenile post-weanling Sprague-Dawley rats (Postnatal day [P]21, n=20) were
obtained from the University of South Dakota Laboratory Animal Services. All rats were
pair-housed such that cage-mates were in the same treatment group (social defeat or control)
and kept at 22 °C on a reverse 12-hr light-dark cycle (lights off 10.00). Food and water were

Novick et al. Page 2

Brain Res Bull. Author manuscript; available in PMC 2012 August 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



available ad libitum. Behavioral experiments were conducted between 11.00 and 15.00
under red lighting. All procedures were carried out in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals and received
approval from the Institutional Animal Care and Use Committee of the University of South
Dakota. Every effort was made to minimize the number of animals used and their suffering.

2.2. Social defeat
The adolescent social defeat procedure used in this study is a modification of the resident-
intruder paradigm [34, 42, 43] and has been described in detail previously [14, 72]. Briefly,
male rats (n=10), starting at P35 (mid-adolescence, [2, 61]), were introduced to the home
cage of a larger aggressive resident adult male Sprague Dawley rat once daily for 5
consecutive days. After the adolescent intruder exhibited 3 consecutive submissive postures,
it was considered defeated, and promptly confined behind a wire-mesh barrier within the
resident’s cage for 35 minutes. The adolescent rat was then subsequently returned to its
home cage. Age-matched controls (n=10) did not experience social defeat, but were instead
placed into a novel empty cage for the duration of the defeat trial in order to control for
handling and novel environment stress. After the final defeat trial, all animals were allowed
to mature undisturbed in their home cages until early adulthood (P56).

2.3. Brain Section Preparation
At P56, all subjects underwent rapid decapitation and brains were collected and frozen at
−80 °C until use. Brain sections (16μm) were cut at −18°C in a cryostat microtome and
mounted on gelatin-coated microscope slides (two brain sections per slide). Before storing at
−80°C, all slides were kept overnight at 4°C under vacuum. For autoradiographic analysis,
quadruplicate brain sections from each animal were used encompassing the mPFC
(infralimbic, prelimbic and cingulate cortices) and corresponding to Plate 8 as listed in the
brain atlas of Paxinos and Watson [50]. Similarly, quadruplicate sections from each subject
that contained the nucleus accumbens (core and shell) and striatal caudate putamen (CPu)
equivalent to Plate 12 of the Paxinos and Watson atlas [50] were also analyzed.

2.4. DAT binding
DAT binding was assessed with the radioligand [3H]-GBR12935 according to the method
described previously by Jiao et al. [31] with minor modifications. Slides containing sections
were preincubated for 15 minutes at 4°C in a 7.5 pH buffer solution containing 50 mM
NaH2PO4, 70 mMNaCl, 0.025% bovine serum albumin (BSA), 0.001% ascorbate, and 1
μMcis-flupentixol. This was followed by a 23 hour incubation in the same buffer solution
with the addition of 2nM [3H]-GBR12935. Non-specific binding was determined with the
addition of 50μM mazindol. In order to the end the incubation, slides were placed in ice-cold
buffer solution without [3H]-GBR12935 for 2 hours. Slides were then dried at 4°C,
transferred into cassettes and exposed to BioMax MS film with [3H] standards. The
exposure times were 14 days and 35 days for plates 12 and 8, respectively.

2.5. DA D1 receptor binding
DA D1 receptors were labeled with [3H]-SCH23390 based on the method of Savasta et al.
[56] and similar to that described previously [46]. Specifically, sections were preincubated
for 15 minutes in a 7.4 pH buffer solution containing 50mM Tris-HCl, 120mM NaCl, 5mM
KCl, and 1mM MgCl2 at room temperature. The sections were then incubated for 60
minutes at room temperature in a similar buffer solution with the addition of 3.5nM [3H]-
SCH23390 and 30nM ketanserin tartrate (to block 5-HT2 receptors). Non-specific binding
was determined with the addition of 1μM (+)− butaclamol. The incubation was ended by
dipping the slides in ice-cold buffer, followed by two consecutive 10 minute washes in ice-
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cold buffer and a final dip in cold de-ionized water. The sections were then dried at room
temperature and transferred into cassettes and exposed to Kodak BioMax MS film with [3H]
standards. The exposure times were 14 and 28 days for Plates 12 and 8, respectively.

2.6. Quantification and Statistics
Autoradiographic films were analyzed using the computer software program, ImageJ [54].
Nonspecific binding was subtracted from the total binding to provide the specific binding to
either DAT or DA D1 receptors in the regions of interest.

Statistical analysis was performed using SigmaStat 3.5 for Windows. Data were expressed
as mean ± S.E.M specific binding (fmol/mg brain protein), where protein levels are based on
a standard curve of optical densities generated from a series of tritiated standards of known
concentrations [31, 46]. Levels of DAT and DA D1 receptor binding in each region of
interest were compared between previously defeated and control rats using separate one way
ANOVA. The level of significance was set a priori at p<0.05.

3. Results
3.1. DAT binding to [3H]-GBR12935

In the mPFC, significant increases in DAT binding density were found in the infralimbic
cortex of adult rats that had undergone social defeat during adolescence (F(1,17)=4.685,
p=0.045; Figure 1). However, previously defeated rats and controls showed equivalent
levels of DAT binding in the prelimbic cortex (F(1,17)=2.527, p=0.130) and the cingulate
cortex (F(1,17)=4.373, p=0.052) (Figure 1). No significant differences in DAT binding were
found in the subcortical regions of the CPu (F(1,17)=1.670, p=0.213), NAc Shell
(F(1,17)=2.020, p=0.173), or NAc Core (F(1,17)=0.590, p=0.453) (Figure 2).

3.2. DA D1 binding to [3H]-SCH23390
In contrast to DAT binding density, no significant differences in DA D1 receptor binding
between previously defeated rats and controls were found in the subregions of the mPFC
(infralimbic (F(1,18)=0.0891, p=0.769); prelimbic (F(1,18)=0.379, p=0.546); cingulate
F(1,18)=0.947, p=.343) (Figure 3). Likewise, DA D1 receptor binding did not differ
between defeated and control rats in either the NAc core (F(1,17)=0.939, p=0.346) or the
NAc shell (F(1,17)=1.527, p=0.233). However, previously defeated rats demonstrated
increased DA D1 receptor binding density in the CPu (F(1,17)=7.634, p=0.013) as adults
(Figure 4).

4. Discussion
4.1. Adolescent Social Defeat induces Changes in Adult DAT Binding

Rats that had experienced repeated social defeat in adolescence showed increased DAT
binding in the infralimbic mPFC as adults. Given that a blunted mPFC DA response to acute
amphetamine was previously observed in adult rats exposed to adolescent defeat [14],
findings of the current study suggest that DAT availability is not a limiting factor for
amphetamine action in the mPFC in these animals. Rather, this dampened DA response
exhibited by previously defeated rats is most likely a function of reduced basal mPFC DA
content caused by adolescent defeat [72].

Both physical and social stressors cause excessive mPFC DA release [1, 18, 66] in adult
rats. Similarly, preliminary data using our model indicate that adolescent rats undergoing
repeated defeat exhibit acute increases in mPFC DA release upon subsequent exposure to
social threat [73], and it is also known that stress experienced during adolescence induces
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greater mPFC neuronal activity than in adulthood [41]. Combined, this suggests that
increased DAT density in the mPFC may reflect a compensatory mechanism to enhance
clearance of excessive mPFC DA release caused by the stressful adolescent defeat
experience, as has been observed in adult rats exposed to physical stressors [60]. While this
would theoretically serve to help maintain efficient DA regulation in the face of repeated
social defeat, its persistence beyond the stressful period into young adulthood could
potentially contribute to the mPFC DA hypofunction and related behaviors of defeated rats
we have described previously [14, 72]. In addition, heightened mPFC DA clearance
resulting from increased DAT activity could directly enhance end-product inhibition of
tyrosine hydroxylase to reduce DA synthesis [9], explaining why rats defeated in
adolescence show decreased mPFC DA content as adults [72]. Evidence suggests the
norepinephrine transporter (NET) plays an important role in mPFC DA clearance, possibly
as a result of the relatively sparse distribution of DAT in the mPFC compared to other
regions [44, 52]. Therefore, future studies should investigate whether mPFC NET
expression and function is also affected by adolescent defeat and if this contributes to
alterations in mPFC DA and related behaviors.

Rats defeated in adolescence show heightened locomotion responses in novel environments
as adults [14, 72]. Zhu et al. [76] found that mPFC DAT function and cell surface expression
in the mPFC were lower in rats with a high locomotion response to an inescapable novel
environment, while no differences in total mPFC DAT binding were observed. With regards
to DAT binding, the discrepancy of our findings with those of Zhu et al. [76] may be related
to the method and model used in the current work, as our study used quantitative
autoradiography to measure DAT binding in discrete mPFC subregions rather than
homogenate binding within the entire mPFC. Furthermore, social defeat stress during
adolescence may produce differential effects on mPFC DAT as compared to DAT profiles
associated with naturally-occurring predispositions for high or low novelty responses
without prior adolescent stress.

To our knowledge, this is the first study to evaluate the long-term effects of a social stressor
in adolescence on DAT binding density, and the first to demonstrate that this effect on DAT
is specific to the mPFC. Previous studies have shown that exposure to social defeat in
adulthood results in changes to DAT expression, but unlike the current findings, these
appear to be restricted to subcortical components of the limbic DA system, with no reported
alterations to cortical DAT. Further, the direction of DAT change appears to depend on the
defeat paradigm used. For instance, chronic social stress in adulthood causes an upregulation
of accumbal and striatal DAT binding in subordinate male rats [40], while VTA DAT
mRNA levels are increased in adult male mice that repeatedly experience social defeat [22].
In contrast, adult male rats exposed to a single social defeat show decreased striatal DAT
binding, with this effect only apparent after being housed in isolation for >24 hr immediately
following defeat [30]. The prefrontal cortex DA system undergoes dynamic alterations
during adolescence [10, 20, 41, 64], components of which are delayed compared to
subcortical DA structures [4, 12, 17]. Of relevance to the current findings, Leussis et al. [38]
found that social isolation stress during adolescence produced decreases in synaptic density
in both the infralimbic and cingulate cortex. Given that adolescent social defeat produced
changes in DAT within similar regions, the present work supports literature in both animals
[37, 38] and humans [5] that the developing prefrontal cortex is particularly vulnerable
during adolescence to social stress, and as such may be responsible for the differing patterns
of DAT expression seen in the current study compared with those using adult social stress
paradigms.
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4.2. DA D1 receptor binding
Adult rats that had undergone repeated social defeat during adolescence exhibited increased
DA D1 receptor binding in the CPu, with no changes in regions of the NAc or mPFC. The
DA D1 receptor is particularly important for facilitating locomotion responses to
psychostimulants [75]. Although the current study found that previously defeated rats
demonstrated increased CPu DA D1 receptor binding, these rats exhibit attenuated
locomotion responses to amphetamine [14]. This is likely due to the fact that while the CPu
is involved in amphetamine-induced stereotypy, DA activity in the NAc plays a more
fundamental role in amphetamine-induced locomotion activity [32, 33, 58].

In viewing the increased DA D1 receptor binding in defeated rats from a developmental
perspective, it is interesting to note that DA D1 receptors in the CPu undergo extensive
pruning between adolescence and young adulthood [4, 24, 63]. These studies have shown
that DA D1 receptor binding density reaches a peak in the CPu at P40 with an approximate
35-40% reduction by P60 [4, 63]. It is thus tempting to speculate that repeated social defeat
stress ending at P39 prevented the normal DA D1 receptor pruning in the CPu that would be
evident by the time the receptors were assayed at P56. The failure of defeated rats to
demonstrate this pruning phenomenon may be due to changes in the mPFC DA system. It
has been found that 6-OHDA lesions of the mPFC can produce upregulation of DA D1
receptors in the striatum [53], suggesting that the previously observed deficits in mPFC DA
content following social defeat [72] may influence subcortical receptor content.

Andersen et al. [4] have suggested that DA receptor pruning in the CPu may be related to
decreases in hyperactivity symptoms seen in attention deficit hyperactivity disorder
(ADHD) after periadolescence. Such reasoning is in line with observations that the
spontaneously hypertensive rat (SHR), which is used as model for ADHD, has higher DA
D1 receptor binding in the CPu compared to other strains [16, 35] (but see [59]). Given the
hyperactive-like nature of previously defeated rats [14, 72], assessing DA receptor binding
at multiple time points would provide more insight into how the experience of stressors
during adolescence affect normal development of the DA system and might contribute to
disorders such as ADHD.

4.3. Conclusions
When exposed to repeated social defeat in adolescence, male rats demonstrate regional
alterations in DAT and DA D1 receptor binding density as adults. Specifically, previously
defeated rats were found to have significant increases in DAT binding in the infralimbic
region of the mPFC, while DA D1 receptor binding was significantly increased in the CPu.
The persistence of these changes into adulthood is likely reminiscent of the developmental
vulnerability of the adolescent brain to stress [2, 3, 61]. Given the role of DAT and DA D1
receptors in regulating DA, the alterations found in the present study may contribute to the
long-term changes in behavior and psychostimulant responses seen previously in rats
exposed to adolescent defeat [14, 72]. In order to further our understanding of the long-term
consequences of severe adolescent stressors, future studies utilizing pharmacological
challenges to target DAT and DA D1 receptors will better characterize the mechanisms by
which changes in binding density found in the present study relate to alterations in brain
function and behavior.
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Abbreviations

DA Dopamine

DAT Dopamine Transporter

mPFC medial prefrontal cortex

NAc nucleus accumbens

CPu caudate putamen
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Novick et al – Research Highlights

• Stressful experiences in adolescence can disrupt neural development.

• We show adult prefrontal cortex dopamine transporter increases after adolescent
social defeat.

• Previously defeated rats also showed increased striatal dopamine-1 receptors.

• These changes may underlie altered drug responses seen after adolescent defeat.
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Figure 1.
Specific binding of [3H]-GBR12935 to DAT sites in regions of the mPFC of adult rats that
underwent adolescent social defeat versus controls. Data are expressed as the mean±S.E.M.
of measurements from 10 rats from each group with determinations made in quadruplicate
sections from each brain. * Significant difference between treatment groups (p<0.05).
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Figure 2.
Specific binding of [3H]-GBR12935 to DAT sites in subcortical regions of adult rats that
underwent adolescent social defeat versus controls. Data are expressed as the mean±S.E.M.
of measurements from 10 rats from each group with determinations made in quadruplicate
sections from each brain.
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Figure 3.
Specific binding of [3H]-SCH23390 to DA D1 receptor sites in regions of the mPFC of adult
rats that underwent adolescent social defeat versus controls. Data are expressed as the mean
±S.E.M. of measurements from 10 rats from each group with determinations made in
quadruplicate sections from each brain.
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Figure 4.
Specific binding of [3H]-SCH23390 to DA D1 receptor sites in subcortical regions of adult
rats that underwent adolescent social defeat versus controls. Data are expressed as the mean
±S.E.M. of measurements from 10 rats from each group with determinations made in
quadruplicate sections from each brain. * Significant difference between treatment groups
(p<0.05).
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